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Abstract— A new approach to network tomography is pre-
sented. This technique is not only useful for assessing the
“health” of the network, but also useful for developing ad-
vanced congestion control algorithms. The approach relies
on sending data packets and receiving acknowledgments.
Based on the acknowledgments, the state of the network
along the path between the source and destination is de-
termined. This work presents a framework for assessing
the state, while it is expected that future work will focus
on issues such as determining what the normal state of the
network is and combining information about the state along
several paths into a picture of the entire network.

I. INTRODUCTION

A model based approach for estimating the “state” of
the network via measurements made by hosts is presented.
Both network models and methods to estimate the model
parameters are developed. These parameters then allow a
detailed characterization of the state network. The mea-
surements are made by sending packets between two hosts
and observing drops and latency. The state consists of
the state of each router along the path between the two
hosts and parameters of a drop probability model. The
drop models is useful for determining if the drops expe-
rienced are due to heavy congestion or an attack. When
used in conjunction with distributed data collection from
other host pairs, the round-trip time can be used for pin-
pointing heavily congested routers. This type of monitor-
ing is useful in detecting network attacks. For example, a
carefully designed distributed denial of service attack could
cause congestion on one critical link without causing con-
gestion at any particular server. Hence, the attack would
be difficult to detect directly at the server. The methods
presented here allows a detailed state of the network to be
developed and, hence, any sudden increase in congestion
on a particular link could be easily detected.

The models of the round-trip latency and drop probabil-
ity are developed independently. The round-trip time is the
aggregate of the fixed transmission delay and delays expe-
rienced at each router along between the hosts. The state
of the router consists of the queue size, the sending rate
and average arrival rate. The packet arrivals are modeled
as a Poisson processes whereas the sending rate is assumed
to be fixed but unknown. The objective is to determine
the probability distribution of the state of the router given
observed round-trip times. The drop model is a paramet-
ric model that depends on the host sending rate, round-trip

time and an internal abstract variable that models the level
of congestion. Here the objective is to determine the prob-
ability distribution of the level of congestion based on the
observation of drops.

The measurements are performed at a single sending
host. It is assume that packets are sent from the sending
host to a receiving host and the receiver sends acknowledg-
ments upon receiving a packet from the sender. This test
flow from sender to receiver is referred to as the controlled
flow or simply CF. Note that the CF may be pings or ac-
tual data, e.g. an http connection. In the case when the
CF is an actual data flow, this monitoring technique places
no added burden on the network.

The objective of determining the state of the Internet
has been address by others. For example, in [8] the drop
probability in the multicast network is determined. There
are many tools for monitoring traffic on the Internet [2], [3],
[5], [1], [4]- Typically these tools ping various routers at low
frequency and provide a low resolution description latency
and drop probability over a large part of the network. The
work presented here takes a different approach and provides
a detailed, high frequency description of a small segment
of the network. However, this work could be extended to
provide such a description of a larger part of the network.

The paper proceeds as follows: Section II-A develops the
round-trip time model. Section II-B developed the para-
metric drop model. Section III-A shows how the obser-
vation can be used to determine the state of the routers
between the hosts. Section III-B shows how drop observa-
tion can be used to estimate the level of congestion.

II. MODELS

In the next two subsections models for the round-trip
time and probability of a packet drop are developed.

A. Round-trip Time Model

We define a model of RT'T; the round-trip time expe-
rienced by a packet send at time ¢. The round-trip time
experienced by a packet sent at time ¢ is the following sum

1)

where T'fizeq is the sum of transmission delays and propa-
gation delays and is assumed to be constant' and known,

RTT; = Tfia:ed + Tproc + Dta

IIn particular, it is assumed that the routing policy at the routers
between the source and destination is fixed. We neglect stochastic



Tproc accounts for processing delay at both the source and
destination as well as random delays such as the time to
resolve access contention on Ethernet links and D; is the
queuing delay experienced by a packet sent at time .

We will assume that Tj.o. > 0 and that the probability
distribution of this random variable is known. While there
are very elaborate and good models of processing delay, we
have found that a simple triangle density works well, i.e.,

%;—t for —r<t<0
Ztfor0<t<r ) (2)
0 otherwise

p (Tproc = t) =

where r is some known number.

The queueing delay, Dy, is responsible for large variations
in the round-trip time. We assume that the queueing delay
at a router is the queue occupancy of the router multiplied
by the sending rate of the router. Note that we assume
that the router can process packets at a fixed rate and
neglect such effects as the variation in the time required
for destination address lookup. We define the occupancy
of the 3" queue at time ¢ to be ¢! and the maximum queue
size to be ¢!,,,.- Furthermore, let u’ be the time it takes the
queue to service a packet of size one. Thus, the queuing
delay is

Dy =) p'q, (3)
i=1

where we assume that there are n routers between source,
destination and back to source. We model the arrival of a
new packet to router i as Poisson process Li with unknown
intensity A’. This queue model is greatly simplified. For
example, this model neglects the known fact that packet
arrivals are correlated and give rise to self-similar queue
occupancy [13]. It also neglects the effects of congestion
control. For example, if the queue overflows, then a short
time later this overflow will be detected by a sender and
the sender will decrease its sending rate. Hence, the arrivals
are not independent of the past queue size. Similarly, when
the queue fills, the round-trip times increase, hence TCP
flows reduce there sending rate. Furthermore, due to new
connections becoming active and others completing their
transfer, the arrival rates should be time varying.

We model the size of the new packet as a random number
with known distribution p. Estimates of the distribution
of packet sizes can found by examining publicly available
traces. For example, the traces captured by the NLANR
project [11] produced the packet size cumulative distribu-
tion shown in Figure 1. This distribution is well a modeled

0.91+0.02In(2) for 0.0106 < z < 1
for z>1
0 otherwise

Note that packet size is normalized with a packet size equal
to one refers to a packet with 1500 bytes. Hence, the dy-

routing policies [12] can also lead to variations in propagation delay.
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Fig. 1. Cummulative distribution of packet size. A packet of size
one has 1500 bytes. The data was collected by the NLANR project.

namics of the queue are given by
dqé = _/J’il{qizo}dt + 1{q§<anax}7dLi’ (4)

where 7 is a random variable representing the size of the
packet that arrives at time ¢, and 1 (i <diur} is the indicator

function and forces ¢} < ¢!, and similarly, the indicator
l{qzzo} forces q% > 0.

While in general a packet and acknowledgment pass
through many routers and queues, for ease of presenta-
tion we will make the simplifying assumption that there is
only one queue. This queue models the aggregate of all the
queues along the path between source to destination and
back. Then (3) is replaced with

Dy = pgq (%)
and (4) is replaced with
dg: = _/J’l{thO}dt + l{qt<qmax}7st' (6)

In this aggregate model the sending rate is the sum of the
sending rates, i.e. p = > 1, ut. However, it is not true
that the arrival rates are the sum of the arrival rates, i.e.
in general A\ # > A’ Indeed, because a packet may pass
through multiple queue, L; is not even Poisson. In order to
determine the distribution of the time between packet ar-
rivals in the aggregate queue, the we must know the prob-
ability that a packet in one queue will travel to another
queue. While it is possible that estimates of this distrib-
ution could be determined, we make the assumption that
the arrivals at the aggregate queue are Poisson with inten-
sity A. It is straight forward to extend the results presented
here to the case of many intermediate routers.

B. Drop Event Model
B.1 Model

The is no consensus on the distribution of packet drops
in large networks. However, there has been extensive work



on characterizing the drops experienced by a TCP flow,
the predominate congestion control mechanism of Internet
traffic. In [14] a small network is considered and a deter-
ministic model for packet drops is developed. In [16] drops
are assumed to be highly correlated over short time scales
and independent over longer time scales. In [6] drops are
assumed to be bursty. Furthermore, [6] makes the distinc-
tion between drop events (moments when the congestion
window is halved) and packet drops. In the sequel we refer
to drop events and as either drops or drop events. In [7]
drops events are modeled as a renewal process with various
distributions; deterministic, Poisson, i.i.d and Markovian.
A specific example of the model in [7] is developed in [15],
where drop events are modeled by a Poisson process and,
hence, the time between drop events are exponentially dis-
tributed. In [17], this approach is generalized and drops
events are modeled as a Poisson process where the inten-
sity depends on the window size of the TCP protocol. We
further generalize this approach so that the drops events ex-
perienced by a TCP flow are modeled as Poisson processes
that depend on the round-trip time, the sending rate and
an abstract state variable. While our initial experimental
results are presented that validate this model, we should
stress that extensive work remains before any definitive
conclusions can be made. However, the work presented
in this paper remains valid for other drop event models.

We model drop events a flow as a doubly stochas-
tic Poisson process Ny = (N¢)¢>0 with random intensity
n(V?, 6%, RT'T?), where V; is the known data sending rate
of the controlled flow (CF), 8 is an abstract random vari-
able representing the network congestion and RTT is the
round-trip time. In a network, a drop occurs when both the
queues are full and packets enter the queue faster than they
leave the queue. Since full queues lead to a long round-trip
time, it is reasonable to expect some correlation between
round-trip time and drops. Indeed our experimental and
simulation results indicate this to be the case. The para-
meter # models the level of congestion in the network. For
example, if n TCP flows are active, the aggregate window
size increases at a rate of n/RTT. Thus, when more flows
are active we expect the aggregate sending rate of the com-
peting flows to vary rapidly. Hence, we expect that when
many flows are active, drops are more likely. Thus, 6 can
be used to model the variability in the competing traffic.
However, we do not specifically define 8 to be the number
of competing flows, rather 6 is an abstract variable that is
related to the level of congestion and, therefore, related to
the probability of getting a drop. The rational is that we
are not interested in the exact number of competing flows,
but the probability of drops. Thus, we assume that the
congestion level 6 is a homogeneous Markov jump process,
taking values in the finite alphabet A = {a1,...,ap}, with
the intensity matrix A = ||\ (a;,a;)|| and the known ini-
tial distribution p; = P(6y = a4), ¢ =1,..., M. Hence, at
random times 6 makes jumps where if ; = a;, the time to
the next jump is exponentially distributed with parameter
>_j#iA(ai,a5). In practice these transition probabilities
are difficult to estimate. Furthermore, it seems plausible

that these transitions will depend on the number of hops,
the time of day and need to account for self-similar charac-
teristic of network traffic. A deeper investigation into these
probabilities will be left for future work.

One way to view drops is that at any particular time a
packet sent has a probability of being dropped. In this case
the rate of drops is the product of the rate that packets are
sent multiplied by the probability that a packet is dropped,
ie.

n (0',RTT", V') =V, g (0", RTT", V"),

where V; is the sending rate when the packet was sent and

g (Gt, RTT', V') =P (dr0p| ', RTT", V")

is the probability that a packet is dropped. We will assume
that drops are independent. In full generality we would al-
low g to depend on the not only the states 6;, RT'T;, V; but
also the history 6!, RT'T?,V*. For example, the compet-
ing TCP control mechanisms are dynamical systems with
memory. Hence, when a queue overflows, the competing
flows will be subjected to drops. After a drop, TCP flows
go through the usually cut in sending rate and the slow
increase. Thus, the competing flows’ sending rates are not
only a function of the current state of the network, but
the past state of the network. Since the sending rates of
the competing flows’ is closely related to the probability of
getting a drop, n depends on the past state of the network.
However, we will focus on the memoryless case where

g0, RTT;,V;) = P (dr0p| 6t, RTT?, Vt) .

One drawback of this model is that it assumes that the
time between drops is independent. This is clearly not true
for synchronized flows [20]. However, for multi-hop con-
nections, perhaps with routers implementing active queue
management such as RED [10], synchronization is often
assumed to be rare. Furthermore, while our experiments
indicate that drops are not bursty, others have reported ex-
perimental results indicating that drops do occur in bursts.
Of course, busrtiness over long time scales can be modeled
with 8, however, it is not clear if bustiness exists at short
time scales. A study of burstiness over short time scales
can be found in [9)].

One important drawback of the model is that there is
no direct link between the round-trip time model and the
drop model. In particular it seems plausible that A, ar-
rival rate of packets to the queue, should be related to the
level of network congestion #. However, for simplicity this
connection is neglected.

B.2 Simulations and Experiments

In an attempt to characterize the form of the drop prob-
ability g, we have performed simulation and experiments.
Based on simulation results we have found a useful form of
g is given by

g (0t7 RTE; W)
= Qo (0t) + a1 (Ot) V;_l + as (Ht) RTE + as (Ht) RTE‘/t_l



_.®
O—0—®
@H@
@
©—0

Fig. 2. Topology for verifying form of drop probabilities. The con-
trolled flow has source 10 and destination O4. The competing TCP
flows are have source-destination pairs as follows: (I1, O1), (I1, 02),
(11, 03), (IL, 04), (12, 02), (12, 03), (12, 04), (13, 03), (13, 04), (14,
0O4). The number of TCP sharing each of the above source destina-
tion pairs is allowed to vary. Specifically, each pair had one flow or
each pair had two flows, etc.

That is, the probability of a packet being dropped is an
affine function of the reciprocal of sending rate, V!, the
round-trip time RTT, and the product of the rate and
round-trip time RTT V1.

We have verified such an drop model for some topologies
via ns-2 simulation. In particular, we simulated multiple
TCP flows over the topology shown in Figure 2. The plot
of a typical the calculated drop probability given RT'T and
sending rate is shown in Figure 3. Notice that for small
enough RTT, the probability appears affine. While for
large RT'T, the calculated probability appears highly non-
linear. However, RT'T was large a relatively few number
of times, hence these calculations are subject to large er-
ror. For the most significant values of round-trip time, the
model fits the data very well. The coefficients for different
number of competing TCP flow are given in the following
table.

Number of TCP

flows per source- ao a1 a2 as
destination pair
1 —0.06 0.303 1.066 —5.417
2 —0.105 0.501 1.820 —8.824
3 —0.144 0.903 2.477 —14.624
4 —0.179 1.586 3.080 —24.254
5 —0.216 2.256 3.694 —38.142

We performed several experiments. In this case, the g
we choose was

9 (65, RTT,, V;) = ao (6:) + ax (6:) V' + a2 (6;) RT'T;
(7
+ a3 (6;) RTT,V; ' 4+ a4 RTT}? + asRTT}?.

We analyzed a 14 hop connection with source and destina-
tion in the Los Angeles area. A new model was calculated
every hour for an entire day. The first set of figures be-
low show the drop probability of the form (7) calculated
at 2PM. Figure 4 shows two measure of goodness of fit,
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Fig. 3. Typical experimentally calculated drop probability given
RTT and sending rate. Here each source-destination pair has 3 TCP
flows. The RTT is measured with respect to the CF. Note that the
histogram appears affine for small enough RTT. Large RTT’s occur
very rarely, so the variance for large values of RTT is very high. For
example, some of the large RT'T values occurred only a few times,
were as moderate values of RTT occurred thousands of times.

the variance and R versus time. Note that in the mid-
dle of the day, the model perform quite well. However,
in the evening performance is degraded. One factor caus-
ing this degradation is that there was less congestion in
the evening and hence few drops. With few drops occur-
ring, the drop probability is more difficult to determine.
The plots do not show the drop probability for large RTT.
While large round-trip times did occasionally occur, they
were infrequent enough that calculating the drop proba-
bility was extremely noisy. On going work is currently
focusing on collecting more data in order to determine
drop models that are also valid for large round-trip time.

(((((

o

The lefthand plot show the calculated drop
versus round-trip time and the reciprocal ofthesending
rate. The righthand plot shows the function g which
approximates the drop probability.

probability

III. DISTRIBUTIONS

Next we develop techniques to estimate the parameters
of the round-trip time model and the drop model. It is as-
sumed that the acknowledgments arrive at discrete times
T. An acknowledgment that arrives at time 7 provides
round-trip time of a packet sent at time ¢ < 7. Further-
more, this acknowledgment may indicate that packets have
been dropped. We assume that packets are not reordered.
Hence, if at time 71 an acknowledgment arrives for a packet
sent at time ¢, and there is an unacknowledged packet which
was sent at time ty < ¢, then it is assumed that the un-
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Fig. 4. Goodness of fit of the drop probability versus the time of
day. In the middle of the day, the model works well, whereas in the
evening, a decrease in the goodness of fit measure R indicates that
the model does not fit the data well.

acknowledged packet has been dropped. In the case that
the acknowledgment does not indicate a drop, we denote
t (7x,0) as the time in which the packet was sent. Hence,
RTTy;, 0) = Tk — t(7%,0). In the case that the acknowl-
edgment indicates that j packets have been dropped, we
denote the time observed round-trip time as RTT.(,, ),
and t (7, ¢) for i < j as the times when the dropped pack-
ets were sent.

A. Round-Trip Time Distribution

Denote the round trip time experienced by a packet sent
at time ¢t by RT'T;. At times 7y, it is observed that a packet
sent at time t experiences a round-trip latency RTT;. Ac-
cording the model used, the dropped packets give no infor-
mation regarding the round-trip time (see Remark II-B.1).
Hence, for notational convince we restrict our attention to
the case where a drop has not occurred and the observa-
tions are RTT’ (4, 0)- We denote the aggregate observations
as Y™ . The objective is to determine the distribution of
RTT, given Y. This is accomplished by modeling the
queues between the source and destination as done in Sec-
tion II-A.

As discussed in Section II-A, RT'T is made up of three
components;

RTT; = Tfia:ed + Tproc + Dta

where T't;zcq accounts for fixed delays such as propagation
time, transmission time, etc., Ty is a positive random
time, with density function u, that models the amount of
time the end hosts take to respond to the packet arrival
and D is the delay incurred at all the routers and is model
as one queue. Packets are serviced by this queue at an un-
known rate p, where a lower bound, pmin, and an upper
bound, fimax, On the service time are known?. The arrival

2Note that pmax can easily be found. For example, if the sender

of packets onto the queue is modeled as a Poisson process
L; with constant but unknown intensity A. Furthermore,
Amax, an upper bound and lower bound, A\, on the inten-
sity of packet arrivals are assumed to be known. The size
of the packets are distributed according to a known distri-
bution function p. The maximum queue size is gpyax Which
is assumed to be known3. The queueing delay at time ¢ is
given by (5) and the queue varies according to (6).

1. First, we focus on the probability density of the queue
occupancy. Define the probability density p (g, A, p| Y ™)
to be the probability density that the queue occupancy
at time t is ¢;, incoming Poisson intensity is A and
the sending rate is p. We initially assume a prior dis-
tribution for p(go, A, ) and then iteratively determine
D (Qt(m,o), A, u| YTk) based on observations y,,. Note that
in general there are two types of observations, one where an
acknowledgment arrives and the round-trip time is deter-
mined and one where an acknowledgment does not arrive.
If an acknowledgment does not arrive it may be due to
an increase in round-trip time and could be used to up-
date the probability distribution of the round-trip time.
For example, during a sudden burst of congestion, many
packets may be dropped. In order to accurately determine
the state of the network during this burst, estimates of the
round-trip time must be made in between acknowledgment
arrivals. However, it is assumed that the congestion is not
so severe that all packets are dropped for a long time, and
occasionally a packet does not get dropped and provides
an accurate measurement of the round-trip time. Thus
we ignore the case when the observation is the lack of the
arrival of an acknowledgment and assume that y,, is the
round-trip time experienced by a packet.

Bayes’ theorem implies that

P (@0 M B[ Y ™) (8)
«p (Qt(Tk,O)a )‘a :u'| YTkil) P (ka | qt(7,0) )\, u, YT’“*l) .

The observation y,, determines that round-trip time, i.e.
RTE(Tkyo) = Tk — t(TkaO)' Since Tproc = RTT‘t(Tk,O) —
Tfized — Hqt(r;,0), We have that y, indicates that Tproc =
Tk —1 (Tk7 0) - Tfized — K4t (7y,0)s hence

P (y'rk | qt(Tk,,O)) )\’ K, Y’rkil)
- (Tk —t (Tk’ 0) = HGt(ry.,0) — Tf’ized) ;

where u is the distribution of Tpqc, for example see (2).
NOW7 define p (q7 /\7 Ky t| YTkil) =D (qt7 /\7 ,LL] YTk71)7 then7
by (6),

B B
- Y1) = YT
6tp(q,A,u,tl ) uaqp(q,A,u,tl ) (9)

1
A /0 (g =2\ mt] Y1) p(d2) 1gom
— A (g, A, p, t| Y1)

sends a packet with size one and suffers delay RTT, then pu < RTT.
Hence, we taken pmax = min (RTT).

3The actual value of gmax does not appear to greatly effect the
results.
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Fig. 5. The above plot shows the actual round-trip time and the one
step ahead predicted value of the round-trip time.

with p(qa )‘a K, 0| YTk_l) =D (qt(Tk,O)a )‘a /,L| YTk_l)' Note
that (9) is closely related the Takécs integrodifferential
equation [18].

With joint distribution of the queue occupancy, sending
and arrival rates known, the distribution of the queuing
delay can be computed via

)\max ll/max
P(DteA]YT’“)z/ / P(pg € A,dX dp|Y™).
Amin
(10)

Hmin
Finally, the density of the round-trip time is

p(RTTY™) (11)

Hmaxdmax
B / u(RTT; — Dy — Tfizea) p (De| Y™ ) dDy.
0

The above technique was applied to experiments. The
data from 16 hop connection between Los Angeles and
Washington DC was analyzed. Figure 5 shows both the
actual round-trip time and the predicted round-trip time.
While the prediction is good, the mean predicted value is
nearly that same as the last value of the round-trip time.
However, it should be emphasized that the techniques de-
scribed above provides not just the mean prediction, but
the entire distribution of the predicted round-trip time.
Conceivably further improvements can be had by using
more sophisticated models for A. In particular, allowing
A to vary according to a Markov chain allows the model to
account for bursts of packet arrivals. Such approaches will
be explored in future papers.

B. Drop Event Probability

As discussed in Section II-B, it is assumed that drop
events can be model as a doubly stochastic Poisson process
N with drops occurring with intensity n (Vg, 0, RTT}),
where V; is the controlled flow (CF) sending rate, 6; is an
abstract variable representing the level of congestion and
RTT; is the round-trip time. It is further assumed that 6
is a homogeneous Markov jump process with known the in-
tensity matrix A and with known initial distribution. The

objective in this section is to determine the drop proba-
bility given a sequence of observations of acknowledgments
arriving at discrete times 7. We denote the observation at
time 7 as y,, and the aggregate of all observation up to
time 7% as Y7*. We initially assume a prior distribution for
the congestion level p(6y). Then, based on observations,
we determine the distribution P (s, 0)| Y™ ). Note that
the observations take the form of either acknowledgment or
non-acknowledgments. As in the previous section, we only
examine the positive observation case where the observa-
tion at time 73, indicates an acknowledgment has arrived.
Furthermore, it is assumed that V; is known for all times
t.

We first consider the case where the observation y,, in-
dicates that no drop has occurred. The observation gives
complete information about the round-trip time at time
RTTi(7,,0)- Thus

P (Oe(r,0) | Va(r,00: Y™)
= P (64(r,0)| RTTy(ry 005 Ve 0), Y ™) -

Furthermore, drops are assumed to be independent and
given the round-trip time, CF sending rate, Vi(,, o),
and 0y, 0), the probability of a drop is given by
g(9t(rk,0)aRTTt(rk,0)aVt(rk,o)) (See Section II-B for de-
tails). In particular, since the observation y, indicates
a drop has not occurred

P (ka | et(q-k,o), RTTt(Tk,O), V;(TMO)’ Ytkfl)
=1—g (19t(7,c ,0)> RTTt(T,c 05 Vt(m,o)) )

Furthermore, we assume that given the history Y71,
the future values of RTT and 60 are independent, hence
P (01r,.0) = i| RTTy(r 0, Y™ 1) = P (Oyr, 0 = [ Y1) .
Thus

P (O4(ri,0) = i| Vim0, Y ™)

= P (04(7,.,0) = i| RTTy(r,,0), Va0, Y ™)

& P (Yr,| Oty 0) = % RT Ty(r, 0y, Vi(ri,0), Y ™ °1)
X P (0y(ry 0) = i| RTTy(r,,0), Va(re,0), Y ™)

= (1 -9 (4, RTTy(r,.0); Ve(ma,0)))

X P (0y(r,0) = 1| RTTy(r,,,0), Vi(r,0), Y ™)

= (19 (&, RTTyn, 00, Ve(ra0)))

X P (Os(r,0) = 1| Vi(ri0, Y1) -

We assume that 6 is independent of the CF sending rate,
hence

P (Bs(ry.0) = 1| Vi(ra,0), Y ™)
fd P (Gt(ﬂc,o) = Z.| YTkil) .



Thus

P (000 = i| Ver,0), Y1) = (12)
> (P (Buri0) = il ey o) = ) (13)
J
XP (Oy(r,_y 0 = 3| Yry)) = (14)
> (P (0uri0) = il buiry s, = )
J
P (01,0 = | Va(ri_1,00 Yris)) (15)

where P (Gt(nﬁo) = 2} Ot(rir ) = Jj) is the (4, j)element of
the matrix exp ((¢ (7x,0) — ¢ (Tk—1, %)) A).

Now, suppose that y,, indicates that the packet that was
sent at ¢ (7x,0) was dropped. In this case the round-trip
time experienced by the drop packet is not known, that is,
the queueing delay at time % (7%,0) and processing delay
are not known. Thus

P (at(q—kyo) = i} ‘/t(Tkyo)’ YTk) (16)
B / P (s(r,,0) = | RT Ty 00, Vim0, Y™)  (17)
x dP (RTTy(r,,0)| Veri,0): Y ™) 5 (18)
where
P (04(r,,0) = i| RTTy(r, 0)5 Vi(ri 00, Y ™)
& P (Yri | 047 0) = & RT Ty (7, 0), Vi(ry 005 Y )
x P (at(q—kyo) = Z} RTE(TIWO)’ ‘/t(Tkyo)’ Ytkil)
= g (4, RTTy(5,,0), Vi(r.,0))
X P (83(r0,0) = | Vare,0), Y1) .
Based on the observations Y7#, the distribution,

P (RTTy(r, 0)| Y™), can be found as in Section III-A. Fur-
thermore since the CF sending rate is independent of the
round-trip time

P (RT Tz, 0)| Viri0): Y™) = P (RT Ty, 0| Y7*) -

Now suppose, that the observation y,, indicates that the
packet sent at ¢ (7x,1) was also dropped. In this case yr,
holds information about two drops. We process informa-
tion about each drop sequentially,

RT,I’t(Tk,l)a ‘/;(Tk,O)a YT ) pa‘Cket
sent at t(7,0) was dropped
Vi(r,0): Y 7%, packet sent
at t (7, 0) was dropped /'’

_ 1 Vi(re,0), Y *, packet sent
P <0t(ml) - Z} at t (7x,0) was dropped

/P <9t(m,1> =i

x dP (RTTt(Tk,l)|
Since the round-trip time is independent of drops

P (RTTt(T,“l)}

= P (RTTyr,1)| Vi(ri00: Y ™) -

Vi(ri,0), Y, packet sent
at t (7%,0) was dropped

Furthermore,
—7 RTE(Tk,l)a ‘/t(’rk,O); YTk, packet
P{ bumny _Z} sent at t (75,0) was dropped «
’ 1%
P ] et("'kyl) = 7:’ RTTI‘t(Tk,,].)) Vt(q—,“(]), Ytk_l’
Yl packet sent at ¢ (,0) was dropped

4 RTTyr 1y, Va(re 0y, Y51,
P et(‘rk,l) - Z} t(7k,1)7 V(7k,0) )

packet sent at t (7%, 0) was dropped

= 9 (1, RT Ty, 1), Vi, 1)) X
Vi(ry,0), Y1, packet sent >

P 0t(7’k71) = Z} at t (Tk; O) was dropped

where
_ .1 Vi(r,0), Y1, packet sent
P <0t(m1) - Z| at t (7x,0) was dropped

D (P (1) = ] Ouri_y 0) = )

J

x P (0,5(7.,“0) =i|

>=
))

Vi(ry,0), Y1, packet sent
at t (7%, 0) was dropped

Vi(re,0), Y %1, packet sent
at t (7,0) was dropped

and

P <0t(ﬂe,0) =1

is given by (16). Notice that we have used the assumption
that drops are independent, hence

g (kal Oy(ri1) = & BT Ty, 1), Varo 0 Y70
This process is repeated for each drop indicated by y,, .

packet sent at t (73,0) was dropped
g (Z’ RTn(Tkyl)’ ‘/t(Tkyl)) :

IV. CONCLUSION

Models and techniques for network tomography have
been presented. These techniques provide a mechanism
to determine a detailed picture of the state of a segment
of the network. These techniques are currently being used
in “live” and simulated network experiments. Early re-
sults are encouraging, but point out the clearly antici-
pated computational problems. In particular, the model for
round-trip times have many parameters and it is difficult
to efficiently process the data. However, as experienced
is gained in initial probability distributions and Markov
Chain Monte Carlo computational techniques are utilized,
these difficulties are likely to be overcome.

Future work will focus on how to best combine the in-
formation of multiple host pairs. For example, in the case
of a sender sending data to two distinct hosts, the two
paths may have some common links. The information from
both connections can be utilized to better estimate the
router states of the network along these common links and,
hence, better estimate the router states along the entire
paths. Once experienced is gained on the typical variation
of arrival rates and drop probabilities, techniques such as
change point detection and sequential analysis [19] can be
applied to quickly detect changes in the models and hence
quickly detect attacks.
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