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Abstract—This paper introduces a general hybrid systems
framework to model the flow of traffic in communication net-
works. The proposed models use averaging to continuously
approximate discrete variables such as congestion window and
queue size. Because averaging occurs over short time intervals,
discrete events such as the occurrence of a drop and the consequent
reaction by congestion control can still be captured. This modeling
framework, thus, fills a gap between purely packet-level and
fluid-based models, faithfully capturing the dynamics of transient
phenomena and yet providing significant flexibility in modeling
various congestion control mechanisms, different queueing poli-
cies, multicast transmission, etc. The modeling framework is
validated by comparing simulations of the hybrid models against
packet-level simulations. It is shown that the probability density
functions produced by the ns-2 network simulator match closely
those obtained with hybrid models. Moreover, a complexity
analysis supports the observation that in networks with large
per-flow bandwidths, simulations using hybrid models require
significantly less computational resources than ns-2 simulations.
Tools developed to automate the generation and simulation of
hybrid systems models are also presented. Their use is showcased
in a study, which simulates TCP flows with different roundtrip
times over the Abilene backbone.

Index Terms—Congestion control, data communication net-
works, hybrid systems, simulation, TCP, UDP.

I. INTRODUCTION

DATA communication networks are highly complex sys-
tems, thus modeling and analyzing their behavior is quite

challenging. The problem aggravates as networks become larger
and more complex. Packet-level models are the most accurate
network models and work by keeping track of individual packets
as they travel across the network. Packet-level models, which
are used in network simulators such as ns-2 [1], have two
main drawbacks: the large computational requirements (both
in processing and storage) for large-scale simulations and the
difficulty in understanding how network parameters affect the
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overall system performance. Aggregate fluid-like models over-
come these problems by simply keeping track of the average
quantities that are relevant for network design and provisioning
(such as queue sizes, transmission rates, drop rates, etc). Ex-
amples of fluid models that have been proposed to study com-
puter networks include [2] and [3]. The main limitation of these
aggregate models is that they mostly capture steady state be-
havior because the averaging is typically done over large time
scales. Thus, detailed transient behavior during congestion con-
trol cannot be captured. Consequently, these models are un-
suitable for a number of scenarios, including capturing the dy-
namics of short-lived flows.

Our approach to modeling computer networks and its
protocols is to use hybrid systems [4] which combine con-
tinuous-time dynamics with event-based logic. These models
permit complexity reduction through continuous approximation
of variables like queue and congestion window size, without
compromising the expressiveness of logic-based models. The
“hybridness” of the model comes from the fact that, by using
averaging, many variables that are essentially discrete (such as
queue and window sizes) are allowed to take continuous values.
However, because averaging occurs over short time intervals,
one still models discrete events such as the occurrence of a drop
and the consequent reaction by congestion control.

In this paper, we propose a general framework for building
hybrid models that describe network behavior. Our hybrid sys-
tems framework fills the gap between packet-level and aggre-
gate models by averaging discrete variables over a short time
scale on the order of a roundtrip time (RTT). This means that the
model is able to capture the dynamics of transient phenomena
fairly accurately, as long as their time constants are larger than
a couple of RTTs. This time scale is appropriate for the analysis
and design of network protocols including congestion control
mechanisms.

We use TCP as a case-study to showcase the accuracy and
efficiency of the models that can be built using the proposed
framework. We are able to model fairly accurately TCP’s
distinct congestion control modes (e.g., slow-start, congestion
avoidance, fast recovery, etc.) as these last for periods no
shorter than one RTT. One should keep in mind that the timing
at which events occur in the model (e.g., drops or transitions
between TCP modes) is only accurate up to roughly one RTT.
However, since the variations on the RTT typically occur at
a slower time scale, the hybrid models can still capture quite
accurately the dynamics of RTT evolution. In fact, that is one
of the strengths of the models proposed here, i.e., the fact that
they do not assume constant RTT.

We validate our modeling methodology by comparing sim-
ulation results obtained from hybrid models and packet-level
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simulations. We ran extensive simulations using different net-
work topologies subject to different traffic conditions (including
background traffic). Our results show that hybrid models are
able to reproduce packet-level simulations quite accurately. We
also compare the run time of the two approaches and show that
hybrid models incur considerably less computational load. We
anticipate that speedups yielded by hybrid models will be in-
strumental in studying large-scale, more complex networks.

Finally, we describe the network description scripting lan-
guage (NDSL) and the NDSL translator, which were developed
to automate the generation and simulation of hybrid systems
models. NDSL is a scripting language that allows the user to
specify network topologies and traffic. The NDSL translator au-
tomatically generates the corresponding hybrid models in the
modelica modeling language [5]. We showcase these tools in
a simulation study on the effect of the RTT on the throughput of
TCP flows over the Abilene backbone [6].

II. RELATED WORK

Several approaches to the modeling and simulation of net-
works have been widely used by the networking community
to design and evaluate network protocols. On one side of the
spectrum, there are packet-level simulation models: ns-2 [1],
QualNet [7], SSFNET [8], and Opnet [9] are event simulators
where an event is the arrival or departure of a packet. Whenever
a packet arrives at the link or node, events are generated and
stored in the event list and handled in the appropriate order.
These models are highly accurate, but are not scalable to
large networks. On the other extreme, static models provide
approximations using first principles: [3] and [10] provide
simple formulas that model how TCP behaves in steady state.
These models ignore much of the dynamics of the network. For
example, the RTT and loss probability are assumed constant
and the interaction between flows is not considered.

Dynamic model fall between static models and detailed
packet-level simulators. By allowing some parameters to vary,
these models attempt to obtain more accuracy than static
approaches, and yet alleviate some of the computational over-
head of packet-level simulations. This modeling approach was
followed by [11], where TCP’s sending rate is taken as an
ensemble average. When averaging across multiple flows, the
sending rates do not exhibit the linear increase and divide in
half. However, the ensemble average still varies dynamically
with queue size and drop probability. [2] proposes a stochastic
differential equation (SDE) model of TCP, in which the sending
rate increases linearly until a drop event occurs and then it is
divided in half.

While the dynamic models above proved very useful for de-
veloping a theoretical understanding of networks, their purpose
was not to simulate networks. In an effort to simulate networks
efficiently, [12] and [13] proposed a fluid-like approach in
which bit rates are assumed to be piecewise constant. This type
of network simulator only needs to keep track of rate changes
that occur due to queueing, multiplexing, and services. As a
result, the computational effort may be reduced with respect to
a packet-level simulators. However, the piecewise constant as-
sumption can lead to an explosion of events known as the ripple

Fig. 1. Example network where q = q + q .

effect [14], which can significantly increase the computational
load.

Systems that exhibit continuously varying variables whose
values are affected by events generated by discrete-logic are
known as hybrid systems and have been widely used in many
fields to model physical systems. The reader is referred to [4] for
a general overview of hybrid systems. An early hybrid modeling
approach to computer systems appeared in [15], where the au-
thor proposes to combine discrete-event models with continuous
analytic models. The former are used to capture “rare events,”
whereas the latter avoid the need to carry out the detailed simu-
lation of very frequent events. This general framework was used
in [15] to simulate a central server systems consisting of a CPU
and several IO devices serving multiple jobs.

Traffic sampling [16] consists of taking a sample of network
traffic, feeding it into a suitably scaled version of the network,
and then using the results so obtained to extrapolate the behavior
of the original network. This has been proposed as a method-
ology to efficiently simulate large-scale networks by combining
simulation and analytical techniques. However, it loses scal-
ability when packet drops are bursty and correlated, or when
packet drops are not accurately modeled by a Poisson process.

The remainder of the paper is organized as follows. Sec-
tion III presents our hybrid systems modeling framework. In
Section IV, we validate our hybrid models by comparing them
to packet-level simulations. Section V shows results comparing
the computational complexity of hybrid- and packet-level
models, and Section VI shows development tools and case
study using these tools. Finally, we present our concluding
remarks and directions for future work in Section VII.

III. HYBRID MODELING FRAMEWORK

Consider a communication network consisting of a set of
nodes connected by a set of links. We assume that all links are
unidirectional and denote by the link from node
to node (cf. Fig. 1). Every link is characterized by
a finite bandwidth and a propagation delay .

We assume that the network is being loaded by a set of
end-to-end flows. Given a flow from node to node

, we denote by the flow’s sending rate, i.e., the rate at
which packets are generated and enter node where the flow is
initiated. Given a link in the path of the -flow, we denote
by the rate at which packets from the -flow are sent through
the -link. We call the -link/ -flow transmission rate. At
each link, the sum of the link/flow transmission rates must not
exceed the bandwidth, i.e.,

(1)
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In general, the flow sending rates , are determined by
congestion control mechanisms and the link/flow transmission
rates are determined by packet conservation laws to be de-
rived shortly. To account for the fact that not all packets may
have the same length, we measure all rates in bytes per second.

Associated with each link , there is a queue that holds
packets before transmission through the link. We denote by
the number of bytes in this queue that belong to the flow. The
total number of bytes in the queue is given by

(2)

The queue can hold, at most, a finite number of bytes that we
denote by . When reaches , drops will occur.

For each flow , we denote by the flow’s RTT,
which elapses between a packet is sent and its acknowledgment
is received. The value of can be determined by adding
the propagation delays and queueing times of all links
involved in one roundtrip. In particular

where denotes the set of links involved in one roundtrip for
flow .

A. Flow Conservation Laws

Consider a link in the path of flow . We denote by
the rate at which -flow packets arrive (or originate) at the

node where starts. We call the -link/ -flow arrival rate.
The link/flow arrival rates are related to the flow sending
rates and the link/flow transmission rates by the following
simple flow-conservation law: for every and

starts at the node where starts
otherwise (3)

where denotes the previous link in the path of the -flow.
For simplicity, we are assuming single-path routing and unicast
transmission. It would be straightforward to derive conservation
laws for multipath routing and multicast transmission.

The flow-conservation law (3) implicitly assumes that
packets are not dropped “on the fly.” For consistency, we will
regard packet drops that occur in the transmission medium (e.g.,
needed to model wireless links) as taking place upon arrival at
the destination node. From a traffic modeling perspective, this
makes no difference but somewhat simplifies the notation.

B. Queue Dynamics

In this section, we make two basic assumptions regarding
flow uniformity that are used to derive our models for the queue
dynamics.

Assumption 1 (Arrival Uniformity): The packets of the all
flows arrive at each node in their paths roughly uniformly dis-
tributed over time. Consequently, the packets of each flow are
roughly uniformly distributed along each queue.

Because of packet quantization, bursting, synchronization,
etc., this assumption are never quite true over a very small in-
terval of time. However, they are generally accurate over time

intervals of a few RTTs. In fact, we shall see shortly that they
are sufficiently accurate to lead to models that match closely
packet-level simulations.

1) Queue-Evolution and Drop Rates: Consider a link
that is in the path of the flow . The queue dynamics
associated with this pair link/flow are given by

where denotes the -flow drop rate. In this equation,
should be regarded as an input whose value is determined by
upstream nodes. To determine the values of and , we con-
sider three cases separately.

1) Empty queue (i.e., ). In this situation, there are no
drops and the outgoing rates are equal to the arrival rates

, as long as the bandwidth constrain (1) is not violated.
However, when , we cannot have ,
and the available link bandwidth must be somehow dis-
tributed amount the flows so that . To deter-
mine how to distribute , we note that a total of
bytes arrive at the queue in a single unit of time. Assuming
arrival uniformity (Assumption 1) all incoming packets are
equally likely to be transmitted so the probability that a
packet of flow is, indeed, transmitted is given by

(4)

Since a total of bytes will be transmitted, the faction of
these that correspond to flow is given by

The above discussion can be summarized as follows: For
every

2) Queue neither empty nor full (i.e., or
but ). In this situation, there are

no drops, and the available link bandwidth must also
be distributed amount the flows so that .
Assuming that the packets of each flow are uniformly dis-
tributed along each queue (Assumption 1), the probability
that a packet of flow is at the head of the queue is given
by

(5)

Since a total of bytes will be transmitted per unit of
time, the faction of these that correspond to flow is given
by
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We, thus, conclude that, in this situation, for every

3) Queue full and still filling (i.e., and
). In this situation, the total drop rate must equal the

difference between the total arrival rate and the link band-
width, i.e., . Once again, we must
determine how this total drop rate should be distributed
among all flows. Assuming arrival uniformity (Assumption
1) all incoming packets are equally likely to be dropped so
the probability that a packet of flow is indeed dropped is
given by

(6)

Since a total of bytes will be dropped, the faction of
these that correspond to flow is given by

The rate at which packets are transmitted is the same as
when the queue is neither empty not full, which was con-
sidered above. This leads to the following model: for every

(7)

To complete the queue dynamics model, it remains to deter-
mine when and which flows suffer drops. To this effect, suppose
that at time , reached with .
Clearly, a drop will occur at time but, multiple drops may
occur. In general, if a drop occurred at time , a new drop is
expected at a time , for which the total drop rate
integrates from to to exactly the packet-size , i.e., for
which

(8)

This equation determines , for all drops after . We
call (8) the drop-count model.

The question as to which flows suffer drops must be con-
sistent with the drop probability specified by (6), which was a
consequence of the arrival uniformity Assumption 1. In partic-
ular, the selection of the flow where a drop occurs is made
by drawing the flow randomly from the set , according to the
distribution

(9)

Fig. 2. Drop probability versus fraction of arrival rate. (a) 10% background
traffic; (b) packet synchronization.

We assume that the flows , that suffer drops at
two distinct time instants , are (conditionally) indepen-
dent random variables (given that the drops did occur at times

and ). We call (9) the drop-selection model.
The uniformity Assumption 1 was used in the construction of

our queue model to justify the formulas (4), (5) for the packet
transmission probabilities and the formula (6) for the packet
drop probability. To validate this assumption, we matched these
formulas with the results of several ns-2 [1] simulations. Fig. 2
shows the result of one such validation procedure for the for-
mula (6). Fig. 2(a) refers to a simulation in which 2 TCP flows
(RED and BLUE) compete for bandwidth on a bottleneck queue
(with 10% ON–OFF UDP traffic). The axis shows the fraction
of arrival rate for each flow given by the formula (6) and the
axis shows the corresponding drop probability. A near perfect
45 line shows that (6) does provide a very good approxima-
tion to the packet drop probability. Fig. 2(b) shows a network
with very strong drop synchronization for which Assumption 1
breaks down. We postpone the discussion of this plot to Sec-
tion III-B3. Similar plots can be made to validate the formulas
(4), (5) for the packet transmission probabilities, but we do not
include them here for lack of space. However, in Section IV,
we present a systematic validation of our overall hybrid model,
which includes the queue mode above as a subcomponent.

2) Hybrid Model for Queue Dynamics: The queue model de-
veloped above can be compactly expressed by the hybrid au-
tomaton represented in Fig. 3. Each ellipse in this figure corre-
sponds to a discrete state (or mode) and the continuous state of
the hybrid system consists of the flow byte rate , and
the variable used to track the number of drops in the queue-
full mode. The differential equations for these variables in each
mode are shown inside the corresponding ellipse. The arrows
between ellipses represent transitions between modes. These
transitions are labeled with their enabling conditions (which
can include events generated by other transitions), any neces-
sary reset of the continuous state that must take place when the
transition occurs, and events generated by the transition. Events
are denoted by . We assume here that a jump always occurs
when the transition condition is enabled. This model is consis-
tent with most of the hybrid system frameworks proposed in the
literature (cf., e.g., [4]). The inputs to this model are the rates

, of the upstream queues , which determine
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Fig. 3. Hybrid model for the queue at link `. In this figure, q is given by (2), the s , f 2 F are given by (3), and s := s , 8` 2 L.

the arrival rates , , and the outputs are the transmis-
sion rates , . For the purpose of congestion control, we
should also regard the drop events and the queue size as outputs
of the hybrid model. Note that the queue sizes will eventually
determine packet RTTs.

3) Other Drop Models: For completeness, one should add
that the drop-selection model described by (9) is not universal.
For example, in dumbbell topologies without background
traffic, one can observe synchronization phenomena that some-
times lead to flows with smaller sending rates suffering more
drops than flows with larger sending rates. The right plot in
Fig. 2 shows an extreme example of this (2-TCP flows in a
5-Mbps dumbbell topology with no background traffic and
drop-tail queueing). In this example, the BLUE flow suffers
most of the drops, in spite of using a smaller fraction of the
bandwidth. In [17], it was suggested that 10% of random delay
would remove synchronization between TCP connections.
However, this does not appear to be the case when the number
of connections is small. To avoid synchronization we mostly
used background traffic. In fact, the left plot in Fig. 2 shows
results obtained with 10% background traffic, whereas the right
plot shows results obtained without any background traffic.

Drop Rotation: The drop model in (9) is not very accurate
when strong synchronization occurs. Constructing drop models
that remain accurate under packet-drops synchronized is gener-
ally very challenging, except under special network conditions.
The drop rotation model is valid in topologies with drop-tail
queueing, when several TCP flows have the roughly the same
RTT and there is a bottleneck link with bandwidth significantly
smaller than that of the remaining links and there is no (or little)
background traffic [18]–[20]. Under this model, when the queue
gets full, each flow gets a drop in a round-robin fashion. The ra-
tionale for this is that, once the queue gets full, it will remain
full until TCP reacts (approximately one RTT after the drop).
In the meantime, all TCP flows are in the congestion avoidance
mode and each will increase its window size by one. When this
occurs each will attempt to send two packets back-to-back and,

under a drop-tail queueing policy, the second packet will almost
certainly be dropped.

Although the drop rotation model is only valid for special
networks, these networks are very useful to validate congestion
control because they lead to essentially deterministic drops. This
allows one to compare exactly traces obtained from packet-level
models with traces obtained from hybrid models. We will use
this feature of drop rotation to validate our hybrid models for
TCP in Section IV.

Other drop models, such as active queueing and drop-head,
can be found in [21].

C. TCP Model

So far, our discussion focused on the modeling of the trans-
mission rates and the queue sizes across the network,
taking as inputs the sending rates of the end-to-end flows.
We now construct a hybrid model for a single TCP flow
that should be composed with the flow-conservation laws and
queue dynamics presented in Sections III-A and B to describe
the overall system. We start by describing the behavior of TCP
in each of its main modes and later combine them into a unified
hybrid model of TCP.

1) Slow-Start Mode: During slow-start, the congestion
window (cwnd) increases exponentially, being multiplied
by 2 every RTT. This can be modeled by

(10)

because, neglecting the variation of during a single RTT,
this would lead to

Since packets are sent each RTT, the instantaneous sending
rate should be given by

(11)
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However, this formula needs to be corrected to

(12)

because slow-start packets are sent in bursts. A detailed justifi-
cation for the introduction of the parameter can be
found in [21].

The slow-start mode lasts until a drop or a timeout are de-
tected. Detection of a drop leads the system to the fast-recovery
mode, whereas the detection of a timeout leads the system to the
timeout mode.

The formulas (10) and (12) hold as long as the congestion
window is below the receiver’s advertised window size

. When exceeds this value, the sending rate is limited
by and (12) should be replaced by

(13)

When the congestion window reaches the advertised window
size, the system transitions to the congestion-avoidance mode.

2) Congestion-Avoidance Mode: During the conges-
tion-avoidance mode, the congestion window size increases
“linearly,” with an increase equal to the packet-size for each
RTT. This can be modeled by

with the instantaneous sending rate given by (11). When the
receiver’s advertised window size is finite, (11) should be
replaced by

The congestion-avoidance mode lasts until a drop or timeout
are detected. Detection of a drop leads the system to the fast-
recovery mode, whereas detection of a timeout leads the system
to the timeout mode.

3) Fast-Recovery Mode: The fast-recovery mode is entered
when a drop is detected, which occurs some time after the drop
actually occurs. When a single drop occurs, the sender leaves
this mode at the time it learns that the packet dropped was suc-
cessfully retransmitted (i.e., when its acknowledgment arrives).
When multiple drops occur, the transition out of fast recovery
depends on the particular version of TCP implemented. We pro-
vide next the model for TCP-Sack.

TCP-Sack: In TCP-Sack, when drops occur, the sender
learns immediately that several drops occurred and will attempt
to retransmit all these packets as soon as the congestion window
allows it. As soon as fast-recovery is initiated, the first packet
dropped is retransmitted and the congestion window is divided
by two. After that, for each acknowledgment received, the con-
gestion window is increased by one. However, until the first re-
transmission succeeds, the number of outstanding packets is not
decreased when acknowledgments arrive.

Suppose that the drop was detected at time and let
denote the window size just before its division by 2. In practice,

during the first RTT after the retransmission (i.e., from to
), the number of outstanding packets is ;

the number of duplicate acknowledgments received is equal to
(we are including here the three duplicate ac-

knowledgments that triggered the retransmission), and a single
nonduplicate acknowledgment is received (corresponding to
the retransmission). The total number of packets sent during
this interval will be one (corresponding to the retransmission
that took place immediately), plus the number of duplicate ac-
knowledgments received, minus . We need to subtract

because the first acknowledgments re-
ceived will increase the congestion window up to the number of
outstanding packets but will not lead to transmissions because
the congestion window is still below the number of outstanding
packets [22]. This leads to a total of
packets sent, which can be modeled by an average sending rate
of

on

In case a single packet was dropped, fast recovery will finish
at ; otherwise, it will continue until all the retrans-
missions take place and are successful. However, from

on, each acknowledgment received will also decrease the
number of outstanding packets so one will observe an exponen-
tial increase in the window size. In particular, from
to the number of acknowledgments received is

(which was the number of packets sent
in the previous interval) and each will both increase the con-
gestion window size and decrease the number of outstanding
packets. This will lead to a total number of packets sent equal
to and, therefore

on

On each subsequent interval, the sending rate increases expo-
nentially until all the packets that were dropped are suc-
cessfully retransmitted. In RTTs, the total number of packets
retransmitted is equal to

and the sender will exit fast recovery when this number reaches
, i.e., when

In practice, this means that the hybrid model should remain in
the fast recovery mode for approximately

(14)
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Fig. 4. Hybrid model for the flow f under TCP. The meaning of the symbols 
 and � depend on the version of TCP under consideration and is shown in the
table above, where n(�) is defined by (14) and (15).

RTTs. The previous reasoning is only valid when the number
of drops does not exceed . As shown in [22], when

, the sender does not receive enough ac-
knowledgments in the first RTT to retransmit any other packets
and there is a timeout. When , only one
packet will be sent on each of the first two RTTs, followed by
exponential increase in the remaining RTTs. In this case, the fast
recovery mode will last approximately

(15)

RTTs.
We have also developed fast-recovery models for

TCP-NewReno, TCP-Reno, and TCP-Tahoe. These are dis-
cussed in [21] and [23]. The behavior of the several variants
of TCP in the presence of multiple packet losses in the same
window is also discussed in [24].

4) Timeouts: Timeouts occur when the timeout timer ex-
ceeds a threshold that provides a measure of the current RTT.
This timer is reset to zero whenever the number of outstanding
packets decreases (i.e., when it has received an acknowledgment
for a new packet). Even when there are drops, this should occur
at least once every , except in the following cases.

1) The number of drops is larger or equal to ,
and, therefore, the number of duplicate acknowledgments
received is smaller or equal to 2. These are not enough to
trigger a transition to the fast-recovery mode.

2) The number of drops is sufficiently large so that the
sender will not be able to exit fast recovery because it does
not receive enough acknowledgments to retransmit all the
packets that were dropped. As seen above, this corresponds
to .

These two cases can be combined into the following condition,
under which a timeout will occur:

When a timeout occurs at time the variable is set equal
to half the congestion window size, which is reset to 1, i.e.,

At this point, and until reaches , we have multiplicative
increase similar to what happens in slow start, and, therefore,
(13) holds. This lasts until reaches or a drop/
timeout is detected. The former leads to a transition into the
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Fig. 5. (Upper left) Dumbbell, (upper right) Y-shape multiqueue with four different propagation delays, and (bottom) parking-lot with four different propagation
delays topologies.

congestion avoidance mode, whereas the latter to a transition
into the fast-recovery/timeout mode.

5) Hybrid Model for TCP-Sack: The model in Fig. 4 com-
bines the modes described in Section III-C1–4 for TCP-Sack.
This model also takes into account that there is a delay between
the occurrence of a drop and its detection. This drop-detection
delay is determined by the “roundtrip time” from the queue
where the drop occurred, all the way to the receiver, and back to
the sender. It can be computed using

where denotes the set of links between the -queue and
the sender, passing through the receiver (for drop-tail queueing,
this set should include itself). To take this delay into account,
we added two modes (slow-start delay and congestion-avoid-
ance delay), in which the system remains between a drop oc-
curs and it is detected. The congestion controller only reacts to
the drop once it exits these modes. The timing variable is
used to enforce that the system remains in the slow-start delay,
congestion-avoidance delay, and fast-recovery modes for the re-
quired time. For simplicity, we assumed an infinitely large ad-
vertised window size in the diagram in Fig. 4.

The inputs to the TCP-Sack flow model are the RTTs, the drop
events, and the corresponding drop-detection delays (which can
be obtained from the flow-conservation law and queue dynamics
in Section III-A and B) and its outputs are the sending rates of
the end-to-end flows.

The model in Fig. 4 assumes that the flow is always active.
It is straightforward to turn the flow on and off by adding appro-
priate modes [21]. In fact, in the simulation results described in
Section IV-B we used random starting times for the persistent
TCP flows. On–off UDP sources with a fixed sending rate during
the on-period are also straightforward to construct [21].

IV. VALIDATION

We use the ns-2 (version 2.26) packet-level simulator to val-
idate our hybrid models. Different network topologies subject to
a variety of traffic conditions are considered.

A. Network Topologies

We focus our study on the topologies shown in Fig. 5. The
topology in the upper left corner is known as the dumbbell
topology and is characterized by a set of flows from the source
nodes in the left to the sink nodes in the right, passing through
a bottleneck link with 10-ms propagation delay.

While all the flows in a dumbbell topology have the same
propagation delays, the flows in the Y-shape topology in the
upper right corner of Fig. 5 exhibit distinct propagation de-
lays: 45 ms , 90 ms , 135 ms , and 180 ms

. In this topology, UDP background traffic is injected at
and router R2, whereas the TCP flows originate at

through . The background traffic model is described in Sec-
tion IV-B.

We also consider the parking-lot topology depicted at the
bottom of Fig. 5. This topology includes two 500 Mbps bottle-
neck links. The traffic consists of four TCP flows with propaga-
tion delays of 45, 90, 135, and 180 ms competing with 10% UDP
background traffic. Two sets of background traffic were used: in
the first set, traffic was injected into the sources attached to R7
and sent to the sinks attached to R8, while the second set orig-
inated at the sources connected to R9 and was sent to the sinks
attached to R10. This configuration creates two bottlenecks on
the links between R2 and R3 and between R4 and R5.

All queues are 40 packets long for the topologies with 5-Mbps
bottleneck links and 11 250 packets for the ones with 500-Mbps
bottleneck links. These queues are large enough to hold the
bandwidth-delay product.
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B. Simulation Environment

The hybrid models in this paper were formally specified
using the object-oriented modeling language modelica [5].
Modelica allows convenient component-oriented modeling
of complex physical systems. All ns-2 simulations use
TCP-Sack (more specifically its Sack1 variant outlined in [24]).
Each simulation ran for 600 s of simulation time for the 5-Mbps
topologies and for 8 000 s for the 500-Mbps one. Data points
were obtained by averaging 20 trials for the 5-Mbps topologies
and five trials for the 500-Mbps one. TCP flows start randomly
between 0 and 2 s.

The background traffic consists of UDP flows with exponen-
tially distributed ON and OFF times, both with average equal
to 500 ms. We do not claim that this type of background traffic
is realistic, but it suffices to reduce packet synchronization as in
[25]. We considered different amounts of background traffic but
in all the results reported here the background flows to account
for 10% of the traffic. While the exact fraction of short-lived
traffic found on the Internet is unknown, it appears that short-
lived flows make up for at least 10% of the total Internet traffic
[26]. However, it should be emphasized that the accuracy of the
hybrid system simulations does not degrade as more short-lived
traffic is considered.

As previously mentioned, the drop model is topology depen-
dent. As observed in [20], for the single bottleneck topology
with uniform propagation delays, drops are deterministic with
each flow experiencing drops in a round-robin fashion. How-
ever, when background on/off traffic is considered, losses are
best modeled stochastically.

The variables used for comparing the hybrid and the
packet-level models include the RTTs, the packet drop rates,
the throughput and congestion window size for the TCP flows,
and the queue size at the bottleneck links.

C. Results

We start by considering a dumbbell topology with no
background traffic for which the drop rotation model in Sec-
tion III-B3 is valid. As discussed above, in such networks drops
are essentially deterministic phenomena and one can directly
compare ns-2 traces with our hybrid model, without resorting
to statistical analysis. Fig. 6 compares simulation results for
a single TCP flow (no background traffic). These plots show
traces of TCP’s congestion window size and the bottleneck
queue size over time. The plots show a nearly perfect match and
one can easily identify the slow-start, congestion-avoidance,
and fast-recovery modes discussed in Section III-C. While most
previous models of TCP are able to capture TCP’s steady-state
behavior, TCP slow-start is typically harder to model because
it often results in a large number of drops within the same
window. We can observe in Fig. 6 that after the initial drops, the
congestion window is divided by two and maintains this value
for about half a second before it begins to increase linearly.
This is consistent with the basic slow-start behavior of TCP
Sack1 when the number of losses is around cwnd/2. In this
case, TCP Sack1 eventually leaves fast-recovery but only after
several multiples of the RTT (cf. Section III-C3 and [22]).

In the next set of experiments, we simulate four TCP flows
on the dumbbell topology with and without background traffic.

Fig. 6. Comparison of the congestion window and queue sizes over time for
the dumbbell topology with one TCP flow and no background traffic.

Fig. 7. Congestion window and queue size over time for the dumbbell topology
with four TCP flows and no background traffic. (a) ns-2; (b) hybrid model.

Fig. 8. Congestion window and queue size over time for the dumbbell topology
with four TCP flows and 10% background traffic. (a) ns-2; (b) hybrid model.

Fig. 7 shows the simulation results without background traffic.
As observed in previous studies, TCP connections with the same
RTT get synchronized and this synchronization persists even
for a large number of connections [17], [27]. This synchroniza-
tion is modeled using drop rotation. Similar to the single-flow
case, the two simulations coincide almost exactly. Specifically,
in steady state, all flows synchronize to a saw-tooth pattern with
period close to 1 s.

Simulation results for four TCP flows with background traffic
are shown in Fig. 8. Even a small amount of background traffic
breaks packet-drop synchronization and the stochastic drop-se-
lection model (9) becomes valid. We can see that the traces ob-
tained with ns-2 are qualitatively very similar to those ob-
tained with the hybrid model. A quantitative comparison be-
tweenns-2 and a hybrid model is summarized in Table I, which
presents average throughput and RTT for each flow for both
hybrid system and ns-2 simulations. These statistics confirm
that the hybrid model reproduces accurately the results obtained
with the packet-level simulation.

To validate our hybrid models, we also use the Y-shape, mul-
tiqueue topology with different RTTs shown on the right-hand
side of Fig. 5. We consider the drop-count and drop-selection
models described by (8) and (9), respectively, which generate
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TABLE I
AVERAGE THROUGHPUT AND RTT FOR THE DUMBBELL TOPOLOGY WITH 4 TCP FLOWS AND 10% BACKGROUND TRAFFIC

TABLE II
AVERAGE THROUGHPUT AND RTT FOR THE Y-SHAPE TOPOLOGY (5 Mbps) WITH FOUR TCP FLOWS AND 10% BACKGROUND TRAFFIC

stochastic drops. Since losses are random, no two simulations
will be exactly equal so one cannot expect the hybrid model
to exactly reproduce the results from ns-2. Table II summa-
rizes the simulation results obtained with ns-2 and the hybrid
model for four TCP flows with 10% background traffic on the
Y-shape topology under a drop-tail queueing discipline. This
table presents the mean throughput and mean RTTs for each
competing TCP flow. The relative error is always less than 10%
and in most cases well under this value. Similar results hold for
variations of the Y-shape topology with different RTTs and dif-
ferent numbers of competing flows. However, for the stochastic
drop model to hold, there must be background traffic and/or
enough complexity in the topology and flows such that synchro-
nization does not occur. When synchronization does occur, then
a deterministic model for drops needs to be used. As described
in Section III-B3, in single bottleneck topologies drop-rotation
provides an accurate model. In more complex settings, the con-
struction of drop models for synchronized flows appears to be
quite challenging. This is one direction of future work we plan
to pursue.

To accurately compare stochastic processes one should ex-
amine their probability density functions. Fig. 9 plots the proba-
bility density functions corresponding to the time-series used to
generate the results in Table II. We observe that the hybrid model
reproduces fairly well the probability densities obtained with
ns-2. For the congestion window, three of the flows closely
agree, while one shows a slight bias towards larger values. The
density function of the queue is similar for both models. One
noticeable difference is that the peak near the queue-full state
is sharper for the hybrid model. This is due to the fact that the
queue in ns-2 can only take integer values, while in the hy-
brid model it can take fractional values. Thus, the probability
that the queue is nearly full is represented by a probability mass
at for the hybrid model, while it is represented by a
probability mass at in ns-2. This results in a more
smeared probability mass around queue-full for ns-2.

We also validate the hybrid models in high bandwidth net-
works with drop-tail queueing. These networks are especially
challenging because, due to the larger window sizes, they are
more prone to synchronized losses even when the drop rates are
small [28]. Also, TCP’s unfairness towards connections with
higher propagation delays is more pronounced in high band-
width-delay networks where synchronization occurs [29]. We
simulate dumbbell, Y-shape, and parking-lot topologies with a

Fig. 9. Probability density functions for the congestion window and queue size
for the Y-shape topology with four TCP flows and 10% background traffic.
(a)ns-2; (b) hybrid model.

bottleneck of 500 Mbps and 10% background traffic. The bot-
tleneck queues are set to be large enough to hold the band-
width-delay product.

Table III presents the mean throughput and mean RTT for
each competing TCP flow for the dumbbell, Y-shape, and
parking-lot topologies with 500-Mbps bottleneck(s). The rel-
ative errors between the results obtained with ns-2 and the
hybrid models are always smaller than 10%. The corresponding
probability density functions for the congestion window and
queue size for the Y-shape and parking-lot topologies are given
in Figs. 10 and 11, respectively. In both cases, the probability
density functions match fairly well.

It is interesting to compare the distributions of the bottleneck
queue and congestion window sizes for the low-bandwidth
Y-shape topology in Fig. 9 with those obtained for the high
bandwidth Y-shape topologies in Fig. 10. The explanation for
the significant differences observed lie in the frequent synchro-
nized losses that occur in the high bandwidth networks [28].
Note that, when the probability of synchronized loss is higher,
the bottleneck queue size exhibits larger variations because
more flows are likely to backoff approximately at the same
time. It is, thus, not surprising to observe that in high-speed
networks the queue size distribution is less concentrated around
the queue-full state [25].

Fig. 11 shows the probability density functions for the
congestion window and queue sizes for the 500-Mbps bottle-
neck parking-lot topology. Unlike in the 5-Mbps dumbbell or
Y-shape topologies where bottleneck queues are not empty
most of the time, in this high-speed, multiple bottleneck
topology, queues become empty more frequently producing
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TABLE III
AVERAGE THROUGHPUT AND AVERAGE RTT FOR Y-SHAPE AND PARKING-LOT TOPOLOGY FOR 500 Mbps BOTTLENECK

TABLE IV
L -DISTANCE BETWEEN HISTOGRAMS COMPUTED FROM SIMULATIONS USING ns-2 AND HYBRID MODEL

Fig. 10. Probability density functions for the congestion window and queue
size for the Y-shape topology with four TCP flows and 10% background traffic
(500 Mbps bottleneck). (a) ns-2; (b) hybrid model.

Fig. 11. Probability density functions for the congestion window and queue
size for the parking-lot topology (500 Mbps bottleneck) with four TCP flows and
10% background traffic. These were computed from simulations using ns-2
(left) and a hybrid model (right).

a more chaotic behavior. However, the hybrid model still
reproduces well the probability densities obtained from ns-2
simulations.

While visually comparing two density functions provides a
qualitative understanding of their similarity, there are several
techniques to compare density functions quantitatively. One
well-established metric is the -distance [30], which

has the desirable property that when is a density and an
estimate of

Thus, if the probability of an event is to be predicted using
, the prediction error is never larger than half of the -dis-

tance between and . Table IV shows the -distance be-
tween all the distributions compared in Figs. 9–11. The largest

-distance is 0.3333, which corresponds to a maximum error
of 0.1667 in probability.

V. COMPUTATIONAL COMPLEXITY

Modern ordinary differential equation (ODE) solvers are es-
pecially efficient when the state variables are continuous func-
tions. However, the state variables of hybrid systems exhibit
occasional discontinuities, which requires special care and can
lead to significant computational burden. In fact, the simulation
time of hybrid systems typically grows linearly with the number
of discontinuities in the state variables because each disconti-
nuity typically requires the integration step of the ODE solver
to be interrupted so that the precise timing of the discontinuity
can be determined. Between discontinuities, the integration step
typically grows rapidly and the simulation is quite fast, as long
as the ODEs are not-stiff. In our models, these discontinuities
are mainly caused by two types of discrete events: drops and
queues becoming empty. Drops typically cause TCP to abruptly
decrease the congestion window, whereas a queue becoming
empty forces the outgoing bit-rates to switch from a fraction of
the outgoing link bandwidth to the incoming bit-rates. In prac-
tice, the frequencies at which these events occur are essentially
determined by the drop-rates of the active flows and the rate at
which flows start and stop.
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Fig. 12. Execution time speedup of hybrid model over ns-2 simulation for
dumbbell topology with 100-ms propagation delay bottleneck.

Since the main factor that determines the simulation speed is
the drop rate, it is informative to study how it scales with the
number of flows. To this effect consider the well-known equa-
tion , which relates the per-flow throughput

, the average RTT, and the drop probability . According to
this formula the total drop rate for competing flows, which
is equal to , is given by . This suggests
that the computational complexity is of order , scaling
linearly with the number of flows when the per-flow throughput
is maintained constant and is actually inversely proportional to
the per-flow throughput when the number of flows remains con-
stant. This is in sharp contrast with event-based simulators for
which the computational complexity is essentially determined
by the total number of packets transmitted, which is of order

.
This analysis is confirmed by the data in Fig. 12. This figure

shows the execution time speedup defined as the ratio between
the execution time of ans-2 packet-level simulation divided by
the execution time of the corresponding hybrid model simula-
tion in modelica [5]. These results correspond to a single-bot-
tleneck topology where the bottleneck link’s propagation delay
is 100 ms and its bandwidth varied among 10 Mbps, 100 Mbps,
and 1 Gbps. We simulate from 1 to 100 long-lived TCP flows
competing for the bottleneck bandwidth for 30 min of simu-
lation time. Simulations ran on a 1.7-GHz PC with 512-MB
memory. We can see that the hybrid model simulation is es-
pecially attractive for large per-flow throughput, for which the
speedup can reach several orders of magnitude.

The execution time speedups for the Y-shape and parking-lot
topologies with background traffic are shown in Fig. 13. The
speedup for the Y-shape topology is larger than that of the
parking-lot topology due to the fact that queues empty more
frequently in the latter, resulting in more discontinuities.

Memory usage can also be a concern when simulating large,
complex networks. Hybrid systems require one state variable
for each active flow and one state variable for each flow passing
through a queue. Hence, the memory usage scales linearly with
the number of flows and the number of queues. For ns-2, the
memory usage depends on the number of packets in the system
and, hence, scales with the bandwidth-delay product.

VI. TOOLS AND CASE STUDY

Hybrid systems modeling languages such as modelica [5]
are special-purpose languages designed to model complex phys-

Fig. 13. Execution time speedup of hybrid model over ns-2 simulation for
Y-shape and parking-lot topologies with background traffic.

Fig. 14. Abilene backbone network.

ical systems. To simplify the use of hybrid modeling by net-
working researchers, we developed the NDSL to specify suc-
cinctly large, complex networks using a syntax similar to object
oriented TCL (OTCL) in ns-2.

NDSL primitives include node and link definitions, as well
as the parameters that define the different end-to-end conges-
tion control protocols. Details of NDSL primitives can be found
in [23]. A NDSL translator automatically converts a network
NDSL specification into a hybrid model expressed in mod-
elica. In the remainder of this section, we illustrate the use of
these tools in the simulation of TCP flows over a realistic high-
bandwidth network for which packet-level simulations would
be prohibitively long.

A. Case Study: Abilene Backbone Network

The Abilene Network (shown in Fig. 14) is an Internet-2
high-performance backbone network connecting research insti-
tutions to enable the development of advanced Internet appli-
cations and protocols [6]. Recently, its has been upgraded to
10-Gbps backbone links using OC-192 circuits. The links prop-
agation delays considered are shown in Table V. All links have
a bandwidth of 10 Gbps and we assume droptail queues with
size equal to 25 000 packets with 1-K packet size. In this ex-
periment, we simulate the three sets of ten flows described in
Table VI. Each flow starts randomly between 0 and 1 s and ter-
minates at time 40 000 s.
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TABLE V
TWO-WAY PROPAGATION DELAY BETWEEN NODES IN THE ABILENE BACKBONE

TABLE VI
TCP FLOWS SIMULATED OVER ABILENE BACKBONE

B. Results

We use our hybrid model of the Abilene network to study how
queue size impacts throughput fairness. To this effect we vary
the queue sizes from 25 000 to 150 000 packets in increments
of 25 000 and measure the throughput obtained. We ran 11 h
of simulation time. In this network, one needs simulations this
large if one wants to obtain steady-state throughput. Note that
for a 10-Gbps backbone with 70-ms RTT and 1000-byte packet
size, the bandwidth-delay product is 87 500 packets. When the
queue size is as large as the bandwidth-delay product, the max-
imum window size before a packet is drops is 175 000 packets.
If the sender detects a congestion loss at this time, the window
size reduces from 175 000 to 87 500. Thus, it takes 87 500 RTTs
to get another drop, which amounts to 1 h and 42 min. Simu-
lation times as long as this are not feasible in ns-2 with our
512-MB memory PC. However, the hybrid systems simulation
requires no more than 20 min of execution time. It should be
noted that versions of TCP adapted to high-bandwidth networks,
such as FAST-TCP and HSTCP, reach steady-state much faster
than this, and, in fact, we currently have hybrid models for these.
However, due to space limitations we do not describe those here.

Fig. 15 shows the fairness ratio between flows in different sets
(cf. Table VI). The fairness ratio is defined as the ratio
between the average throughput of the flows in sets divided by
the average throughput of the flows in . When the queue size
is 25 000, the average throughput of set one is 3.1 times the av-
erage throughput of set three, but when the queue size increases
to 150 000, the throughput ratio becomes only 1.5. This is con-
sistent with the expectation that, when the queueing delay in-
creases considerably, it will dominate the RTT, thus decreasing
the RTT ratio between the two flows with different propagation
delays. However, in topologies like this one, the precise depen-
dence of the fairness ratio with the buffer size is difficult to pre-
dict without resorting to simulations.

Fig. 15. Average throughput fairness between the three different TCP-Sack
flow sets simulated on the Abilene network.

Fig. 15 also shows the ratio between the average RTTs
of the flows in sets and (in the reciprocal order). Since all the
flows go through the same bottleneck (Chicago-Indianapolis),
based on the TCP-friendly formula one could expect the fair-
ness ratio to match the reciprocal of the RTT ratio. The simula-
tions reveal that this generally underestimates the fairness ratio,
especially when the ratio is far from one. This phenomena has
been confirmed by ns-2 simulations in smaller networks.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a general framework for building hybrid
models to describe network behavior. This framework fills the
gap between packet-level and aggregate models by averaging
discrete variables over very short time scales. This means that
the models are able to capture the dynamics of transient phe-
nomena fairly accurately, as long as their time constants are
larger than a couple of RTTs. This is quite appropriate for the
analysis and design of network protocols including congestion
control mechanisms.

To validate our hybrid systems modeling framework, we
compare hybrid model against packet-level simulations and
show that the probability density functions match very closely.
We also briefly describe the software tools that we developed
to automate the generation of hybrid models for complex
networks. We showcased their use with a case study involving
the Abilene backbone network.

Our results indicate that simulations using hybrid models
should be preferred over packet-level simulators in the study
of networks with large per-flow bandwidths when one wants to
accurately capture traces of individual flows and the evolution
of buffer sizes. For networks with small bandwidth, the compu-
tational saving introduced by hybrid model are small and one
might as well rely on packet-level simulators.
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