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Abstract 

A hop-by-hop congestion control method is developed. 
Unlike other hop-by-hop schemes, this method does not 
require the router to keep track of per-virtual circuit 
information. Hence, this method puts little computa- 
tional burden on the router. The method is hop-by- 
hop based, hence, it allows the flows to quickly adjust 
to changes in the available bandwidth. The network is 
modeled as an LPV system. However, standard LPV 
techniques prove too conservative and alternative meth- 
ods are applied. It is shown that for certain feedback 
gains, the system is exponentially stable. 

1 Introduction 

Congestion control in data networks has been the sub- 
ject of extensive research since the Internet experienced 
congestion collapse in 1988 [5]. Currently, TCP [16] is 
the most popular algorithm for avoiding large scale con- 
gestion. According to the TCP protocol, the sender at- 
tempts to use any available bandwidth in the network 
by sensing if packets have been dropped. This sens- 
ing is accomplished by the receiver sending acknowl- 
edgments upon receiving a packet. If the sender re- 
ceives an acknowledgment, it assumes that the network 
is not congested. Whereas, if the sender fails to receive 
an acknowledgment, then it assumes that the packet 
has been dropped indicating congestion. In this ei- 
ther case, the sender takes action in an attempt to uti- 
lize all available bandwidth and minimize congestion. 
This approach has been widely tested and preforms 
satisfactorily. Another congestion control method is 
rate based feedback for ATM networks [6]. These rate 
based methods make use of explicit “state” information 
from the routers internal to the network. Typically, 
the routers send congestion information to the receiver, 
which then passes this information on to the sender. 
Simulation has shown that these rate based methods 
perform well. Both TCP and rate based feedback are 
end-to-end methods. That is, the result of action taken 
by the sender is detected first by the routers. Either 
directly or indirectly, the routers convey the congestion 
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level to the receiver. The receiver then relays this infor- 
mation back to the sender. Based on this information, 
the sender adjust its sending rate. One drawback of 
such and end-to-end approach is that there may be a 
large delay between when congestion occurs and when 
the sender reacts. Similarly, there may be a large de- 
lay between when the network load decreases and the 
sender makes use of the newly available bandwidth. 
This reaction time may be on the order of the lifetime 
of the connection had the sender been sending data at 
the maximum possible rate. For example, suppose that 
a 50kB file is to be sent from Los Angeles to New York. 
The time it takes a packet to travel from LA to NY 
and back, including propagation and queueing delay, 
is typically greater than 200ms. At 250kB/s, the en- 
tire file could be sent in 200ms. That is, by the time 
the sender is able to respond any change the available 
bandwidth, the transaction could have been completed. 
Of course, this assumes that 250kB/s of bandwidth is 
available. However, as bandwidth becomes cheaper (the 
price decreases by a factor of 2 every nine months), large 
amounts of available bandwidth may become common 
[12]. In this sense, end-to-end approaches may become 
inefficient. 

Another approach is hop-by-hop congestion control [8], 
[lo], [ll], [13]. Here each router communicates with 
upstream routers to negotiate the rate at which data 
should be sent. Thus, each host must only communi- 
cate with a host one hop away. Typically, the delay over 
single hops is small compared to the round-trip delay. 
Hence, the sender and intermediate routers are able to 
quickly respond to changes in the available bandwidth. 
Such a scheme amounts to a series of feedback loops; 
one loop for each hop. It has been shown that this se- 
ries of loops is stable [ll]. However, most approaches 
require that the control be applied only to single con- 
nections, or virtual circuits (VCs). That is, if there are 
a million senders and receivers that communicate via a 
particular router, then this router must apply this con- 
trol scheme to each of the million connections individ- 
ually. At gigabit rates, the computational and memory 
burden on the router becomes unbearable. For this rea- 
son, hopby-hop schemes were not chosen by the ATM 
steering group 161. 



Mixed end-to-endlhopby-hop approaches have also 
been suggested. For example, [l] discusses a split-TCP 
approach. Here a single connection is split into two con- 
secutive TCP connections. This approach has the ad- 
vantage that designers are familiar with TCP which is 
assumed to have good global stability properties. How- 
ever, the split-TCP has a faster reaction time than stan- 
dard TCP. One drawback is that the router which splits 
the connection must keep detailed information about 
the connection. This approach is well suited for wire- 
less networks, where the packet loss between a fixed 
host and the base station is due to network congestion, 
whereas packet loss between the mobile host and base 
station is also due to transmission errors. 

In [7] and [14] a hopby-hop scheme was developed that 
did not require routers to keep track of individual flows. 
The router simply examines its queue size, the size of 
its neighbors queues and the current rate at which data 
is traveling between routers. Based on this information, 
the router increases or decreases its out-going rates. In 
[7], it was shown that when applied globally, this a p  
proach leads to a stable network. However, this a p  
proach suffers from a problem known as blocking. Con- 
sider the topology depicted in the figure below. Node 
1 is sending data to node 4 via node 3, while node 2 is 
sending data to node 5 via node 3. Suppose that links 
(1,31, (2,3) and (3,5) are high bandwidth links, while 
link (3,4) is low bandwidth. Since data is traveling 
from node 1 to 3 at a high rate and the link between 
node 2 and 4 is slow, the queue in node 3 fills. As this 
queue fills, the method developed in [7] dictates that 
both nodes 1 and 2 decrease their rate. The problem is 
that node 2 decreases its rate even though the data it 
is sending to node 3 is continuing on to node 5 across 
a high speed link. That is, node 2 is not responsible 
for the congestion in node 3, yet it decreases its rate 
anyway. This problem is addressed in this paper and 
is alleviated by designing a control law so that node 2 
only decreases its rate when the traffic it is sending it 
responsible for the congestion. 

The paper proceeds as follows. Section 2 develops a 
system of differential equations that represent a net- 
work. Section 3 presents the main results and shows 
that, for a particular set of feedback gains, the control 
law suggested results in a stable network. 

\ /  5 
fast links 

Blocking. Although the data flowing over link (2,3) 
proceeds to link (3,5), the slow link, (3,4) leads to the 

a slower rate over (2,3). 

1.1 Notation 
1 Link (i .  d: the link between node i and node i . 7  

x ( p )  = 1x7,. . , xp,]l’, element-wise exponentiation. 
P: the no-loop parameter. See (12). -4 

I n: the number of nodes in the network. I 
Q: the maximum allowable size of queue. 
E the maximum rate on link. I 
C,: the state limiter for the queues, see (2). 
C,: the state limiter for the rates, see (4). 

2 Data Network Model 

We use a fluid flow model of the network where qiJ is 
the size of the out-going queue from node i to node j, 
rj,j is the rate that data is sent from node i to node 
j, Ii is the rate at which data enters the network at 
node i and Qj,j,k is the portion of the data that is going 
&om node i to node j that will proceed to node I C .  
Furthermore, the term ao,j,j Ii represents the amount 
of data that enters the network at node i and enters 
the i, j queue. Note that the dependence of q, T ,  I and 
a on time is suppressed. 

Using this notation, the dynamics of the queue are 

where the nonlinear operator L accounts for queue sat- 
uration, i.e. 

TJ if q i j  # 0, B 
(2) 

U if qj,j = 0 and w > 0 
U if qi,j = r j  and w < 0 
0 otherwise 

Cqi,j (w) := 

The control law will determine the out-going rates r i , j .  

In particular, we consider controllers of the form 
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where 

- 
0 
0 
0 

0 
0 .  
0 
0 

%,2,3 

- 

U if r i , j  # 0, f 
U if r i j  = 0 and U > 0 
U if rij  = f and U < 0 
0 otherwise. 

(4) cTi,j (U) := 

- 

'2 

- 

and F, 2 0 are timeinvariant scalar gains. This 
controller structure can be intuitively explained as fol- 
lows. The term FIqij + F 2 4 , j  leads to the rate increas- 
ing if q i , j  is large or increasing. Thus the node tries 
to empty its queue. The term - F 3 c ; = , f f i , j , k q j , k  - 
F 4  ct=l f f i , j ,kqj ,k  is known as back pressure and leads 
to the rate decreasing if the next hop is congested or 
is becoming congested. However, ri j  decreases in rela- 
tion to how much it is responsible for the congestion. 
For example, if all the data flowing bom node i to node 
j will next go to node h, then -F3 E;=, ffi,j;kqj,k - 

dependent of the congestion in q j , k  with k # h. This 
feature alleviates the blocking problem as discussed 
in the Introduction. The term F 5  f fh , i , jq i , j  + 
Fs E:=, f f h , i , j q i , j  is referred to as forward pressure and 
forces the downstream rates to increase in the event of 
upstream congestion. Again, this control action takes 
into account the degree that this rate could effect the 
upstream congestion. This forward pressure is a unique 
aspect of this hop-by-hop scheme. 

In order to elucidate the structure of the system, con- 
sider the simple network shown in Figure 1. The dy- 
namics for the queues are 

F 4  E:=, ffi ,j ,k&,k = -F3qj ,h  - F 4 4 j , h ;  hence T i 3  is in- 

a network without this hopby-hop flow control. Since 
this extraneous network does not send control informa- 
tion, it is modeled as a node with a queue that never 
fills. That is, cy=, f f h , i , j  = 0. In Figure 1, note that 
the nodes IN and OUT are fictitious in that they rep- 
resent all the inputs and all the outputs. Furthermore, 
note that x k  cx3,4,k = 0, that is d l  the data that enters 
link (3,4) leaves the network. 

Define 

and r similarly. Define A := 
4 := [ 41,2  q1,3 q2 , l  q2,3 q 3 , l  q3,2 q3,4 44 ,3  ] 

0 0 0 L ff3,1,2 0 0 0 
0 a2,1 ,3  0 0 0 0 0  

0 0 0 .  0 0 0 0  
0 0 ff2,3,1 0 0 0 0  

ff1,3,2 0 0 0 0 0 ff4,3, 

ff1,3,4 0 ff2,3,4 0 0 0 0  

(5) 

0 0 0 0 ff3,2,1 0 0 

0 0 0 0 0 0 0  

OUT *a- ....... 

OUT 

Figure 1: A simple topology with inputs and outputs. 

where L, accounts for the queue saturation. Similarly, 

E k = i  ff1,2,kq2,k 1 = dTq. 

Hence the dynamics of the closed-loop network given 
by (1) and (3) can be written 



where 6 is a vector of all zeros. In this case, PT is 
a stochastic matrix, and the no-loop condition implies 
that the state 1 is absorbing. Hence 

Figure 2: A toplogy susceptible to loops 

Furthermore, for a properly working network, pack- 
ets should not travel in loops. This property of 
networks will be referred to as the no-loop condi- 
tion. For example, in Figure 2 we see that if 
a1 ,2 ,4a2 ,4 ,1@4,1 ,2  = 02 ,5 ,3a5 ,3 ,2a3 ,2 ,5  = 1, or 
a2 ,4 ,1a4 ,1 ,2  (a1 ,2 ,4  + a 1 , 2 , 5 )  a 2 , 5 , 3 a 5 , 3 , 2  (a3 ,2 ,5  + a 3 , 2 , 4 )  = 
1, then all the data that enters this network remains in 
the network. Clearly this is an anomaly and results in 
the queue overflowing. Let LL be a set of links such 
that if ( i , j )  E LL, then (j,IC) E LL for some k and 
(h ,  i )  E LL for some h. That is, LL is a set of links 
that makes up a loop, or a set of loops. The neloop 
condition implies that any such set LL, we have 

’ 

Notk that this idea is closely related to the idea of cir- 
cuit product [2]. The difference is that the circuit prod- 
uct does not include the summation. 

Define a mapping C$ : I x I -+ I2 so 4 ( i , j )  is some 
unique number (i.e. a mapping from link between i 
and j to link number 4 (i, j)) and define &(j,k), ,$(i , j)  = 
( ~ l , , ~ , k  as in (5 ) .  Using this notation we see that row 
sums of dT are less than one, i.e. 

n 

a k= I 

Hence, dT is a substochastic matrix, where a stochastic 
matrix P is defined by Markov transition probabilities, 
where p a , b  is the probability of making a transition 
from state a to state b. For stochastic matrices the rows 
sums are one, for substochastic matrices, the row sums 
are at most one, and for strictly substochastic matrices, 
the row sums are strictly less than one. 

The condition (8) is equivalent to 

( d k ) a , b  * 
for all a ,  b as IC -+ ca. Note that this condition is equiv- 
alent to 

To see the that the no-loop condition implies (lo), aug- 
ment d as follows. Define ga = 1 - E, &,b and define 

Ieig(d)I < 1. (11) 

Thus, * 0 and (dk)a,b -+ 0. Inequality 

(11) easily follows. Note that Mason [9] has a similar 
characterization of loopfiee routing. However, Mason 
focuses on a the static case, whereas here we focus on. 
the case where a varies with time. 

We quantify the no-loop condition by requiring that 
there exists a fixed 1 2 p > 0 such that any set of loops 
LL, we have 

n a i , j , k  < 1 - f .  (12) 
{ ( i , j ) € L L }  { k : ( j , k ) € L L }  

The matrix d has many other properties. Since a i , j , k  = 

eral, 

We are interested in dynamical systems involving 
(d - I )  or AT - I .  

db( i , j ) ,+ ( j , k ) ,  we must have d @ ( k , j ) , + ( i , j )  = 0. In gen- 

& , b d b , a  = O and Aa,a = 0. (13) 

Lemma 1 Let 

3i: (t)  = (AT (t)  - I )  5 (t)  , (14) 

where ,dT (t)  is a time-varying substochastic matrix. 
Then 5 115 (t)Iloo 5 0. 

Proof: Since AT is substochastic d T ( t ) q ( t )  E 
Co(a:(t)). Hence, if IC** = lla:(t)lloo, then k p  (t) 5 0. 

It is not hard to show that the set of substochastic ma- 
trices satisfying the no-loop condition describe above 
is convex. since the parameters q j , k  can vary arbi- 
trarily fast, the matrix dT can vary arbitrarily fast. 
Thus, (14) is linear parametrically varying (LPV) sys- 
tem. LPV systems have been extensively studied [3]. 
These methods dictate that the stability of dT can be 
proved by searching for a single matrix P > 0 such that 
P (AT - I )  + (d - I )  P < 0 for all matrices that con- 
form to the neloop conditions specified above. How- 
ever, this approach is conservative and, in this case, is 
certain to fail. For example, consider the strictly s u b  
stochastic matrices with dz,b I 1 - p, for all a ,  and 
temporarily neglect the conditions (13). In particular, 
suppose that A is restrict to the convex polytope with 
extreme points 

A ? : = (  l - p  l - p  0 o ) ,  A T : = (  l - p  0 o ) ,  
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Defining P = ( " p2 ), we search for P > 0 with 
p2 p3 

-2P3P2 ( 1  - p)2  - Pi ( 1  - 6p + pz)  - Pi  ( 1  + p)' > 0, 
4P&- P ; ( l + p y  > 0. 

It is not hard to check that for p < 0.07, there is no 
solution with P3 > 0. However, (14) with dT( t )  E 
CO (Ay, d;, A:), is a strict contraction under the sup 
norm. To see this note that if xi ( t )  = IIz(t)(Joo > 
0, then ( d T ( t ) x ( t ) ) i  < xi (t), hence, 5 llx(t)llm i 0 
with equality only when x ( t )  = 0. 

Remark 1 While it is true that the set of matrices 
CO (A, : i = 1,2,3) does not comply with (13), it is not 
dificult to construct higher dimensional examples that 
satisfy all the conditions and reduce down to the this 
set. 

In light of the above, it is clear that a less conservative 
approach for assessing stability must be used to prove 
the stability of (14). [4] and [15] developed less conser- 
vative LPV methods. A variation of [4] will be used. 
One can think of the sup norm as the following limit 
11x11, = 1imPdw llxllq = IimP+m (xi x ~ ) ~ " .  Inspired 
by Lemma 1, [4] and [E], we search for a Lyapunov 
function that is not quadratic. 

Theorem 2 Let k ( t )  = (d( t )  - I ) x ( t )  where d E 
Rnxn varies arbitrarily over the set of substochastic ma- 
trices described above. Define the Lyapunov function 
V ( x )  = ( Z ~ ) ( ~ - ' ) Z  = C i e . w i t h  p > 1 and E > 0 
such that + $ = 1 and q > 0 and E satisfy 

/ \ P - 1  

(15) 
Then $V ( x  ( t ) )  < -&p 115 @)I(:. 

Remark 2 The parameters p and E can be found di- 
rectly by finding p and E such that 

where 
(n-2)xp-1+(1  - ~ ) p x p - ~ - p ( l - - ) ( n - 2 2 ) ~ - ~  = O  
and 

p ( l  - € ) x p - l  - 1 xi = 
( p -  1) (n-2)xp-2 '  

Fapm 3 shows a plot of a suitable p and E versw n, 
the number of nodes in the system. 

Id I l 1 l 1 1 1 1 1  I I 1 1 1 1 1 1  

I I I I I I I I I  I I I I 1 1 1 1  

.- _. I I I I l l l l l e  

I I 1 1 1 1 1 1 1  I I I ! , l I I I I  
1o"D- ' I " ' ' 1 1 '  ' 1 ' ' ' 1 "  

Id 10' Id 
n 

Figure 3: The figures above show values of E and p that 
result in m u s  (V (z> - E 11z11~1:) < 0. In this 
example p = 0.1. 

3 Stability of Hop-By-Hop Congestion Control 

Next it will be shown that the for certain values of the 
feedback gains, the network is stable. 

3.1 Simple Case 
For a special choice of feedback gains, it is easy to show 
that the system is stable. 

Theorem 3 Suppose that Fa := F1 = F3, F b  := F2 = 
F4, F5 = 0 and -Fbp2 + F6,./6(,./6 - 1)  < 0. In  this 
case, the system is asymptotically stable. 

3.2 General Case 
While stability is easily proved in the previous subsec- 
tion, it is not clear how well such a system would pre- 
form. In particular, since the system is merely asymp 
totically stable, it may be unstable for small variations 
in the gains Fi. Exponentially stable systems are more 
robust. Unfortunately, it is far more difficult to prove 
that (6) is exponentially stable. 

Theorem 4 System (6) is exponentially stable if there 
exists a 5 1 ,  P12, PZZ E R, a p and an E given by Corol- 
lary 2 or Remark 2 and the following conditions hold, 
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PP22F2E > G 
-P12 (1 + 4 F:n2) 

+-- (FI  + F 5 f i 2  n G PZ2P2 
4 -PI2 

+PP22 ( F 4 6  + F G h  (h + 1)) 
+F4nP22p (FI + F 5 h )  , 

where 

and e and 
flows respectively. 

G := (Fl - (F3 + F5) 4 - l  

are the maximum values of the rates and 

Remark 3 If F2 is taken to be large, then it is not 
dificult to satisfy the above constraints. 

Remark 4 Since n, the number of nodes in the net- 
work,, appears in the above constraints, it seems that 
the above result does not scale very well. However, the 
proof shows that n could possibility be replaced by the 
maximum fan-in of any node. The fan-in is the number 
of inputs to a node. This possibility will be investigated 
in future work. 

Remark 5 Note that delay was not taken into account 
when assessing the stability of the network. This can be 
justified by  the fact that single hops usually have small 
delay, and inter-router communications do not experi- 

b enct queuing delays. 

4 Conclusion 

A hopby-hop scheme that does not use VC information 
has been developed. By design, this method does not 
suffer from the blocking problem. The resulting system 
can be modeled as an LPV system. However, standard 
LPV stability techniques are inadequate and alterna- 
tive approaches have been applied. It has been shown 
that with properly chosen feedback gains, the system is 
stable. Future work will focus on determining feedback 
gains that are not only stabilizing, but meet other per- 
formance objectives such as maximizing good-put and 
fairness. For example, while blocking is clearly unfair, 
there are situations where the method presented here is 
unfair. Extensions to this method could alleviate this 
problem. For example, in this paper, only information 
from neighboring routers is utilized. With information 
from more distant routers, more sophisticated control 
algorithms can be considered. However, as more in- 
formation is utilized, delay and complexity become a 
concern. Indeed, in the limit, the control scheme would 
resemble previously proposed methods that utilize VC 
information. 
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