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Abstract

Linear dynamically varying Ho, controllers are developed for tracking natural trajectories
of a broad class of nonlinear systems defined over compact sets. It is shown that the existence
of a suboptimal H., controller is related to existence of a bounded solution to a functional
algebraic Riccati equation. Even though nonlinear systems running over compact sets could
exhibit sensitive dependence on initial conditions, the Riccati solution is continuous in the
suboptimal case, but it may be discontinuous in the optimal case.

1 introduction

Nonlinear tracking has been thoroughly investigated. A popular approach is to linearize the system
around an operating point, generate a linear controller for each operating point, and “schedule”
the controllers in such a way that the closed-loop system remains stable as the operating point
changes. In this approach, the nonlinear tracking error system is modeled, approximately, as a
linear system with parameters that vary as the operating point varies. Such systems have been
extensively studied [3], [4], [5], [6], [25], [28], [33] and are known as linear parametrically varying
(LPV) systems.

For purpose of comparing the various LPV concepts, it is convenient to introduce linear set-
valued dynamically varying (LSVDV) systems [11]:
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with 6 (0) = 6, and z (0) = ,.

Here, the parameters vector 6 varies according to a set-valued dynamical system, continuous for
the Hausdorff metric. w is the disturbance input, u the control, and z the controlled output.

In the most traditional LPV approach [4], [6], [5], [23], [25], all that is known about the
parameter dynamics is that F(#) = ©. The advantage of this model is that, if © is a convex
polytope, then there are many computationally efficient controller synthesis methods [14]. Most
of these approaches generate a suboptimal solution via a linear matriz inequality (LMI). However,
these approaches can be conservative.

A slight refinement of the above LPV method consists in putting bounds on the rate at which
the system parameters vary, i.e., F(0(k)) = Byx)(A), the ball with radius A and with its cen-
ter at 6(k). There are efficient methods based on functional LMI’s for designing controllers for
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these modified LPV systems [16], [33], [34], [35]. However, these design methods could fail when
the parameters vary drastically; for example, when the controller needs to account for failures
which lead to sudden changes in the system parameters [21]. Also, typically, these methods are
conservative. Non-conservative LPV approaches are pursued in [11] and [29].

Another popular type of LPV systems are jump linear (JL) systems [15], [19]. Here © =
{01, 0q,...} is discrete and F(6(k)) is equipped with a probability measure depending on 6(k)
only, so that the transition among the ©;’s is a Markov chain. The jump linear method for
designing a controller for a such system is optimal (hence, nonconservative). The controller is
provided by the solution to a system of coupled Riccati equations. Furthermore, there are efficient
methods to compute the optimal controller [1], [2], [12].

A linear dynamically varying (LDV) system is a LSVDV system in which the parameter dy-
namics is completely known, that is, F(6(k)) is reduced to a point f(0(k)). In [8], it was shown
that a linear-quadratic controller for such a system (with w = 0) can be found by solving a
functional algebraic Riccati equation (FARE). It should be noted that this functional algebraic
Riccati equation is the LDV substitute for the functional linear matrix inequality of most other
LPYV approaches. Furthermore, the FARE of LDV design provides the optimal solution, while the
functional LMI only provides a suboptimal solution. The mathematical difficulty with the LDV
approach is to prove that the solution to the FARE is continuous, in which case the feedback gain
matrix is a continuous function of the parameters. The LPV approaches described above avoid
this continuity question by a priori assuming that the solution to the relevant functional LMI is
continuous [33], polynomial [35], affine [16], [34], or even constant [4], [6], [5], [23], [25]. Since
an arbitrary accuracy approximation of a discontinuous function has to duplicate the ezact be-
havior at the discontinuity points, which are potentially uncountable in numbers, a discontinuous
solution is numerically intractable, so that the continuity assumption is justifiable. However, it is
important to know how constraining this continuity assumption is.

Tracking trajectories of the important class of hyperbolic nonlinear systems on compact sets can
be accomplished by modeling the dynamics as a Markov chain [22] and resorting to JL methods.
However, the resulting closed-loop system is only stochastically stable and it is not possible to
directly show that the system is robustly stable. For this reason, the typical JL approach is not
appropriate for the nonlinear tracking problem. The connection between JL and LDV control
systems designs is examined in [10].

While in [8] LDV systems were stabilized using linear-quadratic methods, here, the same
systems are stabilized by means of H* methods. This paper shows that, if the parameter dynamics
is completely known, then the existence of a suboptimal H controller is equivalent to existence of
a continuous solution to the FARE. Of particular interest are LDV systems that arise as linearized
versions of nonlinear tracking error dynamics. In this case, it can be shown that the linearization
error is a bounded feedback around the linearized system, so that the H*° formulation is well-suited
to minimize the effect of the error due to linearization and amplify the domain of attraction.

The paper proceeds as follows: The next section formalizes the tracking control problem of
interest and shows how the tracking error dynamics can be approximated as an LDV system.
Section 3 formally develops LDV systems. Section 4 develops the suboptimal H controller for
this class of systems. Section 5 provides the proofs of the main technical results. Section 6 shows
that these linear controllers are suitable for stabilization of nonlinear dynamical systems.

) 1/2 ' N2
Notation: |z (k)] := (&' (&) 2 (£)) "%, |lel) = (Tiopa’ (92 ()
z € R", then ||z, = max;<, |z;| and, if z € R"*%, [zll;, = supgezlz (k)|. If A is a matrix,
then || A|| := supjy—; |Az|, whereas, if T': l — I, then ||T'[| := supy,, —; || Tz|,,; the context in
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and [|z{|;, = [[z[ljg,c0- If

which these norms are used will resolve potential confusion. If f : ® x R™ — © with © C R",
denote %5 (0, u) to be the Jacobian matrix of f where the derivatives are taken with respect to
6 and are evaluated at (6,u) € © x R™. Define %5 (0,u) similarly. With reference to system
(1), let zg, (u,w,x,) denote the output signal z due to initial conditions 6 (0) = 6,, = (0) = =,
and input signals v and w. Let zp, (u,w, z,; k) denote this output at time k. Let zq, (F,w,z,)
and zg, (F,w, z,; k) be defined similarly, except that the control u is replaced by the control law



defined by F. For succinctness, we often write f () := f(6,0).

2 problem statement

A dynamical system, 0(k + 1) = f(6(k)) where f € C* (R",R"), gives rise to a string of nested
invariant subsets, P(f) C P(f) C R(f) € NW(f), where P(f) is the periodic set, P(f) its closure,
R(f) the closure of the recurrent set, and NW(f) is the nonwandering set [22]. We specifically
consider systems where NW (f) is bounded, in which case P(f), R(f) and NW (f) are compact,
and we choose the domain © to be any of those compact invariant sets. More generally, © could
be taken to be any compact invariant subset. In particular, if f is an Axiom A diffeomorphism
satisfying the strong transversality condition, then NW (f) is a disjoint union of attractors [27],
which by definition are compact and invariant and hence could be taken to be ©. If the uniform
hyperbolic conditions fails, f could still have an attractor, which could be taken to be ©.

We take the control u to be a small perturbation of the parameters of the nominal dynamics
f- More specifically, the nominal and perturbed dynamics are, respectively,

0(k+1)=f(0(k),0)+ v, (k), with 6(0) =0,, (2)
@ (k+1) = f(p(k),u(k) +v2 (k), with ¢ (0) = ¢, ®3)
where
1.
feC*(R" xR™ R"). (4)

2. f(©,0) C ©,ie., Ois f-invariant, and f(-,0): © — ©.
3. © is a compact subset of R".

Here {6 (k) : k > 0} is the desired trajectory and ¢ (k) is the state of the system under control.
The exogenous inputs v; (k) and v, (k) are typically small with 6 (k + 1) € ©. The purpose of v;
is to allow the desired trajectory to occasionally jump from a point on one orbit to a nearby point
on another orbit [9]. On the other hand, v, is to allow for some modeling inaccuracies. At time £,
it is assumed that both 6 (k) and ¢ (k) are known. The basic objective is to find a control u such
that, when v; = v = 0 and for |6(0) — ¢(0)| small enough, we have limy_, |¢ (k) — 8 (k)| = 0.

A distinguishing feature of the present approach is that the tracking controller takes the form
of a spatially varying gain F : © — R™*™, guaranteed to be continuous under suitable conditions.
As the first and most generic application, given an arbitrary desired trajectory {0 (k) : k=0,---},
evaluating the controller F' along the trajectory {6 (k) : k=0,---} yields the time-varying con-
troller Fy(;) that makes the nonlinear system ¢ (k+ 1) = f (¢ (k), Fo) (¢ (k) — 0 (k))) asymp-
totically track 6 (k+ 1) = f (6 (k)). More importantly, the globally defined controller F' becomes
fully motivated in those specialized applications where there is a need to quickly adapt the track-
ing controller to a new reference trajectory without recomputing a new time-varying controller
along the new trajectory [9], [13], [20], [21].

If v; = va = 0, then stability of the closed-loop system, which implies asymptotic tracking,
is guaranteed if |¢ (0) — 6 (0)| < Rcapture Where Reapture > 0. If v1 # 0 and/or ve # 0, then
asymptotic tracking can still be guaranteed if [[v1 — va|;,  and [ (0) — 6 (0)| are small enough and

v1(k) — vo(k) is intermittent enough. If v; — vg is persistent, then one cannot expect asymptotic
. . e . 0— .
tracking; however, under suitable conditions, the gain Hzﬂ— can easily be shown to be bounded
[7]. Besides, the effect of the model uncertainty v can be minimized using standard H* methods.
Therefore, we shall no further pursue the investigation of the effect of vy, vs.
The tracking controller design relies on linearizing the tracking error dynamics as follows:

Define the tracking error
z (k) = ¢ (k) — 0 (k).



Then
z(k+1)=f(p(k),u(k) - f(0(K),0).
The first degree Taylor approximation of f (¢ (k),u(k)) around ¢ (k) = 6 (k) and u (k) = 0 yields

flp(k),u(k)) = f(0(K),0)+ Agw) (¢ (k) — 6 ())
+ Bagyu (k) + 1 (z (k) u (k) , 0 (k)
where
Ap = gg 9,0, Bs, = gf (9,0) (5)
and 1 (z (k),u(k), 8 (k)) accounts for nonlinear terms. Thus
 (k+1) = Agryz (k) + Bagg u (k) + 1 (z (k) , u (k)0 (k). (6)
Since f € C!, n can be decomposed as
n(z (k),u(k),0 (k) =n. (z(k),u(k),0 (k) (k) +nu (2 (k),u(k),0 (k) u(k),  (7)
where
Mo (,u,0); ; = / (62{; (tz + 0, tu) — fz (0 0)) dt (8)
0
and
M (2,4,0); ; = /(81]:1 (tz + 6, tu) — afz C2 0)) dt. 9)
0

Since f € C! and © is compact, if  and u are bounded, then %% (tx +0,tu) — %% (0,0) is
uniformly continuous In particular, for any € > 0, there is a § > 0 such that, if |z|, |u| < §, then
~L (tz + 0, tu) — (9 0)‘ < €. Therefore,

lim sup {{ne (2,4, 0)| ;2] <7, [u| <@, 6 €O} =0 (10)
z—0,a—

and
_Mim sup {[|n. (2,4, 0)] : |2 <Z, |u[ <@, § €O} =0. (11)
z—0,0—

If v and x are small, we can approximate the error dynamics as
z(k+1)= A@(k).’lt (k) + Bge(k)u (k), (12)
0(k+1)=f(0(k),0).

This systems is linear in the tracking error z, but the coefficient matrices A and B vary (in general
in a nonlinear way) as 6 varies. Since 6 (k) varies according to (2), the system described in (12)
is a Linear Dynamically Varying (LDV) system. Before controllers can be developed for such
systems, linear systems with dynamically varying parameters must be formalized.

3 linear dynamically varying systems and LQ control

Motivated by the preceding considerations, a general LDV system is defined as
k
z(k+1) | _ A9(k) Ble(k) B26(k) z (k)
= w(k) |, (13)
z (k) C’6’(19) Dla(k) ‘D26(k) u (k)

0(k+1)=f(0(K),
with 6 (0) =6, and z (0) = z,, (14)

subject to the following general conditions:



1. © C R" is compact and f : © — O is a continuous function.

22.A:0 5RY™ B :0 - R™, By :0 - R C:0 — RPX" D;: 0 — RP*! and
Dy : © — RPX™ gre functions that need not be continuous.

In the above, 6(k) € © is the state of the dynamic system, z (k) € R™ is the state of the linear
system, u (k) € R™ is the control input, w (k) € R is the disturbance input, and z (k) € R is the
output to be controlled.

It is often assumed that the system coefficient matrices A, By, Bs, C, D1, and D, are con-
tinuous. We will refer to such systems as continuous LDV systems. In Section 2, it was assumed
that f € C!, and since A and B are matrices of partial derivatives of f, A and B are indeed
continuous. Thus the tracking error system associated with (2) and (3) can be approximated by a
continuous LDV system. However, if a feedback F' : © — R™*™ is used to stabilize a continuous
LDV system, then the resulting closed-loop system is a continuous LDV system if and only if F'
is continuous. Although this paper will focus on stabilizing continuous LDV systems, we cannot
a priori assume that the feedback is continuous. Therefore, the definition of an LDV system must
allow for possibly discontinuous coefficient matrices.

Since an LDV system is an uncountable collection of linear time-varying systems indexed by
6 (0), the concept of stability is slightly more complex in the dynamically varying case than it is
in the time-varying case.

The LDV system (13) is uniformly exponentially stable if, for u (k) = 0 and w (k) = 0, there
exist an o € [0,1) and a B < oo such that, for all 6 (0) € ©,

J (k)| < Ba® |z (0)].

System (13) is exponentially stable if, for u (k) = 0, w (k) = 0 and for each 6 (0) € ©, there exist
an ag(o) € [0,1) and a Bg(o) < oo such that, for all z (j) and j <k,

@ ()| < Bo(oy gy | ()] -
System (13) is asymptotically stable if, for u (k) = 0, w (k) = 0, any |z (0)| < oo, and any 6 (0) € ©,

|z (k)| — 0 as k — oo.

Note that an exponentially stable system is stable uniformly in time &, but not necessarily uni-
formly in the initial condition 6 (0). That is, along any given positive trajectory { f* (6 (0)) : k£ > 0},
an exponentially stable system is (uniformly in time) exponentially stable; however, if {6(0); : ¢ > 0}
is a convergent sequence, with 6(0) = lim;_,o, 6(0);, it is possible that ag(g), — 1 while ag) < 1,
in which case the system is exponentially stable, but not 6(0)-uniformly exponentially stable.
To emphasize the difference between exponential and uniformly exponential stability, exponential
stability will occasionally be referred to as uniform in time exponential stability.

In the case of continuous LDV systems, asymptotic, exponential and uniform exponential
stability are equivalent (Proposition 2 in [8]). Since uniformly exponentially stable systems are
inherently more robust than exponentially stable systems, it is preferable to remain within the
confines of continuous LDV systems. Thus, when synthesizing a feedback for controlling a continu-
ous LDV system, it is important to ensure that the feedback is not only asymptotically stabilizing,
but also continuous. However, to maintain generality, an LDV system is considered stabilizable if
there exists an exponentially stabilizing feedback, that is,

System (13) is stabilizable if there exists a, not necessarily continuous, function F': Z x © —
R™" with bound Fg(g) < oo such that, for all 6 (0) € © and for all k > 0, we have || Fy() (k)|| <

79(0) and the system

z (k+1) = (Agwy + Bzogs Foco) (k) z (k) ,
0 (k) = f* (6(0))



is exponentially stable. That is, there exist age) € [0,1) and Bp) < oo such that, for any
68 (0) € ©, there exists a time-varying, bounded feedback Fy(o) (k), which may depend on 6 (0),

such that
k—1

II (Af"(l’(O)) + B2 40, Fo(0) (i)) < o) g(q)
i=j
where the factors of the matrix product are taken in the proper order.
Therefore, along every trajectory {f*(6(0)) : k > 0}, the time-varying system is (uniformly
in time) exponentially stabilizable by means of a function F' which, as defined in Definition 3,
depends on the initial condition #(0). In this sense, the control is not quite “closed-loop” and
more importantly there are no assumptions about the global properties of the feedback F. In
particular, the feedback may not be a continuous nor even a uniformly bounded function of 6(0).
However, in the case of continuous LDV systems, it was shown in [8] that a stabilizable system
has a continuous, uniformly exponentially stabilizing feedback F' : © — R™*™. In this case, the
feedback gain takes the form Fjy(;) and does not depend on the initial condition 6 (0), but only
the current state 6 (k). Hence the controller is “closed-loop.”
The dual concept of detectability has two versions. The first one is uniform detectability.
System (13) is uniformly detectable if there exists a, not necessarily continuous, function
H : © — R™*P with uniform bound H < oo such that, for all § € ©, we have ||Hy|| < H and the
system

z(k+1) = (Aow) + Hou) Cowrry) = (K)
0 (k) = £*(6(0))

is uniformly exponentially stable. That is, there exist an ag € [0,1) and a 84 < 0o such that, for
all 6(0) € ©,
lz (k)| < Bac§ |1z (0)]] -

System (13) is detectable if there exists a, not necessarily continuous, function H : Z x © —
R™*P with bound Hg() < oo such that, for all 6 (0) € © and all k, we have ||H9(0) (k)|| < Hyq) <
oo and the system

z(k+1) = (Ao + Ho(o) (k) Cory) = (K),
0 (k) = f*(6(0))

is exponentially stable.

If f is invertible, the LDV system has an adjoint system running backwards in time. If a
continuous LDV is detectable and f is invertible, then the adjoint system is stabilizable. It is easily
shown that this implies that the adjoint LDV is in fact uniformly stabilizable and therefore that
the LDV system is uniformly detectable. Thus, if f is invertible and the LDV system is continuous,
then uniform detectability and detectability are equivalent. Although stabilizability and uniform
detectability are slightly asymmetric, to avoid putting extra assumptions on f, stabilizable and
uniformly detectable continuous LDV systems will be considered.

Since stabilizability only depends on A, Be and f, we will say that the triple (A, Bs, f) is
stabilizable to mean that system (13) is stabilizable. Similarly, we say that the triple (A, C, f) is
uniformly detectable to mean that system (13) is uniformly detectable.

Since an LDV system is a collection of time-varying systems, the following time-varying Lya-
punov stability theorem is useful:

Assume that system (13) is uniformly detectable and w = 0. Then there exist an oy, € [0,1)
and a fp, < oo such that, for 8 (0) = 6, and any z (j) € R”,

2 (k)| < Bo, g, | ()]



if and only if there exists a sequence {X FE0,) P k> 0} with bound X : © — R such that
Hka(GO)H S Xeo < o0, ka(eo) = X}k(eo) Z 0, and
Affk(eo)ka"'l(eo)Afk(eo) - ka(eo) < _C}k(eo)ka(go). (15)

Furthermore, if equation (15) is satisfied, then ag, and By, can be taken to only depend on the
bound Xy, and on oy and By in the definition of detectability.

For 6 (0) fixed, the system is a time-varying system. Thus the theorem is simply a statement
about the stability of linear time-varying systems and can be found on page 41 in [18].

Assume that system (13) is uniformly detectable and w = 0. Then there exists an « € [0,1)
and a 8 < oo such that

|z (k)| < Ba* |z (0)]

if and only if there exists a uniformly bounded function X : @ — R™*" with Xy = Xj > 0 such
that, for all 6, € O,

Affk(GO)ka"'l(eo)Afk(eo) — ka(go) < —C}k(eo)ka(go). (16)

Since Xy is uniformly bounded and the system is uniformly detectable, Theorem 3 can be
applied at each 0, € ©.

The main result of [8] is the following:

Suppose that

1. f:© — O is continuous and © is compact.

2. The functions A, B, C, D2 are continuous.

3. D3, Dy, > 0.

4. CyD,, =0 for all # € © and (A4, C, f) is uniformly detectable.

Then the triple (A, By, f) is stabilizable if and only if there exists a unique, uniformly bounded
solution X5 : © — R™*™ guch that

1. X, satisfies the functional algebraic Riccati equation (FARE)
-1
ng = AIGXQf(a)Ae — Alngf(a)ng (DéaDge + BéBXQf(a)BQB) BégXQf(B)Ao + CéCG (].7)
2. X5, >0.

In this case, the closed-loop control

—1
urq (k) = — (Dée(@DZe(m + Bée(k)X2f(9(k))B29(k)) Bag s X240 A0(k) T (K) (18)

uniformly exponentially stabilizes system (13). Moreover, for |z (0)| < co and w = 0,

2’ (0) X247 (0) = inf {Z lz () :ue 12} : (19)
k=0

where the is infimum is attained for u = urg. Furthermore, X; is a uniformly continuous function.
Finally, if X5, (k, N + 1) solves the finite horizon Riccati equation, i.e.,

- Alfk(g)XQG (k+1,N+1)By

£k (0)
-1
/ /
x (Dka(e)Dgfk o+ B,y Xag (b+ 1N +1) Bka(e))
X Béfk(g)XQG (k + ]., N+ ].) Afk(g)

with
XZg (N + 1,N + 1) - C}N+1(9)CfN+l(9),
then Xs, (0, N 4+ 1) — X3, uniformly in 6.



4 linear dynamically varying H* control

In the following, the H* control problem for LDV systems of the general form (13) will be
formulated and the solution will be provided. There are two related problems.

The first is the finite horizon problem. For all § € ©, let the terminal weighting Xy (N +1, N +1) >
0 be given. The objective in this problem is to find a controller F,, such that, if

z (k)

w(k) = Fuy, (k, N +1) [ ()

} for kK < N,

then
Objective A For z (0) = 0, there exists an € > 0 such that, for w € I3 [0, N] and 6, € O,
121,57 — 7* llwllfp, ny + &' (N +1) X, (N + 1L, N+ 1)z (N +1) < —¢ |w]f v -

The second problem is the infinite horizon problem where the objective is to find a uniformly
exponentially stabilizing controller F, such that, if

_ z (k)
wl) =P, 0| 5 |
then
Objective B For z (0) = 0, there exists an € > 0 such that, for w € Iy and 6, € O,
2, =72 llwllz, < e Jlwlf,
and if w =0 and z (0) # 0, then z (k) — 0.

If Objective B is achieved, then
121l
[[wll,,

It will be shown that the solution to Objective B is the limit as N — oo of solutions to
Objective A.

4.1 finite horizon full information controller

D A9 Blg B29
For notational simplicity define 49 Bo =| Cs D1, Dy, | and J=: Iy 02 .
C@ .Da 0 Il 0 0 =Y Il
Let Xg, (N +1,N +1) > 0 be given. In a recursive manner, define
Xeo (k, N + 1) = Alfk(eo)Xeo (k + 1, N + 1) Afk(eo) + C}k(eo)cfk(eo) (21)
— Lo, (k,N +1)' Ry" (k,N + 1) Lg, (k, N + 1),
where ~ ~ ~ ~
Rgo (k, N + ].) = D;"“(GO)JDf’“(%) + B}k(eo)Xeo (k + ]., N + ].) Bfk(go), (22)
Lo, (k,N + 1) :== Diig\JCyr(g,) + Bir(g,y Xo, (k+1,N +1) Age(g,). (23)
ape Rl RIQ Ll mxm mXn 3
We partition R = and L = such that R3 € R and Ls € R . With
RQ R3 L2
the assumption that Ry, (k, N + 1) is nonsingular, the Schur decomposition yields
Ry, (k,N+1)
_[I R, (k,N+1,0,)Rs (k,N+1) Ve, (k, N +1) 0
) I 0 Rs,, (k,N +1)

I 0
g [ R3) (k,N+1) Ry, (k,N+1) I ]



where

Vo, (k; N +1) := Ry, (k,N +1) — Ry, (k,N+1)R3, (k,N+1)Ry, (k,N+1). (24)

Note that since Rs,, (b, N +1) = D3, , D2, tBa ., Xo, (6, N+1) By, and Dy Doy,
0, we have
Rs,, (k, N +1) >0 (25)
whenever X, (k, N +1) > 0. Hence, if
Xo, (k, N +1) >0, (26)
Vo, (k,N+1) < —pol, (27)

then Ry, (k, N + 1) is nonsingular.
For X, R, and V defined as above, it is possible to show by completion of squares (see [17]
page 485) that, for all z (k) and all u,w € I3 [0, N], we have

207,57 = 7 1wl vy + ' (N +1) Xo, (N+1, N+ 1)z (N +1) (28)
=x'(k)X9 (k,N +1)z (k) +

n ) —un (§)) Rss, (4, N +1) (w(j) — un (5))

o
>

+ —wn () Ve, (4, N +1) (w (5) —wn (5)),
=k
with
wy (k) :=—Vy' (k,N +1) Ly, (k,N+1)z(k),
uy (k) = =Rz} (b, N+1)[ La,, (k,N+1) Ry, (k,N+1) ] [ fv ((’2) ] , (29)
and where

Ly,, (k,N +1) = Ly,, (k,N+1) - Ry, (k,N+1) Ri’)_ei (k, N +1) Ly, (k,N+1). (30)
From (25), (27) and (28), it is clear that, for 8 (0) = 6,,
z, Xg, (0O,N + 1)z, (31)

2 2 ’
= su z w +2(N+1)Xe, (N+1,N+1)z(N+1);.
w€l2[gN]uel2[0N]{|| ||[0N] 7l ||[0,N] ( ) X, ( ) ( )}

The above is summarized by the following theorem which is a straightforward extension of
[17], page 484.

Suppose D) o, )Dg > 0 for all k < N and Xg, (N+1,N +1) > 0. In this case, there

7R (60)
exists a causal full information control u (k) = Fy, (k, N +1) { ((II?) ] that satisfies Objective
A if and only if, for 0 < k < N + 1, the following conditions hold:

1. Xg, (k, N + 1) satisfies the time-varying Riccati recursion (21).

2. For some g > 0, (26) and (27) hold.

In this case, the control given by (29) achieves Objective A.

>



4.2 infinite horizon full information controller

The second problem is the infinite horizon problem where the objective is to find a (uniformly in

time) exponentially stabilizing controller F' such that, if

Mm=%“ﬂi%}’

then Objective B can be achieved. The following assumptions on system (13) are needed:

1. f:© — O is continuous and © is compact.

2. The system parameters A, By, By, C, D1 and D, are matrix-valued continuous functions of

6.
3. Dy, Dy, >0 forall 6 € ©.

4. For all§ € ©, we have Dy, [ Cg Ds, | =0 and the triple (4, C, f) is uniformly detectable.

5. The triple (A, Ba, f) is stabilizable.

Assumption 4 is equivalent to:

4’ The triple (A — B, (DyD,)" ' DyC, (I — Dy (DyDy) ™ Dg) Cf ) is uniformly detectable.

Indeed, if Assumption 4’ holds, then the feedback

-1
w(k) == (Db, D2eey)  Dhyuy Crro® (B)

-1
_ (D’ Dka(9)> Dgfk(a)lek(a)w (k) +r (k)

25k (o)

converts it to Assumption 4. Perhaps these assumptions could be weakened (for example, see

[30]), but they are common.
The main result of the paper is the following:

Suppose Assumptions 1-5 hold. There exists a (uniformly in time) exponentially stabilizing

()

controller u (k) = Fy,, (k) { z(k) } such that Objective B can be achieved if and only if there

exists a uniformly bounded map X, : © — R™*™ such that

1. X, satisfies the FARE

Kooy = CéCe + Angoof(e)Ae — LleRe_ng,

where
Ry := ﬁ;JbQ + BéXoof(e)
Ly := DyJCs + BjXoo

BQ;
70 Ao-
2. For some ¢ > 0 and all 0 € O,

Xoog 2 05

Vo := Ry, — Ry, R3 Ry, < —ol.

3. The closed-loop system

T (k + 1) = (Ag(k) — Be(k)Rg_(}c)LG(k)) x (k)

is uniformly exponentially stable.

10
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In this case, the control

Uoso (k) = —R?Tel(k) [ L29(k) R29(k) ] |: Z((k];)) :| (36)

achieves Objective B, X, is continuous, and the closed-loop system with control (36), that is,

z(k+1)= (Afk(eo) - Bka(eo)R?Tl L2fk(90)) @ (k)

1k (80)
B _B 1 )
+< Lsk(oo) ka(eo)R3fk(90)L2fk(90) w(k),

is a uniformly (in #) exponentially stable system.

The proof of this theorem is withheld until Section 5. The proof entails the major difficulty
of proving continuity relative to 6 (0), an issue that does not exist in the traditional time-varying
case of [18] and [26]. Even though our approach is inspired from [17], [30] and [31], the continuity
issue of the LDV case makes it of interest in its own right.

The control u (k) produced by Theorem (4.2) depends on w (k). Since w (k) is meant to model
the linearization error (see Section 6), it will likely depend on u (k). Thus u (k) and w (k) are
linked by some algebraic relationship, which may not be easily solved. The following shows how
to find a control u (k) that depends on the information z (k) only. This type of control is referred
to as strictly causal.

Suppose the assumptions of Theorem 4.2 hold and there exists a controller as described. Sup-
pose also that R;, < —pI. Then the above control can be taken to be strictly proper. In particular,
the control

k)=— (R Ry R R, )
U (k) := — Bo(k) T 12600k T Ug 1) 20 (k)

X <L26(k) - RZe(k)Rl_gl(k)Lle(k)> z (k)
= _AO_(:}C)LAe(k)m (k),

where
Ag := Rs, — Ry, R{' R},

and
Lp, = Lo, — Ro, Ry, Ly,

achieves Objective B.

This corollary follows as a minor variation of the proof of Theorem 4.2.

The above results show the importance of the functional algebraic Riccati equation (FARE)
(32). Solving a functional equation may be computationally difficult. However, in [8], [10] several
methods for solving the FARE associated with a linear-quadratic objective were developed. These
methods can easily be extended to solving the FARE (32). Furthermore, the stability of (35) can
be checked via their respective FARE’s.

The continuity of the solution to the FARE is crucial when numerically computing it. For
example, suppose that © = [0, 1] and that there exists a jump discontinuity at some point 0 < p <1

0ifo<p

and that Xy := " Consider the construction of X , an approximation of X, with
6 otherwise

error € < 6, i.e. HXg —X’g” < ¢ for all § € ©. In general, the point p would be estimated
via some search method. However, unless p is known ezactly (which entails an infinite search),
HXg* — Xp- H > ¢ for some 0* € ©. If §* is a fixed point of f, then Hka(e*) — ka(e*) > ¢ for
all k, and a similar problem occurs if 6* is a recurrent point of f. In general, if X : © — R™*" is

continuous and © is compact, then X can be estimated by its value at a finite number of points.
If X is not continuous, such an estimate is not possible in general. It is this continuity issue, and

11



hence the ability to numerically evaluate the Riccati solution, that is the main distinction between
an LDV controller and a family of infinite-horizon, time-varying controllers.

Another difference between an LDV controller and a family of infinite-horizon, time-varying
controllers is that the LDV controller guarantees that the closed-loop system is uniformly exponen-
tially stable, whereas the family of time-varying controllers only guarantees stability along every
trajectory {0 (k) : kK > 0}. One situation where this distinction is important is noise rejection. For
example, suppose that the signal w in system (13) is bounded as ||w||, < @. Such a situation
arises when the f in (2) is different from the f in (3). Then it follows from Section 6 that the
maximum allowable @ depends on the parameters ag, and B, in the definition of stability. Hence,
we write wy,. Now suppose that the system is not uniformly exponentially stable, i.e. there exists
a sequence {0(0); : i > 0} such that either lim; . ag(g), = 1 or lim; o By(0); = co. In this case,
even though for each 6,, Wy, > 0, we have lim; .o Wy(o), = 0, that is, there is no positive bound
on the noise that results in a stable system for all initial conditions 6,,.

5 proof of main theorem

5.1 necessity

In the following, it is assumed that

Assumption A Assumptions 1-5 of Theorem 4.2 hold and there exists a stabilizing controller
that achieves Objective B.

Since (4, C, f) is uniformly detectable, Dy Dy, > 0, and (A, Ba, f) is stabilizable, the optimal
stabilizing LDV linear-quadratic controller exists (Theorem 3). That is, there exists a unique,
continuous, bounded function X : © — R"*™ such that X5 = X, > 0 solves equation (17).
Furthermore, for w = 0,

inf [|2]7, =z}, Xa2,20 (37)
u€ly

and this infimum is attained for u given by (18).
Define Xy, (k, N + 1) as in (21) with terminal cost X2, n414,, 1t Will be shown (Lemma 5.1)
that
Xoo, = Jim Xy (0, N +1) (38)

provides a solution to equation (32) (see Lemma 5.1) such that system (35) is uniformly exponen-
tially stable (see Lemma 5.1) and inequalities (34) are satisfied (see inequalities (59) and (60)).
Furthermore, the convergence in equation (38) is uniform in #, and hence X, is a continuous
function in 6 (see Lemma 5.1), and the control given by (36) satisfies Objective B (see Lemma
5.1).

The proof of the following lemma, follows from an easy adaptation of the arguments of Section
B.2.3 of [17] and [31].

If Assumption A holds and Xy, (k, N + 1) is given by (21) and Vg, (k, N + 1) is given by (24),
then

1. For 8, = 6(0) € ©, all k < N+1and N > 0, we have Vg, (k,N+1) < —pI and
Xo, (k,N+1)>0.

2. For all 6, € ©, there exists a X, < oo such that || Xy, (k, N +1)|| < X, forallk < N+1
and all N > 0.

3. Xy, (k, N + 1) is monotone increasing in N.

The bound XOOG depends on 6,, so we cannot say that there exists a single bound on
Xo, (k,N +1) for all §, € ©. Since © is compact, if Xoo is continuous, then X, is bounded.
However, we have not yet shown that X, is continuous.

12



For fixed 60,, Xy, (k, N + 1) exists, is bounded, and is nondecreasing in N. Thus
Xo, (k) := Nlim Xo, (k,N+1)
exists for k < co. Furthermore, Xy, (k) solves
Xo, (k) = A,y Xo, (k+1) Agro,) + Chr(,)Crr(0.) — Lo, (k) Ry, (k) Lo, (k) , (39)
where
— — _ _
Ry, (k) := Df’“(9o)‘]Df’“(90) + B;"’“(GO)XGO (k+1) Bfk(go),
— _ _
Lgo (k?) = ka(eo)Jka(go) + B}k(GO)Xeo (k + ].) Afk(go).

This is simply the Riccati equation associated with the infinite horizon, time-varying H° control
problem. Note that, since Xy, (k, N +1) > 0,

Xo, (k) > 0. (40)

Next, since Xg, (k, N +1) converges, Vg, (k) = limy_o Vg, (k, N + 1) exists. Furthermore,
Vo, (k,N +1) < —pI (from finite horizon problem) implies that Vy, (k) < —pI. Furthermore,
since Xy, (k) is bounded and Dj Do, > 0 for all 6 € ©, it is clear from (24) that Vy, (k) is
bounded from below. Hence

—00 < Vg, (k) < —ol. (41)
Similarly, define Ly, (k) as the limit of equation (30).
Next define
o () = Fu, )| 50 | =Rl ) [ L2, ) Ry ]| 20| @2
and
Woo (k) := Fuy, (k) z (k) := =V (k) Ly,, (k) z (k). (43)

It will be shown that, with 6 (0) = 6,, (42) is the best control and (43) is the worst disturbance
(in the sense of Objective B).

For w = 0, the control u (k) = ux (k) given by (42) makes the closed-loop system z(k + 1) =
Ay, (k)z(k), where

A, (k) = Ag) — B%(k)R?;{) (k) La,, (k), (44)

exponentially stable.

Since ux (k) = —Rggi (k) La,, (k) z (k) — R:,Tai (k) Rg,, (k) w (k), the closed-loop system with
w =0 and 4 = uy is

2 (k+1) = (Aow) — Baygy B, () La,, () (k)
= Ay,, (k) z ().

Set Ty, (k) = X, (k) — Xka(eo)'
Xo, (k) = limy_ o0 Xo, (k, N + 1) > X
(B.2.39)) that

By Lemma 5.1, Xy, (k,N +1) > Xy, (k, k) = X325,y Thus

sho,y a0d T, (k) > 0. It is possible to show (see [17], Eqg.

Lo, (k) > Ay, (k)To, (k+1) Ay, (k) (45)
+ AL, (k)To, (k+1) By,

x (R390 (k) — Bb, T, (k+1) 329(,0)

1
B}, To, (k+1) Ay, (k).

However,
-1
Ag — By, (‘Dés Dy, + BéeX2f(9)B29) BéeXwa)A"

13



is the closed-loop system if the linear-quadratic feedback is used, that is, if w = 0 and v = urg
where urg is given by (18). After some manipulation, we find

A / /
Agprio,) — B2f’°(90) (D2fk(eo)D2fk<eo) + B2fk(eo)X2f’°+1(eo>B2fk<oo)) B2fk(eo)X2fk+1(eo)Af’“("o)
= Aueo (k)
-1
+ Bka(eo) (R390 (k) = Béfk(ﬂo)reo (k+1) Bka(eo)) Béfk(oo)r% (k+1) Aus, ()
and
—1
By, <R390 (k)= By, , Lo, (k+1) Bka(ﬂ)>

—1
=B D! D B! X B
24k ) \ P25k 0y D2 (0) T P2pn (0 N2 5041(05) D2 (9) )

which is bounded since D) o D2, >0 and Xy, >0, for all § € ©. Therefore

E(k+1) = Au, (RER),
v (k) = By, , To, (k+1) Ay, (k)€ (R)

is a uniformly detectable system. Moreover,

-1
(Ra, (k) = By, , To,(k+1) B, ) >0

rk(o £k (00)

o

and o, (k)] = || Xo, (k) — X2y, |
Lyapunov equation and Theorem 3 implies that

‘ < || Xo, (k)| £ Xoop, < 0o. Therefore, equation (45) is a

2 (k+1) = Ay, (k) (k)

is a exponentially stable system.

We cannot as yet claim that A, as defined by (44) is uniformly exponentially stable in the
sense of Definition 3. To conclude uniformly exponential stability, I'g, (k) , the solution to the
Lyapunov equation (45), must be uniformly bounded for all 8, € © and all k. T'y, (k) is uniformly
bounded only if Xg, (k), the solution to equation (39), is uniformly bounded. Lemma 5.1 will
show that Xy _ (k) is uniformly bounded.

Let ue (k) = Fy,, (k) z((lz)) } where F, is given by (42). Let woo (k) = Fu,, (k) (k) be
defined as in (43). Then, for w € I,

126, (Fuyw, @), = 7* wlly, = @, X, (k)20 + ) (w (k) — weo (k))' Ve, (k) (w (k) — weo (k).
k=0
(46)

(See the end of Section 1 for the definition of the notation 2y, (Fy,w,,).)

By the previous lemma, ux (k) = Fy,, (k) { z((l};)) ] is exponentially stabilizing. Hence, if
w € lg, then z € lg, and z (k) — 0. Furthermore, Xy, (k) is bounded and, by equation (41),
—00 < Vg, (k) < —pl. Thus F,, (k) is bounded, where F), is defined by (43). Hence we, € Ia.
Thus, letting N — oo in equation (28) yields (46).
Now, it is shown that the control u, achieves Objective B.
_ _ _ z (k) 2 a2
If (0) = 0 and u (k) = ue (k) = Fuy,, (k) [ w (k) } , then, for all w € I, ”2”12 — ||w||l2 <

2
—¢ [[wlf,-
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By Assumption A, there exists an exponentially stabilizing control u, that satisfies Objective
B, that is, if u = us, 2 (0) = 0 and w € lo, then x € Iy and ||zg, (ux, w, 0)”122 —n? ||w||122 < —¢ ||w||122
Since Xy, (k) is bounded and Vg, (k) < —ol, F,, (k) and F,, (k) are bounded. Therefore,

Uoo (k) = Fy,, (k) [ fve((,k()u*,w,ﬂ;k) ] € Iz and woo (k) = Fu,, (k) 2o, (us, w,0;k) € lo. Thus we
can take the limit of equation (28) as N — oo, which yields
—ellwl7, 2 (47)

tnqg

26, (ux, w, 0)13, —~* Ilwllz, (ux (k) — oo ()" Rs,, (k) (ux (k) — uco (k)

~
Il
o

(w (k) — woo ())' Vo, (k) (w (k) — wes (k)

n
[M]8

=~
1l
<]

(w (k) — woo ()" Vo, (k) (w (k) — weo (K))

2 2
| o (Fu,w,0) [, —=* wlly; ,

where the last equality follows from Lemma 5.1.
From equation (47), it is clear that u., is the best control and wy, is the worst disturbance in
the sense of Objective B.

. 2 2 2 2
Supyer, Infues, 120, (u,w, %o) [, = 7? lwlly, = |26, (Fus Woo, o)1, = 7* lweo i, = 24 Xo, (0) 2o

Since Vg, (k) < —ol, if u (k) = uco (k) = Fu,, (k) [ z (k) }, then (46) implies that

Mg

>

??‘
O

w (k)

2 2
sup ||zg, (Fu, w, zo)|z, —7* llwlly

welg

=z, Xp, (0)z, + su%) Z — Weo (k) Va, (k) (w (k) — weo (k)
we€l2 g

=z Xy, (k) o,

where woo (k) = Fu,, (k) z (k). Therefore,

2 2 2
sup inf |zg, (u, w, o)l —* |wl, < sup |lzo, (Fu,w,zo)l;, — ¥* lwllf, (48)
wely u€lz wely
=z! Xo, (k) zo
Similarly, if w = weo, then inf ¢y, |20, (4, Woo, az:o)||l22 —? ||woo||122 = ||zq, (Fu, woo,mo)||l22 —? ||woo||l22 =

z, Xg, (k) z,. Therefore,

sup 1nf |20, (u, w, 20)[}, =72 lwlf, > inf 120, (4, wee, 20) ], = 7% [}, = 4 Xo, (K)o (49)

wely UEl2

Combining inequalities (48) and (49) yields the desired result.
Up to this point, 6 (0) = 6, € O has been fixed. Xp, (k) is nothing more than the stabilizing
solution of the time-varying Riccati equation associated with the time-varying system
w (k) + B2fk(90)u (k) ?
w (k) + D2 o)W (k).

x (k + 1) = Afk(@o)a? (k) + B

£k (60)
£k (80)

Since 6, is arbitrary, for all 8 € O, define X, : © — R"*™ by

Xooy = lim X (0,N +1). (50)
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The function
Xoo : © - R,
0 — Xoo,
satisfies the FARE (32)-(33), viz.,
Kooy = ApXoo Ao + CyCo (51)
— (DyJCo + By Xooy g A0)' (DT Dg + ByXoo, 0 Ba) " (DyICo + ByXoo, i As) -

01 (0) 0f(6) f(6)

Let f (61) = 62. Clearly,

X01(N+15N+1):X2 :X92(N5N)' (52)

PNy = K2pN oy
Next, by equation (21),

Xo, (N,N+1) (53)

= A (o) Xor (N + 1N +1) Agnoy) + Cpn 1) Crnion)

- (D}”(Gl)‘]éf”(el) + Bin gy Xes (N +1,N +1) Af(€1)>,

% (D0 IDgr0r) + By oy Xor (N +1,N +1) By ) -

% (Do ICsvean) + B oy Xor (N +1L,N +1) Apxay))

= A= (gy)Xos (N, N) Apn-1(6,) + Cpvoa g,)Cpn-1(0y)

~ (D 10 TCrv-160) + By 10, Xo (N, N) AfN—1(02)>,

X (D}Nfl(az)']Df”*l(Gz) + Bjn-1(9,) X0, (N, N) Bfol(eg) -

X (Dyn-1(65)JCyv-1(6;) + B9y Xo, (N, N) AfN—1(02)>

= Xo, (N —1,N).
Repeating the above, we reach the result:

Xp, (k,N +1) = X, (k—1,N). (54)

Setting £k = 0 and 6 = 6; in equation (21) and substituting X, (0, N) for X4, (1, N + 1) into the
right-hand side yields
Xo, (0, N +1) = Aj, Xg, (0,N) Ag, + Cy, Cy, (55)
— (D}, JCo, + By, X4, (0,N) Ag,) (Dj, JDg, + By, X, (0, N) By,) ™
x (Dy, JCo, + By, X, (0,N) Ag,) .
Next, we take the limit as N — o0o. In order to take this limit, we must ensure that the left-hand

side is continuous in Xy, (0, N). Since Rs,, (0, N) > Dy, Ds,, > 0and Vg, (0, N) < —el for all N
and R3 and V are continuous functions of Xy, (0, N), we have limy .0 Rs3,, (0, N) > Ds o, D26, >0

and limy_,o Vg, (0, N) < —pI. Thus (Dél JDg, + By, YB(;I)_1 exists for Y in a neighborhood of
Xocq, - Therefore,

lim (Df, JDe, + By, Xo, (0, N) Bg,) ™" = (D}, JDe, + By, Xoop, Boy) ™. (56)
Likewise ~ ~ ~ ~ ~ ~
]\}Ellw (Dél JC@l + Bgl X, (0, N) A91) = (Dél JC@l + BQIXOO% A91) . (57)
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Thus

Xooy, = lim_ Xo, (0,N +1) (58)

J\Jli—I>noo ( 16'1X92 (07 N) A91 + C’él 001

— (Dj, JCo, + Bh, Xa, (0,N) Ag,)' (Dj, JDa, + By, Xa, (0, N) Bg,) ™

x (Dg, JCo, + Bp, X, (0,N) Ag,))
= Ap, Xoop, A9, + Cp, Co,
— (D, JCo, + Bj, Xoo,, As,)’ (Dp, J Do, + Bj, Xox,, Bs,)
X (Dp,JCo, + Bp, Xooy, As, ) -
Since f (61) = 62, equation (51) follows.

Now, we can drop the dependence on the initial condition 6, in R, L and V, that is, Ry, :=
Ry, (k), Loxy == Lo, (k), Vox) = Vg, (k). As a simple consequence of (40),

Xoop >0 (59)

and by (41),

Thus the best control 4., and worst disturbance wy, feedback matrices depend only on the current
state 6 (k). That is, equations (42) and (43) can be rewritten as

too (K) = Fugey, [ v ((’% ] = B3l [ Loy Ragg | [ v ((72)) } (61)
and
Woo (k) = Fuygy @ (k) := =V Lyyg@ (k) - (62)

The function X, given by (50) is uniformly bounded. That is, there exists a X, < oo such
that || Xoo || < Xoo-
Let X5, = X3, > 0 be the solution to (17) and define

1
ALQ,, = Ag — By, (DéaDZB + B£9X2f(a)B2e) BéeXZf(e)Ae

to be the closed-loop state transition matrix with w = 0 and u = urg given by equation (18).
Define

v (k)

!/

[e’s) i
= Z H ALQﬂ'(eo) (XQle(eo)Blfi(eo)w (&) + C}"“(@o)Dlﬂﬂ(eo)w (e + 1)>
i=k \j=k

and

Go, (w, oik) := (Défk(ef;)DQf’“(ﬂo) + Béf’ﬂ(ec;)XQf’““(f’o)B2f’“(f’o)) Béf’“(ﬂo) (63)
X (X2 g0y Asrio (B) = v (K)) -
It is possible to show (see page 157, Claim 3 in [26] or Lemma 9.6 in [30]) that, if w € I3, then
Ge, (w, o) = arginf {29, (u, w,zo);, 1 u € b}, (64)

where the notation zg, (u,w, z,) was introduced at the end of Section 1. Note that Go, (w, z,)
and therefore zg, (Gg, (w, o) , w, x,) are linear in (w, z,).
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By assumption, there exists a control satisfying Objective B. Thus Gy, (w,0) must also satisfy
Objective B, that is,
2 2 2
126, (Ge, (w,0),w, 0)Ily, — 7* lwlly, < —e [l (65)

and
26, (Ge, (w,0) ,w,0)]|,, <lwl, - (66)

If w =0, then v = 0, and by comparing (18) and (63) we see that G, (0, z.; k) = urg (k), that is,
Gy, (0, z,; k) is the optimal linear-quadratic control given by (18). Thus, if w = 0, then by (19)
126, (Go, (0,0) ,0,z0) [}, = Jnf ||, (4, 0,@0) [, = 24, X2, To, (67)
2

where Xy, is the solution to the Riccati equation (17). It was shown in [8] that X5 is uniformly
bounded. Denote this bound by X, that is, for all 8 € 0, || X2, || < X2 < co. Hence,

26, (G, (0,0) , 0, 2o) [}, = 26 Xz2,, %0 < Xa || < 0. (68)
Combining equations (65), (66), and (68) yields

26, (G, (w,z0) ,w, )7, — 4% w7, (69)
= ||2s, (G, (0,20) ,0,20) + 25, (Ga, (w,0),w,0)|7, —~* [[w]];,

= ||2a, (G, (0,0) ,0,20)ll7, + 2 (20, (G, (w,0),w,0), 2, (G, (0,20) , 0, o))

+ |20, (Go, (w,0),w,0)[7, —7* |wl],

< |20, (Go, (0,20) ,0,20) |17, +2 {20, (Go, (w,0),w,0), 24, (Go, (0,2,) ,0,,)) — ¢ |lw],

< 2, Xa,, @0 + 27 Jwlly, /220 X2 — € |[wly,

— 2! Xy, 2o+ 0l (271 2w, Xs — ¢ ||w||,2)

< 2, Xy, To+ ||Iz{;1|?é(R{”w”l2 (2’7 |zo| VX2 —€ ||w||l2)}

2%, 2 _ 2%,
< Koy 0+ TEL <o (X2+7 2><°°

&

Thus

. 2 2
sup inf ||zq, (u,w, z,)||, —* [lw]l,
welg UEl2

.

2 2 2 (5, VX

= sup 20, (Go, (w,20) w20}, =7 o, < Joof* (Ko + 722 ) <oc.
welg

Lemma 5.1 implies that

_ 2X.
2y, Xoos, To = sup inf ||z, (u,11),.7:0)||122 — 2 ||w||122 < |zof? (Xz +2 2) < oo. (70)
wels u€la 5

Note that the worst disturbance has the property,

lwesll}, < Plzof?, (71)
where 2T
VA2

Pi=—2= EXE (72)

18



To see this, observe that, if ||woo||122 > P|z,|?, then equation (69) implies that
20, (G, (oo, Zo) , weos o) 7, = 7* llwoelly,
< @ Xy, @0 + [0l (27170 VX2 —<]lull,)
< @, Xa,, %o = |28, (G, (0,20) ,0,20)]l -

That is, the cost resulting from w = 0 is larger than the cost resulting from w = weo, which
contradicts the maximizing property of wy.

For w =0, u (k) = uc (k) uniformly exponentially stabilizes the system.

Since X is uniformly bounded, X, (f) defined in Lemma 5.1 is uniformly bounded. The
proof of Lemma, 5.1 can be applied with no changes to conclude that A, is uniformly exponentially
stable.

The closed-loop system with u (k) = ue (k) and w (k) = weo (k) is uniformly exponentially
stable. In other words, the system z (k+ 1) = (Ag(k) — Bg(k)Re_(}c)Lg(k)) z (k) is uniformly expo-
nentially stable.

Let |z,| < 1. Define wy, as

Woo (k) =F, Zg, (Fu,’ll)oo,.'l'}o;k)-

We (k)
Then w is a linear function of z,. By Lemmas 5.1 and 5.1,
. 2 2 2 2 > 2
Sll%) ;nf ”zGo (U,W,xo)le _72 ||w||12 = ||z00 (Fuawooaxo)”lz _’72 ”71)00“12 = m;Xooeoxo < Xoo |To|”
wely 2

and, by equation (71), ||woo||122 < Plz,|*. Thus

”200 (14—11/,a11)<>oa330)||122 = ’72 ||woo||l22 + m:)Xooeoxo < (72P+ Xoo) |$0|2 . (73)

. k = _
Note that, if w (k) = weo (k) and u (k) = Fuy,, [ Z( )(k) } ,thenz (k+1) = (A@(k) - Bg(k)Re(:}c)Le(k)> z (k).
Define the system

x (k + 1) = <Ag(k) — Bg(mR&bLg(m) T (k) +r (k) , (74)
-1
v (k) = _vegk)LVe(k) z (k),
Cor)
where ~
C=C—-Di\V 'Ly + Dy (R;"RyV 'Ly — R;'L,)..
Woo o _ . . _ :
Then v = 26, (Fa, oo, 7o) ] Fix j > 0 and set r (k) = r,6 (k — j), that is, r (k) = 0 for k # j

and 7 (j) = 7,. Then equation (73) implies that ||z (,) (Fu,woo,r(,)HIZ2 < (VPP + X)) Irol?.

Likewise ||woo||l22 < P|ro|?. Therefore
2 2 2 > 2
[0l = l|2f1(6.) (Fus woos o) [, + lwlly, < (2P + Xoo) + P) Iro|” - (75)
Note that there exists a matrix [ H, H, ] such that

—v_lLv

C —D\V'Ly + Dy (R;*RyV 'Ly — R3'Ly)) (76)

(A-BR™'L)+ [ Hi Ha | { (
is uniformly exponentially stable. For example, set H; = —B;—H2D; and Hy = HgC (C’ C)+ C'—
By (DéDg)_1 D), where Hy is the feedback such that A — HyC is uniformly exponentially stable,
the existence of which is guaranteed by the detectability assumption, and (C”C’)Jr is the pseudo-
inverse of C'C. Since Hy is bounded, D4Ds > 0, Do, By, C, Dy are uniformly continuous, © is
compact, and C (C'C)T €’ is bounded!, there is a H < co such that | Hi H ]' [Hi Hy | <

1 Although C(C'C)* C is not continuous, |

cco)t CH <1
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H.
Now, let
y(k+1)= (A _ By R;A L )+[H1 Ha,, | Cou y(k)  (77)
(k) 6(k) Yo (k)0 (k) (k) o(k) Va(k)LVa(m
- [ Hy,py  Hay, ] v (k) + 706 (k—J),

that is, y is an estimate of . Since system (77) is uniformly exponentially stable, there exists an
R < o0, such that

lyll, < Rllr—[ H Hy |v|,, <R|rl, +HR|vl|,

< Riro| + HR\/((12P + Xoo) + P) |ro|

< <R+ RFI\/((72P+X'OO) + P)> ITol -

On the other hand, if the system is initially at rest, that is, y (0) = = (0) = 0, then y (k) = z (k).
Thus [ly|,, = [|2],,, and therefore ||z, < <R+RH\/((72P+XOO) +P)) iro|. Let @, (k,7)

be the state transition matrix of system (74) with initial conditions 6 (0) = 6,, = (0) = 0 and let
7 (i) = 7,6 (i — j). Then we have

ol ey = > ) = Y- 190, () DI < (R+ RGP+ %) £ P) ) Il

_ — 2
Furthermore, for i > j, ||®q, (i,7)||> < (R—i— RH\/(('72P + Xoo) + P)) . Applying standard
techniques we find that

K

K ||®e, ( + K, 5)|? le% G+ K, )|
i=j

<Z||<I>e G+ K, 91" 1@, (i, 5)II”

i=j
2

K
Z”‘Pe

)P
)

<R+RH\/ (12P + Xs0) + P)

<R+RH\/ (12P + Xs0) + P)

Choosmg K € Z such that K > /2 (R—I—RH\/ (V2P + X&) + P) ) yields || (j + K, 5,6,) |

. Since this is true for all j and all 6, setting M € Z w1th M>0and k— (j+ MK) < K, we
conclude that

M
1o, (k. 5)I| < [|@q, (k,j + ME)| T 126, (j +mkK,j + (m —1) K)|

m=1

< (R+ RH\/((72P+XOO) +P)) (%)M

k—j

< (R+RH\/((72P+XW) +P)) 2 (%)71
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That is, the system (74) is uniformly exponentially stable.
As N — 00, Xy (0, N +1) — X, uniformly in 6 and X, is a continuous function.

Let z(k+1) = (Ag(k) - B@(k)Ra_(]ic)Lg(k)> z (k). Then by Lemma 5.1, z (k) — 0 uniformly
exponentially fast. Set woo (k) = Fu,,, 7 (k) as in equation (62) and define

- | woo (k) for k < N,
Wy (k) = { 0 otherwise.

Since X, is uniformly bounded and Vg4 < —pI, it follows that F,, is uniformly bounded. Since
z (k) — 0 uniformly exponentially fast and F,, is bounded, we — 0 uniformly exponentially
fast. Therefore, imy oo [[Woo — W ||, = UMN—so0 [[Woo[[x11,00) = O Where the convergence is
uniformly exponentially fast.

Recall the following: Equation (31) states that

z, Xo, (0,N + 1)z, (78)

= su inf 2|2 v =P lwll v+ (N+1)Xe, (N+1,N+1)z(N+1)}.
Lt el =" el + o OV 1) Xo, )z (N+1)}

From Equation (19) of Theorem 3, it follows that

TN +1) Xz 1,2 (N +1) = 10 [[2ll{y 11,00 (79)
From (64),
inf 20, (4w, %0)fo,00) =7 10,00 = 120, (G, (w0, 20) ,w,20) [fo,00) = 7V [@lfo,00) - (80)
Combining (64) and Lemma 5.1 yields
126, (G, (Woo, To) s Wao, o) [0,00) = 7 l|woolls, = ThXocs, To- (81)

From (66), we have
126, (Go, (w,0),w,0)]lfo,ccy < 7* Iwllfo,cc (82)

and, from Inequality (71), we have
2 2
[weolly, < Plzol”. (83)
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Combining the preceding relations yields the following string:
z,Xo, (0, N + 1))z,

_ inf { Jw, z)|% =72 |w])? "(N+1)X N+1)}
we?f[EN}uezlﬁo,N} 20, (u,w, zo)lljo,ny =" wlljo,ny +2" (N +1) Xa s, 2 (N +1)

. 2 2
= s inf {Jle, (0,20)f ) — 7 0] o |

{welgw(k)=0, k>N} UEL2

= s {0, (Go, (w,20) 0,30 [fy ) = 7 [0l ) }

{welg:w(k)=0, k>N}

Y

120, (Go, (N, To) , TN+ To)[fo,00) = V> BN 1) 00)
= |26, (Go, (Woo, To) ; Woo, To) + 28, (Ge, (BN — Woo,0) , BN — Wao, 0) 17 oy — ¥ 8 10,009
2 - - 2 ~ 2
= [|l2e, (Go, (Woo, o) , Wos, -'EO)”[o,oo) + |26, (Go, (WN — Woo, 0) , WN — Woo, 0)”[0,00) -7 ”wN”[O,oo)

+2 <Z9o (G9o (wom .’120) y Woo, .’120) 7 %0, (G9o (wN — Woo, 0) yWN — Woo, 0)>

2> ”z9o (Gao (woo, 330) ) Woo $0)| [20700) - '72 ||71~)N||[20,oo)
+2 <Z9o (G9o (wom .’120) y Woo, .’120) 7 %0, (G9o (wN — Woo, 0) yWN — Woo, 0)>
> |20, (Go, (Woos To) s Woo, To) Iy 00y — 7> 1Wos [ 00y

—2/ze, (Go, (Woo; Zo) , Woos o)

[0,00) |20, (Go,, (N — Wos, 0) , DN — woo,o)”[o,oo)

> X, 5= 2 (V72 el + 24 X, 0 ) 1 0 =

> 2 Xoos, To — 2|20 <\ /2P + X’oo) Y [ weo — @ |ljg,00) -

Lemma 5.1 implies that X, — Xg, (0, N+ 1) > 0. Thus

0 <z, (Xoos, — Xo, (0, N +1)) 2o < 27|, (. /72P+Xoo) lwoo — W]

Since |[weo — WN||[g,00) — O uniformly in 6 and exponentially in N and 2y ( ~v2P + Xoo) does

[0,00)

not depend on 6,, we have Xy, (0, N + 1) — X, uniformly in § and exponentially in N.
Since Xs is continuous, Xy (0, N + 1) is continuous in § for N < co. Since © is compact, and
X (0, N +1) - X in the uniform metric, Theorem 7.1.4 in [24] implies that X, is continuous.
The time-invariant version of the first claim of this lemma can be found in [31].

5.2 sufficiency

Suppose that the assumptions of the theorem hold and that (32), (33), and (34) hold. It will be
shown that the control given by equation (36) is internally stabilizing and, if u = u, as defined
by (42), then Objective B is satisfied. This proof is similar to the proof given in [17].

Under the above conditions, Equation (32) can be written as

Xooy = CpCo + ApXoo g Ao — Loy Ry Loy — L'y, Vg ' Ly,.
It follows that
AL O Xoo;p 01 Ao B,
B, Dj, 0 I || Cs Dy,

Xooy + Lio Vo'Ly, 0 ! 1
TR T ot 3232 Ry [ Ly, Rs, |.
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Multiplying both sides of this equality by [ on the right and by the transpose on

the left and taking the (1,1) block yields

I 0
—R3 'Ly, I

Xoop = (Ao — B2y R3'La,) X
— L5, Vy'VeVy' Ly, +
(Co — D2y R3 Ls,)" (Co — Do, R3 Lo, ) .

005 (6) (A9 — By, RZ’TelL?e) (84)

Since Ag—ByRy 'Ly = Ag—Ba,R3 'Ly, — (B1, — Bo,R3,' L, ) V' Ly, is assumed to be uniformly
exponentially stable, we conclude that the triple

((A9 - B29R3_91L29) ’ (v(;lLVe) ’f)

is uniformly detectable. Since Vo < —pl, V;l is uniformly bounded. Since X, is uniformly
bounded, VglLve is uniformly bounded. Thus (84) is a Lyapunov equation and Corollary 3
implies that
€ (k+1) = (Ao) — Baugsy Ry Loy ) € (K) (85)

is a uniformly exponentially stable system. Therefore, the control u = uy, is uniformly exponen-
tially stabilizing.

Since system (85) is uniformly exponentially stable, if u = uy, and w € ly, then z € ly and
limg_,00 z (k) = 0. Thus, if u = us, then equation (28) implies that, for all N,

2 2
121 3y =72 ol + 2 (N 4+ 1) Xog iy @ (N 4 1) (86)
= &' (0) Xogy, @ (0) +

N
+ > (w(k) = weo (k) Ve, (w (k) — weo (k)
k=0
where wy (k) 1= —V;,}(e YA YN (k). Since z,w € lg, it follows that u, z € ls. Furthermore, V
is bounded. Thus, we can let N — oo in equation (86) and for z, = 0,

o

Izl = llwlz, = Y (w (k) = woo (k) Vsr(a,) (w (k) — woo (K))- (87)
k=0

Since system (85) is stable and causal, the closed-loop system with u = u, viz.,

z(k+1)
o et (%)
—1 —1
B (Ae(k) - B29(k)R30(k)L29(k)) (Ble(k> - B29(’9)R36(k)R29(’9)) { z (k) ]
= _1 YK
(Vo L9y I w (k)
is lo-stable and causal. The inverse of this system [36] is
[ E(k+1) ] _ { Aoy —Bow } [ £ (k) ]
w (k) Cok)y  Docry w (k) — woo (k)

with
Ag = Ag — By,R3'Lo, — (By, — B2, R3'Ra,) Vi'Lv,

= Ag — BoRy " Ly,
By = — (By, — B2, R5;' Ry, ),
ée = —Ve_lLvs,
Dg = 1.
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Since £ (k+1) = (Ag(k) — Bg(k)Re_(}c)Lg(k)> & (k) is uniformly exponentially stable, the inverse of

system (88) is uniformly exponentially stable and hence I stable. Thus there exists a § > 0 such
that, for all 6, € O,

1

2 2
ol <5 o~ vl
Since V < —pl, equation (87) implies that

2 2 2 2 2
217, =7 lwll, < —ellw —weoll, < —beJwll, = —ellwlly, -

6 controlling nonlinear systems with linear dynamically vary-
ing H* controllers

In the preceding section, a technique for stabilizing an LDV system subject to an H* disturbance
rejection requirement was developed. Here, it will first be shown that the LDV controller for the
linearized tracking error (LDV) system can also be used to stabilize the nonlinear tracking error
dynamics, in a scheme that works along every trajectory, provided that the initial tracking error
be small enough (Section 6.1). Next, some issues quite specific to the H* implementation of the
tracking scheme (to be published elsewhere) will be briefly surveyed.

6.1 stability of closed loop nonlinear system

To make H design relevant to nonlinear tracking performance improvement, the guiding idea is
to write the nonlinearity 7 in the tracking error dynamics (6) as a feedback from an output z(k)
to a disturbance w(k). To this end, introduce the factorization

n(z,u,0) = [ 1 (2,4,0) 1. (z,u,0) ] [ . ] = B1,ii (z,4,0) [ Co Dy, | { . } (89)

Here, we simply take

I’ﬂ n On m
Ble = Inxn, Co:= |: % :| ) D20 = |: 8 :| ’ (90)

OmX’I’L Ime

ij(z,u,0) = [ N (z,u,0) 1y (z,u,6) ],

where 7, and 7, are defined by (8) and (9). The error due to linearization can be modeled as a
feedback from z to w:

n(z(k), w(k),0(k)) = B]-G(k)w (k) ,
(k) =1 (z (k),u(k),0 (k) z (k),
(k) = Coryz (k) + Doy, u (K) -

g

¥4

Here D; = 0. Clearly B; : © — R™*" C : © — R®tm)Xn and Dy : © — RHm)Xxm gre
continuous functions and the triple (4, C, f) is detectable. Hence, assuming that (4, Ba, f) is
stabilizable, Theorem 4.2 or Corollary 4.2 can be applied to generate a controller.

Let (4) hold. Define A, By, B2, C, D1, and D; as above and assume that the triple (4, Ba, f) is

stabilizable. Let F' be the H* controller such that sup,,¢;, Ly < 7 for some v < oo. Then there

Twl;
exists a Roapture > 0 such that, if u (k) = Fyx) (¢ (k) — 6 (k)) and [ (0) — 6 (0)| < Roapture, then
|o (k) — 0 (k)] — 0 as k — oo.
Define 7 (Z, @) := sup {||7j (z, u, 8)|| : |z| £ Z, |u| < 7,0 € ©}. By (10) and (11),

7(z,u) — 0 as Z,u — 0. (91)
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It follows that there exist z*,u* > 0 such that 7 (z*,u*) < % Now define

h (2, u,0) = { f(x,u,0), for |z| <z*and |u| < u*,

Onx(ntm), otherwise. (92)

Thus, for all z and u, supycg || (z,u,8)|| < % Consider the following closed-loop LDV system:

§(k+1) = Ag)€ (k) + Buyg,yw (k) + Bayg,y v (K) (93)
¢ (k) = Co)€ (k) + D2y, v (k)
w (k) = h(§(k),v(k),0 (k) (K),
v (k) = Fo§ (k) ,
0(k+1)=f(0(k)).
Since sup,,¢;, Hﬁ- < 7, the Small Gain Theorem [32] implies that system (93) is externally
ly stable. Since Ag + Ba, Fy is uniformly exponentially stable, system (93) is also internally lo
stable. Therefore, there exist a G; > 1 and a G, > 0 such that [[&[|, < [[§]l,, < G |£(0)| and
[0l < llvll;, < Gul€(0)]- Now set

:I;*

u*
RCaptu’re ‘= min <G G )

€], < Gz |€(0)] < z*

If ]g (0)| < RCaptur67 then

and

vl < Gul§(0)] <u™
By the above inequalities and (92), we conclude that, for all k, we have h(§(k),v (k),0(k)) =
(€ (k),v(k),6(k)). Thus, if

|z (0)| < min (G g )

then, by the uniqueness of solutions to difference equations, the closed-loop LDV system

z(k+1) = Aoz (k) + Biy,,w (k) + Bay u (k) (94)
z (k) = Coryx (k) + D2y, u (k) ,
w (k) =1 (z (k),u(k),0)z(k),
u (k) = Fypryz (k),

0(k+1)=rf(0(K))

is lo stable, and furthermore |z, < z* and ||ul|; Since (94) is the tracking error of the
closed-loop nonlinear system, we conclude that |z (k)| = |g0( )—6(k)] — 0 as k — oo.

6.2 further considerations

Writing the nonlinearity 7 (z,u,6) as a bounded feedback 7 (x,u,0) from an output z to the
input w (see (10), (11), (89)) yields an H* design that attenuates the effect of the nonlinearity
and hence amplifies the initial allowable tracking error. It is further possible to optimize this
procedure by factoring 7 in such a way that ||7j]] < 1 (see [7] for details). The suboptimal
H® controller is continuous and, therefore, an approximation of the LDV H* controller can be
constructed the same way as an approximation of the LDV quadratic controller was constructed
in [8]. The fact that the H* controller is guaranteed to be continuous under the condition that it
be suboptimal does not prove that the suboptimality condition for continuity is necessary. In fact,
an example based on the Hénon map shows that the suboptimal controller becomes discontinuous
as =y approaches 7,, the optimal H* tolerance.
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7

conclusion

Suboptimal H*° controllers for LDV systems have been developed. Like the LDV quadratic
controllers, these H* controllers are continuous functions. The H* method has the distinct
advantages over the linear-quadratic method in that H* can be tuned to minimize the effect of
linearization and it is possible to find a lower bound on the maximum allowable initial tracking
€rror.
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