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Abstract

The connection between linear dynamically varying (LDV) systems and jump linear
systems is explored. LDV systems have been shown to be useful in nonlinear tracking.
Some nonlinear systems, for example Axiom A systems, admit Markov partitions and
can be described by a Markov chain. In this case, the nonlinear system can be approxi-
mated as Markovian jump linear systems. It is shown that (i) jump linear controllers for
arbitrarily fine partitions exist if and only if the LDV controller exists; (ii) jump linear
controllers stabilize the nonlinear dynamical system; (iii) jump linear controllers are an
approximations of the LDV controller.

1 introduction

Recently control theorists have focused on two related classes of linear systems; linear para-
metrically varying (LPV) systems [3], [4], [5], [14], [25] and jump linear systems [17], [15],
[12], [13]. While these classes of systems are similar in that they are linear with varying
parameters, in some cases there exists a deeper relationship. This relationship is based on
linear dynamically varying (LDV) systems and the relationship between dynamical systems
and symbolic dynamics. LDV systems are a specification of LPV systems to the case where
the parameter dynamics are exactly known [7], [8], [6], [9], [18].

The relationship between dynamical system and symbolic dynamics was developed by
Sinai for Anosov diffeomorphisms [23] and by Bowen for more general hyperbolic systems
[11]. This work showed that dynamical systems can induce Markov partitions and, hence,
symbolic dynamical systems, that is, dynamical systems can be described by Markov chains.
This relationship between dynamical systems and Markov chains has been extended to other
situations, for example nonuniform hyperbolic systems [19], expanding homeomorphisms [2],
and to systems that satisfy a local product structure [22].

We consider the following nonlinear tracking problem: find a u € Iz such that || (k) — 0 (k)| —
0 where

p(k+1) = f(p(k),u (k) (1)
0(k+1)=f(0(k),0),
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where f € C! and f(©,0) = © with © a compact set. There are many seemingly dis-
tinct approaches to this problem based on linear approximation. In many cases the linear
approximation is

z (k+ 1) = Agky (k) + Baryu (k) (2)
6(k+1)=f(0(k),0).

where Ag = 60 (0 0) and By = 6 (0 0). The typical LPV approach is to simply assume that
f(©,0) = O, and neglect all other information about f. A slight specification of this LPV
approach is to make use to the variation in f via || f (6,0) — 0] < A [25]. If all information
about f is assumed known, then (2) is an LDV system as discussed in Section 2. A seemingly
different approach is to model the parameter dynamics f probabilistically. In this case system
(2) is a jump linear system. This type of approximation is detailed in Section 4. As discussed
in Section 4.4, a significant problem with the jump linear approach is that it cannot be directly
shown that the jump linear controller will stabilize the nonlinear system (1). However, it will
be shown that the jump linear controller may be an approximation of the LDV controller
(Theorem 8). Since the LDV controller stabilizes (1), if the approximation of the LDV is
good enough, the jump linear system will also stabilize (1). Of course, not all dynamical
systems permit a symbolic dynamics representation. In this case the Markovian assumption
necessary for jump linear systems cannot be meet. However, if a Markovian assumption is
incorrectly made, the jump linear controller remains an approximation of the LDV controller.
Hence, the Markovian assumption of the parameter dynamics of a jump linear system do
not seem to be very critical. Specifically, under certain situations, there is little difference
between the optimal jump linear controller under the incorrect Markovian assumption and
the optimal controller under the correct non-Markovian assumption. A further implication
of the results presented here is that techniques of computing jump linear controllers can be
used to compute LDV controllers.

Before detailing the connection between jump linear and LDV systems in Section 5,
LDV systems are introduced (Section 2), jump linear systems reviewed (Section 4) and the
semi-conjucacy between dynamical systems and symbolic systems must be briefly discussed
(Section 3). Section 6 provides an example of the Hénon map.

2 LDV systems
We consider a slight generalization of (2) and define a LDV system as

z(k+1) = AgR)« (k) + Bo(k) u (k) (3)
CLDV

<3v

o(k)“
0(k+1)=f(0(k)),

where APV . @ — R™*n, BLDV . @ — Rvxm LDV . @ — Rp*n DLDV . @ — RPX™ and
f:0 — 0, with f € C° and © compact. If the maps A, B,C,D € C°, then system (2)
is a continuous LDV. The relationship between the a linear approximation of the nonhnear
tracking system (1) can be had by assuming f € C! and setting = := ¢ — 0, Ay := 62 (0 0),
and By := 2L (6,0).




We say that the pair (ALDV, f) is exponentially stable if system (3) is exponentially
stable, that is, for v = 0 and 6, € O, there exists an «(6,) < 1 and a [(6,) < oo such
that if 6 (0) = 0,, then ||z (k)| < B (6o) @ (6o)* ||z (0)|. Furthermore, the pair (A*PV, f)
is uniformly exponentially stable if o and B can be chosen independent of 6 (0). The triple
(ALDV, BLDV. f) is stabilizable if there exists a bounded feedback F': © — R™*™ such that
(ALD V4 BLDVE f ) is exponentially stable. Note that uniform exponential stability is not
required for a system to be stabilizable. The triple (ALDV, cLpv. f) is uniformly detectable
if there is a uniformly bounded map HXPV : © — R™*P such that (ALD V4 gLPV LDV, f)
is uniformly exponentially stable. That is, there exists ag < 1 and 3; < oo such that for all

0(0) € ©, a(k)l| < By |l2(0)]| where @ (k +1) = (ALRY + HERY CEBY ) a(k).

We say that the LDV system ( 59> 6 , f) is the LDV system induced by f. It was shown
in [7] that if the LDV system (3) induced by f is uniformly exponentially stabilized by the
control u (k) = Fyx) (k), then the nonlinear system (1), with control u (k) = Fy)x (k) , is
locally uniformly exponentially stable. By definition locally uniformly exponentially stable
means that there exist @ < 1, < oo and v > 0 such that if ||z(0)| = ||¢(0) — 6 (0)| < 7,
then |lz(k)|| < Ba* ||2(0)| where o, 8 and « can be taken independent of the initial condition
0o, i.e. uniformly in 8, and locally in . Therefore, we say that the dynamical system f is
LDV stabilizable if the LDV system induced by f is stabilizable.

The one of the main results from [7] is:

Theorem 1 Suppose (3) is a continuous, uniformly detectable LDV system with DGLD vi DgD V>
0 for all 6 € ©. Then system (8) is LDV stabilizable if and only if there exists a bounded
function X : © — R™™ with X} = Xg > 0 that satisfies the functional discrete time algebraic
Riccati equation

Xy = ALDV/ Xs0) ALDV T CLDVICLDV (4)
_ ALDV/ X;0) BLDV ( DLDVI DLDV T Bé:DV/ Xp00) Bé:DV) BLDV/ Xs0) ALDV
In this case the control

utPV (k) = 0V @ (k) (5)
-1
=- (D&%V'D&%V + BeL(%V'Xf(ow))Bﬁ(f)V) x By X a0 Agey © (k)

s optimal in the sense that it minimizes the quadratic cost
2
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Furthermore, this control uniformly exponentially stabilizes the system and z, Xg,x, = min, V (0,, u, x,)
and X s a continuous function.

Remark 1 If f is invertible, the uniform detectability can be weakened to detectability, which
is the dual of stabilizability (see [7] for details).

Remark 2 With some mild assumptions on the dynamical system f, it is known that f has
many structural properties. These properties can be used to determine approxrimate solutions
to (4). In [7] a technique based on recurrence is developed. Another technique based on the
probabilistic structure of f is developed here.



3 Markov partitions for dynamical systems
A well understood class of diffeomorphisms was first introduced by Smale [24]:
Axiom A

1. (Uniformly-hyperbolic) Over the nonwandering set of f y the tangent bundle 7O
splits smoothly as the sum E1T @ E~, with dfy (E;t) (0) and df |+ and df|5-
are uniformly expanding and contracting, respectively.

2. The set of periodic points is dense in the nonwandering set.

Systems that satisfy Axiom A have rich properties. For example, such system have a
dense set of periodic points, recurrence and transitivity. For our purposes, an important
property is that Axiom A systems induce Markov chains.

Definition 1 The local stable manifold of z is W2 (z) = { | % (=) — % )| F2000 and ||z —y| < s}.
Likewise, the local unstable manifold of x is W2 (z) = {y : Hf_ z)— fF(y H *22°0 and |z —y|| < 5}

Definition 2 A subset R C © is a rectangle if diam (R) < 6 and WS (z) N Wt (y) C R
for every x,y € R, where § and € are small enough and depend on the system (see [20] for
details). A rectangle is proper if R =cl(int(R)).

Definition 3 A family of proper rectangles R = {Ri1, Ra,- - - Ry} is a Markov partition if
1. Ui\il R; = ©;
2. RN R, =8R,-OBR]- fori#j;

3. For every 1 <1i,j < M such that f (R;) Nint(R;) # 0 and every x € R;N f~1 (int (R;))
we have

fFWe () N Ri) ¢ W (f (2)) N Ry

4. For every 1 <i,5 < M such that f~1 (R;) Nint(R;) # 0 and every z € R;N f (int(R;))
we have
FHWE (=) N Ry) c W (f7 () N R;.

Once a Markov partition has been chosen, then there exists a matrix T' = [¢; ;] with
ti; € {0,1}, a subset of allowable sequences of M symbols

ET = {S L — {1, 2, T M} . ts(k),s(k+l) =1 Vk} (6)
and a continuous map

h‘ZT—>@

ﬂ f s(k;
k=—o0
thus,

h({s:s(0)=4}) =R
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Furthermore,
g

ET — ET
Lh Lh
e L e

commutes, where o is the shift operator defined by o (s) (k) = s(k +1). Hence, f is semi-
conjugate to the topological Markov chain (o, Xr). Furthermore, there exists an o invariant
measure on Y such that s (k) is a Markov chain with

P(s(k+1)=jls(k)=4,s(k—1)=l1,5(k—2) =1la, ) = pi; (7)

and h is a measure preserving map, i.e. P (s eh! (E)) = (0 € E) where p is an invariant
measure for f. Thus the dynamics of f is described by a Markov chain.

Remark 3 See [19], [20], and [21] for discussions on Markov partitions.

4 jump linear systems

4.1 Dbasic definitions and results

A jump linear system is defined as follows:

z (k+1) = Aflyz (k) + Bigyu (k) (8)
Clk z (k)
JOENI
sk (k)
where s (k) a Markov chain that takes values in a finite set {1,2,---, M} with transition

probabilities
P(s(k+1)=jls(k)=1isk—1)=l,s(k—2)=l2,---) =pij,

(in [12], s (k) is allowed to take values in the countable set {1,2,---}). Thus the parameters
AL BIL CIL DJIL are matrix valued Markov chains. At time k it is assumed that only
s(k) and z (k) are known.

We say that system (8) is stochastically stabilizable if there exists a function F/L :
{1,2--- M} — R™*P such that the closed loop jump linear system

w(k+1) = (4l + By Py ) = (k)

is stochastically stable, where stochastically stable means that there exists an o < 1 and
3 < oo such that for 1 <i < M,

E(||lz (k)lll s (0) = 0) < Ba® ||z (0)]] .

Similarly, we say that system (8) is stochastically detectable if there exists a function
H'E . {1,2--- M} — R™ P such that the closed loop jump linear system

z(k+1) = (Alfy + HG O ) = (k)
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is stochastically stable, i.e. there exist an ag < 1and 8; < oo such that E (|| (k)||| s (0) =) <
Bk ||z (0)]|. Note that stochastic detectability is stronger than existence of a time-varying
asymptotic observer.

As shown in [17], [15], [12], assuming that (D;i%Di%) is invertible and stochastic de-
tectability, the optimal linear quadratic controller for these stochastic systems is characterized
by the existence of a function Y : {1,2,--- M} — R™*" with Y/ =Y; > 0 such that

Yae) = A Yaerny st Ay + CHECilto )

-1
JLI Y JL JL!I yJL JLI~; JL JLI~; JL
— A1) Ya(kr1) s (k) Bar) (Ds(k’)Ds(k) + BIRY a1 s (0) Bs(k)) By Y s(k+1)]s(k) As(Ky:
where

M
Yesn)isth) = B (Y| s () =D poge) Y-
j=1

Equation (9) defines a system of coupled Riccati equations. If a solution to (9) exists, then
a control is

~ -1 ~
u (k) i= Ffye (k) := — (DJE DI + B Vaw B ) B Ve ALz (k).

This control is optimal in the sense that

oo
u = arg min F Z ‘
UGUJL =1

where Uy, is the set of u such that u (k) depends only on z (I) and s (I) for I < k. That is,
uw € Uy, implies that u (k) € Fj where Fj, denotes the sigma algebra generated by s (1) and
z(k), ! <k and u (k) € Fy denotes that u (k) is F measurable.

If a solution to (9) exists and system (8) is stochastically detectable, then the control
(10) is stochastically stabilizing. Furthermore, a stochastically stabilizing controller exists if
and only if a positive semi-definite solution to (9) exists.

There are many techniques to solve equation (9). The simplest is to set Y (IV,4) = 0 for
all 7 and for K = (N —1),---,0 iterate

Y (i) = AP (1,0) A7+ OO

o )| + | D2y (k)H2> , (10)

) . ~1 .
— APMY (K,0) BY® (DIV DI+ BIMY (K, i) BYY) T BIMY (K, i) A7
where

M
Y (K,i) =Y _piY (K +1,5)
j=1

Other techniques are developed in [1] and [10].
The analog of this next lemma is a standard fact for time varying systems. Similar results
can be found in the literature, for example in [12]. However, the following proof is simpler.

Lemma 2 Assume the jump linear system (8) is stochastically stabilizable and detectable and
D;I L D;’ L'> 0 for all i. Assume that_ Y > 0 is the solution to the couple Riccati equations
(9). Furthermore, assume there is a Y < oo such that ||Y;|| <Y for1<i < M. In this case,

E (||x(k)||2‘ .ﬁ) < Bokt|z()|]?, for k > | where a and B can be taken to only depend on
aq, and B, in the definition of stochastic detectability, and on the bound Y .



Proof. With an exogenous input added, the closed loop system, with the optimal jump
linear control, is

a(k+1) = (Al + B Py ) k) +7(k)  2(0) = 2o, 5(0) =3
JL

s(k) Fyox
Thus, if » = 0, then, by the Principle of Optimality, F (||z||[2k7oo)‘.7-"k> = :v(k)'Ys(k)x (k).
And, if z, = 0, then by linearity,
E (112lf00)| F0) < 7 ey (11)
Define

Ciioyy (k)
y(k+1) = (As(k) + Bs(k)F ) y(k) + Hs(k) ([ Ds(%FsJ(i)y k) ] - z(k:)) + (),

where ~ 1

Haw = | iy Bty (D DL) Dl |
with H/Z, whose existence is guaranteed by the detectability assumption, is such that AL s(ky T
H ;](’,';)Cs(k) is a stochastically stable system. With Hin place, we have

y(k+1) = (As(k) + s<k>0;,’(f,‘;)) y(k) — Hygy2(k) + (k). (12)

Since ( s(k)Ds(k)> > p for some p, we have HFI,H < H < oo for some H. By the stochastic

detectability assumption, system (12) is stochastically stable. Therefore, there exists a T' <
oo that depends only on a4 and 3, such that,

E (Il o| 7o) < B (T |~ By 2) + r(k)"?o’oo)'J:()) <T(BVY +1) lrl ).

where the right most inequality is due to (11). Similarly, if 7 (k) = z(k) = 0 for k <
. 2 _ 2
K, B (|19l o0)| Fx) < E <TH—HS(,C)z(k) +r(k)H[K,oo)‘}'K> < T (AVY +1) 1o

However, since y is a state estimator of z, if the system is initially at rest, i.e. y(0) = z(0) =0,
then y(k) = z(k), and we conclude that

E <||$||[20700)‘.7-'0) <T (FI\/E+ 1)2 2

_ 2
where @ :=T (H\/Z + 1) . Similarly, if y (0) =z (0) =0 and r (k) = 0 for k¥ < K, then

- 2
Q [I7{[{0,00) »

E (J1olfico0| i) < Qo -

) <0

Thus for all j,

k=j

B (Z 1 (k, 4, 5(0))1”




where @ (k, 7, s (0)) is the state transition matrix of the jump linear system for time index j
to time index k, starting, at time 0, from s (0), i.e.

k
@ (k,,0(0)) = [ (4% + BIGFL) .

i=j

Thus E (||'I> (k —|—j,j,s(0))||2‘ .7-"]> < @. And for any integer K,

K
E(K|® (K +5,5,50)| 7) = B (Z|<I>(K+j,j,s<o>)|2 fj)

i=j
f:j)

_ iE (||¢, (G, 4,5(0))|2 E (||<p (K +j,z',s(0))||2( fz’)
i=j

i=j

K
<E (Z 1@ (K + 3,4, s(0))||* |2 (:, 4, 5(0)) |

)

K K
< ZE (||<1> (z’,j,s(O))||2Q‘ fj) <QE (Z 1@ (i, 4, 5(0))

i=j

fj) <

Thus, if K > 2Q?, then

From which it is straight forward to show that F (||'1>(k + 7, j,0(0))||2‘.7-"l> < Bok with
1
B=2Q¥ and a = (%)K.I

4.2 jump linear system inducing an LDV system

A Markovian jump linear system is a particular type of LDV system. Given a Markov chain
there is a matrix T' = [t; ;| with ¢; ; € {0, 1}, a space of admissible sequences
ET = {S L — {1,2, . M} . ts(k),s(k+1) =1 Vk}

and a stochastic shift o : X7 — Yp. Furthermore, for s € X1, we have s(k+ 1) = o (s) (k)
and the Markov probability measure is o-invariant. Define the piecewise constant parameters
for s € X,
LDV JL
AS — AS(O)
LDV _ pJL
By™Y = By
Thus AXPV : £ — R™ " is constant on {s: s (0) = i}. We can define a continuous LDV
system
2PV (ks + 1) = AERY2EPY (k) + BEDY u (k)
0(k+1)=0(0(k)).

Note that 6 (k) € X, 6 (k) (0) € {1,2,--- M} and at time k all that is known is 6 (k) (0) and
the probability P (6 (k+ 1) (0) = j| 6 (k) (0) =) = p; ;.
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4.3 LDV system inducing a jump linear system

We now show how a LDV system may give rise to a jump linear system. As described above
in Section 3, depending on the dynamical system f, there may exist a Markov partition and
the dynamics of f can be described by a Markov chain s (k) on the finite set of symbols
{1,2,--- M} with transition probabilities p; j. This leads to a jump linear system as follows:
For each cell R; of the Markov partition R = {R;i, Ra,--- Ry}, define a point ¢; € int (R;)
for 1 <i< M. Set

As(k) Aél(),:)/ o1 (%(k )
B _Béfk‘;— f (¢s(k )

Then Ag(’;‘c) is a Markov chain which takes values in {AélD v, AézD V... Aéﬁ V} and BJL S(F) is

a Markov chain which takes values in {BélDV, B@DV, ‘.- Bgﬁv}. Thus we have the jump

linear system
e’t (k+1) = Az (k) + Byfyu (k) (13)

with transition probabilities given by (7). In this case we say the jump linear system (13) is
induced by f and the partition R. Note that if max; (diam (R;)) is small and A (s) = 6 (0),
then AJ(I;C) o Ae(%v and B/ o R BGL(%V, and therefore, z/% (k) ~ 2PV (k). Hence, the jump
linear system approximates the LDV system. The smaller the size of the cells R; the better

the approximation and as max; (diam (R;)) — 0, and fixed k, we have /% (k) — =PV (k).

4.4 jump linear control of nonlinear systems

A typical application of control theory is to determine a linear approximation of a nonlinear
system around the equilibrium point and apply a controller designed for the linear system to
the nonlinear system. This approach is justified by the fact if the closed-loop linear system
is exponentially stable, then the closed-loop nonlinear system is locally exponentially stable.
In the case where the equilibrium of the nonlinear system varies (e.g. nonlinear tracking),
the approach based on linear approximation is slightly complicated. One approach is to
approximate the nonlinear system as a jump linear system. We investigate the case where
the nonlinear system admits a Markov partition and show that the jump linear approach is
more difficult than it might first appear.

Suppose f € C! induces Markov partition with arbitrarily small rectangles. Then, for
any of these partitions one can develop a jump linear controller. Applying this controller to
system (1) yields:

z(k+1) = (Alfy + BIFh) = () +0 (6(8) 0 (), Fha (k) (14)
where x = ¢ — 6, and 71 accounts for error due to linearization and quantization.
Since f € C! it is not hard to show that if z (k) is small, then n (0( ),z (k), s(k)x (k))

is small. Furthermore, it is true that if n (0 (k),z(k), s(k)ac (k)) is small, the system (14) is

stochastically stable. In this case, if ||z (0)| is small, £ (||z (k)||) is small for all k. However,
there may be a non-zero probability that ||z (k)|| is not small. Thus there may be a non-zero



probability that n (0 (k),z (k) ,Fs{’,;‘)x (k)) is not small. For any ¢,6 > 0 it is not hard to
find examples where if 77 (z) < €, the system is stochastically stable, but there exists a  with
n(x) < € for ||z|| < § such that there is a non-zero probability that the system with this
nonlinearity is unstable. For example, consider z (k + 1) = a;x (k) +n (z) with ap = 0.1 and
(1)01i glvff{lz 1 and transition probabilities [p; ;] = gg 81 ] .Then
for all z (0), there is a positive probability that £ > 1 and in which case the system is unstable
with probability one. Of course, using Chebyshev’s inequality, one can show that by limiting
|z (0)]] the closed loop system, with nonlinear system with perturbation is stable with a
probability close to one.

Furthermore, if the desired trajectory {6 (k)} is a fixed point, and the probability of
staying in to cell with the fixed point is not one, then the probability of staying in the cell
for all time is zero. Stochastically stable does not directly imply that the jump linear system
is stable at the fixed point. The difficulty is that stochastic stability implies stability over
the average orbit {6 (k)}. But when a particular orbit is chosen, stochastic stability cannot
say anything about the stability along this orbit.

These difficulties can be avoided by using techniques described in [16]. However, the
method in [16] appears to be overly conservative since simulations show that the standard
jump linear controller works for a fine enough partition. The next section shows that the
simulations are correct and that for fine enough partition, the jump linear controller stabilizes
the nonlinear system.

a1 = 2, with n (z) =

5 main results

Next it will be shown that if the nonlinear system is LDV stabilizable, then for a fine enough
partition, the jump linear system stabilizes the nonlinear system (Proposition 4). Conversely,
if as the partition is refined, the solution to the jump linear coupled Riccati equations (9)
remain bounded, then the system is LDV stabilizable (Proposition 6). In this case, as the
partition is refined, the jump linear controller approaches the LDV controller (Theorem
8). Moreover, this process is robust to errors in the Markov partition. Specifically, if the
partition is incorrectly assumed to be Markov, then the resulting jump linear controller still
approximates the LDV controller and, if the partition is fine enough, stabilizes the nonlinear
system.

Once we set a partition R ={Ri, Ra,--- Ry}, we define p to be the transition probabili-
ties assumed, perhaps incorrectly, to be Markov. We define p; j := P (s (k + 1) = j| s (k) = 1)
and it is possible that

pij # P(s(k+1)=jls(k)=i,s(k—1)=l,s(k—2)=1la,---).

Define Egp(-) to be the expectation operator with the probabilistic structure induced by
pi,j.- Note that since the partition does not need to be Markov, it suffices to define p; ; =
Rk @)er R 0)er; }
2k L sk 0)er;}
With R chosen, define h : ¥p — © as in Section 3. Recall that h ({s € X1 :s(0) =}) =

where 6 is a transitive point and 1 {7 @)cr:} is the indicator function.
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R;. Define

g:0—-{1,2,--- M}
g(0) =iif 6 € R; and 0 ¢ R; for j # 1.

If € R; N Rj, then we have a choice as to the value of g (§) = i or j. By invoking the axiom
of choice we can define g such that g (§) = ¢ implies that 6 € R;.

As done in Section 4.3, for each cell R; define ¢; €int(R;). Thus ¢,y is a Markov chain
that takes values in {¢q, ¢, -, Py} Since R; N R; = OR; NOR;, we have g (¢;) = 4. This
suggests the notation

§gt:{1,2,---M} -0

and define
AJL = ALR\(/Z) B/ = BL_DlX(/Z)
R
Clearly, if the mesh of the partition is small, i.e. mesh (R) = max; (diam (R;)) is small, then
g7 (9(6)) ~ 6 and
LDV LDV , gJL
A7~ Ay o0 By ~ By

LDV LDV
CiP' ~Cye  DFPV =Dy

Likewise, if k is finite and mesh (R) is small, then f* (0) ~ f* (7 (9 (6))). Note that the

functions h, g and g~ ! depend on the partition R. Thus these functions should be written

hr, gr and g gR However, to reduce cluter the dependence on the partition is dropped.
Define

supp (Pg(6),4()) = {9 € © : Py(o) () # O}
and define supp (p’;(g)’g(_)> similarly, where pi-fj is the i, j element of the k" power of the

matrix [p; ;].

Lemma 3 For fized k < 0o, as mesh (R) — 0,

diam (supp (P'S(e),gc))) —0
uniformly in 6.

Proof. Set € > 0. Since f is uniformly continuous, there exists a § > 0 such that if
mesh (R) < 8, then for each 6 € ©, diam (f ({¢ € ©: g(0) = g(¢)})) < diam (f (Ry))) <
€. Thus diam (supp (pg(g)’g(.))) < € + 20, where the 2 term is due to points x such that
z ¢ f(Ry)), but g(z) = g(¢) and ¢ € f (Ry)), so0 ||z — ¢| < mesh (R) < 6. (Note the
26 is not needed if the partition is Markov.) Hence, the lemma holds for £ = 1. Since k is
finite the same reasoning can be applied k£ times.
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Proposition 4 Assume that the map f is LDV stabilizable. In this case there exists a 6 > 0
such that if mesh (R) < 6, then the jump linear system induced by f and R is stochastically
stabilizable. Furthermore, assuming that CFPV : @ — R™™ gnd DLPV . @ — R™™ gre
continuous and DEPV' DEPV > 0, if mesh (R) < 8, then there is a bound Y on'Y the solution

to the coupled Riccati equations that is independent of the partition.

Proof. Let FLPV be the optimal LDV feedback for CLPV = I and DEPV = I. De-
fine F' (k,s(0)) := F]{‘k[(’g‘f 1(s(0))) that is F" is the optimal LDV feedback assuming 0 (0) =
g1 (s(0)). Note that F (k,s(0)) € Fo C Fg. Thus u(k) = F (k,s(0))z (k) € Uyr. Since
the LDV feedback uniformly exponentially stabilizes the LDV system, there exists an IV < oo
such that for all 8 € O,

. (15)

> =

N-1
LDV LDV w LDV
‘ kHO (Afk(o) + Byig) L' f’°(0)) <

Since equation (15) is continuous in AXPY and BLPV | there exists a v > 0 such that if

1 LDV
)Ak — Afie)

B 885 <

bl

then HHL\]:_OI (Ak + BkaLk%‘)/ ) H < 1. Since APV and BLPV are uniformly continuous, there

exists a A > 0 such that if |l — 6] < A, then ||AZPYV — AZPY|| || BLPY — ByPV|| <. By
Lemma 3, there exists §; > 0 such that if mesh (R) < 6; then diam (supp (p’;(e) g(_)>> <A
for all k < N. Let R be a partition such that mesh (R) < 61, and let {s (k) : 0 < k< N — 1}
be an admissible path!, i.e. Ds(),s(i+1) > 0, starting from s (0) = g (). Then Hg—l (s (k) — f* (G)H <

Nor k < N, thus || A7k — ALPY| || Bk — BERY| <  and therefore | T (A%%, + By FE2¥ ) | <

3 and
N-1 .
Er.p ( H (A;I(l’;) + B‘;](%C)Fﬁ“l()e‘g s(0)=g (0)> < 5 (16)
k=0

Since 6; was chosen independent of 8, we conclude that the Markov system is stochastically
stabilizable for mesh (R) < 6.

With CEPV and DEPV given, bounds on C/% and D’% can be found that do not depend
on mesh (R). Inequality (16) can be used to show that there is a Y < oo such that if ¥’
solves the coupled Riccati equations (9), then for mesh (R) < 61, ||Y;|| <Y for 1 <i < M,
where Y is independent of partition. W

The following can be proved in the same fashion as the above proposition.

Proposition 5 Assume that CLPV . © — R™*™ is continuous and (ALDV,CLDV,f) 18
LDV detectable. There exists a & > 0 such that if mesh (R) < & , then the jump linear system
induced by APV CEPV | f and R is stochastically detectable. Furthermore, for mesh (R) <
0, the ag and B, in the definition of stochastic detectability can be taken independent of the
partition.

!By admissible path, we mean any path with nonzero transition probabilties. Note that since the proba-
bilties may have been incorrectly assumed to be Markov, some admissible paths may not be possible in terms
of the actual system. However, we still included these paths as admissible.
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Let {Rt} be a sequence of partitions of ©. Then, if they exists, each partition induces a
jump linear controller F/I* and the solution Y? to the coupled Riccati equations (9).

Proposition 6 Assume that CFPV : © — RpPxn DLDV . @ — RI*™ gre continuous,
(ALD V CLDV f ) 1s uniformly detectable and there exists a sequence of partitions {Rt} with
mesh (RY) — 0 such that ||Y}|| < Y for all i. In this case, the LDV induced by f is
stabilizable.

Proof. Since HYtH < Y for all t, by Lemma 2 there exists an N < oo such that for all ¢,
if the optimal jump linear feedback FJL)’t is applied, we have E (||z (N)|||s(0)) < & |z (0)|]

s(k
for all s (0) where z (k+1) = (A‘SI(I;C) + B;](%C)Féj(ﬁ)) z (k). Thus for each s (0) = g(6,) there
exists an admissible path {s (k) : 0 < k < N} with s(0) = g (6,) such that
i 1
JLt JLt JLt
I1 (As(k) + B Fos ) <7 (17)
k=0
Since equation (17) is uniformly continuous in A7/%* and B/, it is possible to show that

there exists a § > 0 such that if mesh (R") < 8, then HH;CVZO (A]I:,?(;Z) + B]’:“,P(;’; )FS‘](ﬁ)’t) H < 3.

Since this applies for all 8,, we concluded that F/L? stabilizes the LDV. W
Combining propositions 4 and 6 yields:

Theorem 7 Let CLPV : © — R™™ and DEPV : © — R™™ be continuous with DEPV'DFPV >
0, and let (ALD v oLbV, f) be uniformly detectable. The LDV induced by f is stabilizable if
and only if for any sequence of partitions R such that mesh (Rt) — 0 the Markov jump lin-
ear systems induced by f and Rt are stabilizable with bounded optimal quadratic cost, where
the bound does not depend on t.

Thus the existence of a stabilizing LDV controller is linked to the existence of a series of
stabilizing jump linear controllers. Now we show that actually these controllers are nearly
identical.

Theorem 8 Let CLPV : © — R™™ and DEPV : © — R™™ be continuous with DEPV/DIPV >
0, and let (ALDV,CLD v, f) be uniformly detectable. Assume that f is LDV stabilizable or,
equivalently, assume that there exists a bounded sequence of solutions Y to the coupled Ric-
cati equations (9) associated with a sequence of partitions with mesh (Rt) — 0; then

sup HXg — Ygt(e)H —0ast— 00
6O

where X solves the functional Riccati equation and Y solve the couple Riccati equations.

Proof. Set ¢ > 0. First we show that there exists a §; > 0 such that if mesh (Rt) < 61,
then Ygt(e) < Xp +¢el. As in the proof of proposition 4 the feedback F' f,f()g‘fl 60 € Fo C
Fi, that is F is the optimal LDV feedback assuming 6 (0) = §~!(s(0)). Thus u(k) =

Fiig-1(s0y (k) € UsL-

13



1(9) 1*(6)

Set ||zo|| = 1 and set @ = g (5 (0)). Define PV (Fk +1) = (ALDV BLDVFk> =PV (F k)

with 2PV (F,0) = x,. And define z/% (F,k+1) = (ASJ(’;‘C) s(k)
/L (F,0) = z,.

Since the LDV feedback is exponentially stabilizing, there exists an N < oo such that for
allf € ©

Fk> /L (F, k) with

H.’L'LDV (FLDV,N)H < = 4Y

Since 2PV (FLPV | N) is uniformly continuous in AXPY and B*PV and by Lemma 3, there

exists a 67 > 0, such that if mesh (R) < 61, then for each admissible path {s : s (0) = 6, Ds(k),s(k+1) > 0}

b (w0 < 9

i LDV _ LDV
where Fj, .= ka(o) ka(g 1(5(0)))" Hence,

Er (Je (5.3

0) = gw)) < (19)

Similarly, since
N— 2
Z‘ fk[();/ £LDV FLDV k H T HD#D(;/F%?% LDV (FLDV’k)H
k=0
= 2 (0)’ Xpz (0) — X2V (FLPY N) X yn(gyatPV (FLPY N).

And since the left-hand side is continuous in APV, BEPV  CEDV and DIPV | by an augment

similar to that which lead to (18), there exists a 62 > 0 such that if mesh (R) < 62, then for
any admissible path {s:s(0) =9, Ds(k),s(k+1) > 0},

(5 lests (6.0 + ot (20) a
< @, Xozo — PV PPV, N) Xpnigya PV (FPPV,N) + 2.

Assume Y is the positive definite solution the coupled Riccati equations (9), that is,

2
2(0) Yy ( ER,p< Coloa? (F/k H + | Dy Filye™™ (F7K) ||+ 27 (V) Yoy
Therefore, if the control u (k) = ka’?g 1(s(0)) % x (k) is applied for k£ < N, the control u (k) =

Fi’l;“) x (k) is applied for kK > N, and the mesh (R) < min (61, 82), then applying (20) and

14
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(19) yields

 (0)’ Yy(0) (0)
N-1

= Er, ( ‘C},I(i) JL (FJL k H i HDs(k) Sﬁ) 2L (FJL k H L (FJL’N)’Y;(N)xJL (FJL’N)
k=

s&4z4xu&wuw%m%wwmwfwwwxww@@)
<z} Xz, : PV (FLDV,N)'XfN((,)xLDV (FLDV N) +< 5 + WY

z (0) Xgz (0) + €.
Since x, and 0 are arbitrary,

Ya(g(o) < Xo +el. (21)

Now since Y* is bounded, for mesh (R*) small enough, by Corollary 5 and Lemma 2,

there exists a N < oo such that for all § € ©, and with the optimal jump linear control
applied

Bre (|72 (B2, N)[°] s (0) = 9(0)) < 5% (22)

where || X,|| < X < oo for all ¢ € ©. Since FLPV is the optimal control, and Xp is the
minimum quadratic cost, for any sequence {n () e R*: 0 <l < N}

< 3 et (0.0) "ot (20)[" 4 (£26) Xprat® (£:5),

where £}, = F rl](%c) Since the right hand side of this expression is continuous in AXPYV BLPV CLDV

and DEPV | there exists a §4 > 0 such that if mesh (R) < 84 and if {s:5(0)=09, Ds(k),s(k+1) > 0}
is an admissible path, then

85 et (2 [ (B 452 (20) s (5.

-y

|—l

C;I(lL)xJL (FJL k H n HDs(l JL) 2L (FJL k H 2L (FJL’ k)'XfN(e)wJL (FJL,k)

k=0

<&
2

Thus combining these last two expressions yields

Xg <

L 2L FJL k; H +HDs(l JL) I (FJL k; H 2IL FJL N)IXfN(o)fUJL (FJL,N)
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This equation remains true for any weighted sum of admissible paths, in particular
CIL L (FIL FIL L IL (pIL
Xg < Erp (Z H sz (P8 k) H + HDs(k) s (F k)H

o (B, N) X g g’ (75, N) ) + 21

< Yy + Bryp (275 (F/5,N) Xpwigye’™ (F/5,N) ) + 21
Yo0) + 1,
where the last inequality follows from (22). Thus
Xo < Yy +¢l
Combining this with (21) yields if mesh (R) < min (61, §2, §3), then for all § € ©

X6 =Yyl <.
|

6 example

The Hénon system is defined as

[el(kﬂ) } _ [ f1(8 (k) ,u (k) ] _ [ 1— (a+u(k)) 01 (k)* + 02 (k)
62 (k+1) f2(0(k),u(k)) b1 (k)

where u is the control input. In this example, a = 1.4 and b = 0.3. For these parameter
values and u = 0, it is known that the Hénon map has an attractor ©, that is, these exists
an open set V 2 © such that limg_o d (f* (6,),0) = 0 for all §y € V. This attractor is the
crescent shaped object shown in Figure 1. A Markov partition for the Hénon system is not
known. However, an arbitrary partition can be made, transition probabilties can found and
a jump linear control designed. Furthermore, Theorem 8 guarantees that as the partition
is refined, the controller convergences to the optimal LDV controller. Figure 1 shows the
partition and the 1-1 component of the quadratic cost.

7 conclusion

When addressing nonlinear tracking problems two seemingly distinct approaches are LDV
model and the jump linear model. The relationship between these approaches has been
developed. In the case when the nonlinear system admits a Markov partition, a jump linear
approach is justified and it has been shown that the LDV system is stabilizable if and only
if the jump linear system is stabilizable for a fine enough enough partition. Furthermore,
the jump linear controller is an approximation of the LDV controller in the sense that as
the partition is refined, the jump linear controller converges to the LDV controller. These
results have further application to the case where either the nonlinear system does not admit
a Markov partition or the Markov partition is unknown. Another application of these results
is that methods to compute jump linear controllers can be used to computer LDV controllers.

16



; 0 ;
o, s 2 8, s 2

8, 08 2

Figure 1: The above shows the 1-1 element of the quadratic cost of the optimal jump linear
controller as the partition is refined. The cost converges to a continuous function which is
the cost of the optimal LDV controller. For reference, the partition is shown in the z = 0
plane.
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