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Abstract  

Computer network traffic is analyzed via state space 
models and statistical techniques such as linear and 
nonlinear canonical correlation analyses and mutual in- 
formation. As an application, the models and the sta- 
tistical techniques are utilized to detect UDP flooding 
attacks. This work indicates that mutual information 
is a powerful tool for the detection of such attacks. Our 
approach is topology independent and our findings 
are tested on the so-called dumbbell and parking-lot 
topologies. 
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1 Introduction 

TrafEc signal analysis has seen renewed interest over 
the past few years and has so far  for the most part 
focused on modeling such phenomena as self-similarity 
and burstyness, building on the theory of a-stable dis- 
tributions with infinite variances [l], [2]. Here, we 
rather focus on the dynamical aspects of the model- 
ing, yet keeping in mind that the traffic signals in- 
evitably contain a certain degree of randomness due to 
the fact that the traffic sources appear unpredictable 
from the observation point, typically a router. A mod- 
eling tool that fairly naturally applies in this context is 
the Canonical Correlation Analysis (CCA) between the 
past and the future of the process. The motivation for 
a dynamic modeling of the signals k that, if a baseline 
(FTP, HTTP, ...) t r a c  model has been identified, if 
the model is subsequently confronted with traffic data, 
and if at a certain point in time the model no longer 
fits the data, some suspicious activity must be on going. 
CCA also yields as a by-product the Akaike mutual in- 
formation between the past and the future, which pro- 
vides a statistical signature of the signal. The latter 
ineluctably changes under attack and hence produces 
yet another intrusion detection scheme. 

Several signals (link utilization, packet arrival, queue 

length, ...) are candidates for dynamical modeling, 
but here we shall focus on link utilization. No distinc- 
tion between control and data packets is made at this 
stage. The signals are thernselves generated by ns, the 
network simulator. Two different network topologies 
have been retained-the “dumbbell” topology and the 
“parking lot” topology. In both the cases, the link uti- 
lization is observed at a router. The link utilization is 
integrated over a sampling period ranging from 0.1 to 
20 sec. Our study is somehow 4fold dumbbell versus 
parking lot topology, linear versus nonlinear, for vary- 
ing sampling periods, and for varying “lags,” where the 
lag is defined as the length of the data record utilized 
in the CCA. 

2 Simulation Setup 

We used the Network Simulator (nsldeveloped by 
LBNL to set up our simulation environment [3]. Ns 
is a discrete event simulator widely accepted for net- 
working research. It provides a substantial support 
for simulation of TCP, routing, and multicast protocols 
over wired and wireless (local and satellite) networks. 
Moreover, ns generates Constant Bit Rate (CBR) traf- 
fic, TELNET, FTP, HTTP, etc. The simulator also has 
a small collection of mathematical functions that can 
be used to implement random variate generation (ex- 
ponential, uniform, Pareto, etc.) We used this capabil- 
ity to setup the network environment that synthesized 
HTTP, FTP, and CBR traffic. 

We performed our tests on two different topologies. 
The first topology under consideration was the “Dumb 
bell” topology (Fig. 1). We set the nodes S; ( i = 
1,2,...,5) as sources and the nodes 0; (i=1,2, ..., 5 )  as 
destinations. Normal trafEc was generated by sending 
a mixture of HTTP and FTP traffic from the sources 
(Si) to the corresponding destinations (Di) at random 
times. For HTTP trafEc, the fde size distribution was 
modeled as a general ON/OFF behavior with a com- 
bination of heavy-tailed and light tailed sojourn times, 
while the interpage time and the interobject per page 
time distributions were set to be exponential. The page 
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Figure 1: Dumbbell topology. Normal traffic is a mix 
of HTTP and FTP traflic, while UDP pakcet 
storm attack is simulated by sending CBR traf- 
fic from the sources S1, S2, S3 to the destina- 
tion S4. 

a. 

size was set to be constant and the object per page size 
to be Pareto to replicate today’s network bursty tr&c 
[4], [2]. For FTP traffic, files of random sizes were sent 
at random times [5].  We monitored the tr&c flow- 
ing from NI to N2, the bottleneck, or “choke point,” 
link. To simulate a UDP packet storm attack [6], a 
large number of small size Constant Bit Rate (CBR) 
packets were sent over some UDP connections from the 
sources SI, S2, S3 to the victim destination Dq on the 
top of the normal traffic. Each trial was executed for 
30000 simulated seconds, logging the traffic at the 0.01 
second granularity. For a particular scenario, the bot- 
tleneck link was 1.5 Mbps and the non-bottleneck links 
were 10 Mbps and the latency of the each link was set 
to 20 ms. UDP flooding attack was generated by each 
source having 5 UDP agents sending CBR packets of 
the size 200 bytes at the rate of 0.005 second/bytes to 
the victim. 

In the more complicated “Parking Lot” topology (Fig. 
2) ,  we set the nodes S; ( i = 1,2, ..., 10) as sources and 
the nodes D; (i = 1,2, ..., 10) as destinations. A dy- 
namical model for normal TCP traffic was synthesized 
from the signals obtained by sending a mixture of FTP 
and HTTP traffic from the sources to their downstream 
destinations at random times. The normal traffic was 
monitored along the path from node 3 to node 4. In 
addition to this background tr&c (HTTP and FTP), 
a large number of small size CBR packets were sent 
over some UDP connections from source node 3 to the 
victim node 4 to model the attack scenario. We mon- 
itored the link utilization along the same path, from 
node 3 to the node 4, and gathered the simulated at- 
tack data. Simulation results were obtained for several 
trials of ns. Each run was executed for 30000 simulated 
seconds, logging the traffic at the 0.01 second granular- 
ity. For a particular case, link speed was 10 Mbps and 
the latency of the each link was set to 20 ms. UDP 
packet storm was generated by 15 UDP agents sending 
CBR packets of a size of 200 bytes at a rate of 0.005 
second/bytes to the victim. 

Figure 2: Parking lot topology. Baseline traffic is a mix 
of HTTP and FTP traffic, while UDP flooding 
attack is simulated by sending CBR traffic from 
node 3 to node 4. 

3 Canonical Correlation Analysis 

CCA is a second moment technique. In its linear ver- 
sion, it relies on the second moments of the process 
itself, and as such the analysis cannot be carried out 
on those self-similar tr&c signal models with infinite 
variance [l]. One should keep in mind, however, that 
infinite variance processes are a convenient way of mod- 
eling exactly self-similar processes and that in practice 
self-similarity is observed only over fhitely many scales. 
Other considerations that support the finite variance 
hypothesis include the small size of the network on 
which the traffic is simulated and the finite bandwidth 
of the links. These observations corroborate recent 
work at AT&T [7], which calls into question whether 
real traffic is self-similar. In the nonlinear CCA, these 
issues become irrelevant, because the variance analysis 
is applied to a nonlinear distortion of the original pro- 
cess, which is restricted to result in a finite variance 
process. 

3.1 Linear state space models 
Here {y(k) E [-b, +b] : k = ..., -1,O, +1, ...} is the cen- 
tered link utilization signal, bounded by the band- 
width, viewed as weakly stationary process with finite 
covariance E(y(i)y(j)) = hi-, defined over the proba- 
bility space (0, A, p). The past and the future of the 
process are defined, respectively, as 

!/-(IC) = (Y(k),Y(k - 11, ..., Y(k - L + 1)>* I 

Y+(k) = ( d k  + 1 1 1  . . ‘ I  Y(k + L)IT 

where L is the lag. The ability to devise a good model 
can be gauged from the Kolmogorov-Sinai, or Shannon, 
mutual information between the past and the future 
[~1,[91,[101, 

q Y - , Y + )  = - h(Y+lY-) 

In the above, h(y+) is the Shannon entropy of the fu- 
ture and h(y+ly-) is the conditional entropy of the fu- 
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twe given the past. To proceed from a numerical alge- 
bra point of view, the covariances of the past and the 
future are factored as 

It is a bit tedious to show (although it is implicitly 
contained in Aksike [ll]) that the residual noise w(k) 
is white and furthermore 

E(Y-(~)Y?(~))  = L-L:, E(Y+(~>Y:(~)) = L+LT Q = ~ ( ~ ( k ) d ( k ) )  = E: - A C : A ~  

Next, a regression of y(k -t 1) on z(k) is done, yielding 
the matrix c as 

C = E (y(k + l)zT(k)) (E(.(k)zT(k))-' 

and the canonical correlation is defined and Singular 
Value Decomposed (SVDed) as 

r (y-,y+) = L ~ E  (y-(k)yT(k)) L T ~  = u T w  
= (hl, n2, ..., A ~ )  L : ~ u , T c ; ~  

where U, V are orthogonal matrices and 
Again, the residual error v ( k )  can be shown to be white 

61 ... 0 and 
E =  ( 0 -.. i ) ,  1 2 a l > . . . > a L > O  R = E ( w ( ~ ) w ( ~ ) )  = A0 - CCfCT 

U L  ... 
Finally, it is also readily found that 

The a's are called canonical correlation coefficients 
(CCC's). If the process is Gaussian, it is well known 
that 

S = E(w(k)w(k)) = C1U1L11A(2) - AC:CT 

Where, A(2) is the 2ndr~w of x. Hence, we have a 
state space model of the form [12] 

NY--,Y+) = I(Y-,Y+) where, 
1 
2 N Y -  , Y+) : = -- 1% det (I - rT (Y- I Y+) (Y-, Y+,) 

At this stage, it is customary to assume that there are 
only a restricted number D 5 L of significant CCC'S, 
which we group in C1, and we further partition C and 
the orthogonal matrices conformably as 

The canonical past and the canonical future [ll] are 
dehed as 

Y-@) = UILZ'Y-(W, Y+W = W T ' V + ( k )  

The state is defined as the minimum collection of past- 
measurable random variables necessary to predict the 
future, that is, E(y+ (k) Iy- (k)). A basis of such col- 
lection of random variables is given by 

z (k+ l )  = Az(lc) + w ( k )  
y(k+l )  = C z ( k ) + w ( k )  

In order to confront the data with the model, we need 
to know the state z(k), which could be computed as 
Cly-(k). It is, however, more efficient to get an esti- 
mate of the state provided by the Kalman filter 

Z(k + Ilk + 1) 
y(k + 1) 

= 
= 

AZ(klk) + K(y(k + 1) - CZ(k1k)) 
CP(klk) + ( ~ ( k  + 1) - CZ(k1k)) 

Since y(k + 1) - CZ(klk) is well known to be a white 
noise, d e d  innovation, the Kalman filter provides yet 
another state space model, referred to as innovation 
representation [13]. The Kalman gain is given by 

K = - (R + CPCT)-' (BTPAT + S) 
and P = E ( z ( k )  - Z(lclk))(s(k) - ??(k lF~) )~  is the sta- 
bilizing solution to the discrete-time algebraic Rccati 
equation 

P = A P A ~ + Q  The state transition matrix A is deiined as the least 
squares fit regression matrix of z ( k  + 1) on s(k), viz., -(APB + ST) (R + CPCT)-' (BTPAT + S) 

A FEW NUMERICAL REMARKS: It is customary to de- 
fine L+ to be lower triangular (Cholesky factoriza- 
tion), although Lk could be defined upper triangu- 
lar ( CCanti-Cholesky" factorization), in case r is 
near-Hankel and in fact will be Hankel for L = CO. 

A = E (z(k t l ) z T ( k ) )  ( E z ( k ) ~ ~ ( k ) ) - '  

= clv1 L:~XL:~U,TC;' 
denotes A shifted to the right by one Position, where 

that is, 

The particular factorization does not &e& the CCC's. 
E(y*(k)y$(k)) might be marginally positive definite, 
resulting in problems in the Cholesky factorization; 
there is thus a need to monitor the condition number 
of E(Y*(k)Y3k))- 
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3.2 Nonlinear state space models 
Here, we allow the =+mean process 
(y(k) E sfz : k = ..., -1,0,+1, ...} to be of infinite 
variance (for example, an a-stable, H-selhimilar 
process (1)). The nonlinear CCA [8],[9] is an attempt 
to reach the mutual information, in the nongaussian 
setup, as 

SUP(A(f(V-), g(y+))) 5 I(Y-1 Y+) 
f 4 

where f,g : WL - W L  are measurable, bijective func- 
tions such that E ( f )  = E(g) = 0, E ( f f * )  < 001, 
E ( g g T )  c 001. Equality is achieved iff f (y-) ,g (y+) 
can be made jointly Gaussian (Cramer-Wold theorem; 
see [8],[9}), in which case the joint past/future pro- 
cess is called diagonally equivalent to Gaussian. Since 
the canonical correlation is unaffected by scaling of 
f, g, it is convenient to choose E- f f = 1, E+gTg = 
1, where E& denotes the mathematical expectation 
relative to the probability space (O,di ,p&) of fu- 
ture/past random variables. Here, instead of the ap- 
proach taken in [8], [9], we propose a more compu- 
tationally viable one based on the fact that the com- 
ponents of f (y-) ,g (y+) can be expressed as linear 
combinations ofpolynomialspj(y-),qj(y+);j = 1,Z ,... 
such that E-P, C ~ o I ,  
E+ (qqT) < 001, and forming bases of the Lebesgue 
spaces of zero-mean measurable functions such that 
E-fTf < w,E+gTg < 00, respectively. The prob- 

L = 00, the expression between parentheses is in fact 
independent of 4, y provided they are bounded along 
with their inverses. This yields A (p (y-) , q (y+)) as 
the absolute upper bound that can be reached by this 
analysis. If L < 00, the above supremum is non- 
trivial and is easily accomplished via linear CCA of 

Speciflcally, do the factorizations E ( p  (y-) p (y-) ) = 
L-LT, E (q(y+)q(y+)T) = L+LT along with the SVD 

= E+qj = 0, E- (wT) 

k m  clearly redu-s to SUP$,7(A($P (Y-1 1 TQ (Y+>>>. If 

p(y-),q(y+), that is, via SVD of r03(Y-),Q(I/++)). 

Here, we take C1 to be L x L and we retain only 
those L CCC's. The motivation is to allow for easy 
comparison with the full-dimensional linear case and 
therefore gauge how much increase in the CCC's*is 
gained by going to the nonlinear analysis. The coef- 
ficients of the optimal distortion functions are given by 
4 = UILT', 7 = KLT? 

To further motivate this optimization, consider a linear 
regression of g (y+) on f (y-). It is easily found that 

2 
mjnE 119 (Y+) - Af ( Y - ) l l ( L + L p  

L - n-ace  (rTr (f (9-1 rg(y+))) = 

for A = C1. Clearly, the best choice of f, g is the one 
that m a x i "  Truce (rTr (f (y-) , g(y+))) and it is 
readily seen that this is achieved for the same distortion 
functions. 

The canonical past and future, that is, orthonormal 
bases of the past/future such that m ( k ) y + ( k ) T  = 
C1, are given by Y_(IC) = UlLI 'p (y - (k ) )  , y+(IC) = 
ViLT'q(y+(k)). The state, that is, a convenient basis 
for the set of random variables E(y+ ( I C )  Iy- (k)), is de- 
fined as 

If the past/future process is diagonally equivalent to 
Gaussian, we have z(k) = C l c ( k ) .  If not, the 
ACE algorithm would yield the correct nonlinear re- 
lationship between z(k) and r ( k )  as Bj(z(k)) = 
& ~ $ ~ ~ ( ( c ( k ) ) ~ ) .  To obtain the state space equa- 
tion, we have to do a regression of z(k + l) 
on r ( k ) .  If the past/future process is diagonally 
equivalent to Gaussian, this yields z(k + 1) = 

eral, z ( k ) , z ( k  + 1) will failrto be jointly Gaussian and 
the regression is most easily accomplished by running 
the Alternating Conditional Expectation (ACE) algo- 
rithm [14], which produces a relationship of the form 

I I ~ ; I I ~ ~  = 1 

C1UlL:' - A L- -T U ~ C ~ ' z ( k )  + w(k).  However, in gen- 

ei(zci(lc + 1)) = Cdij(zj(k)) + w(k) ,  
j 

For the output equation, we again use the ACE alge 
rithm, which yields 

Because of the 0 function emanating from the ACE al- 
gorithm, we obtain a descriptor, generalized state space 
system. However, simulation results have shown that 6' 
is linear in a neighborhood of 0 and then saturates, so 
that the generahed nonlinear state space system does 
not exhibit much singularity. 

NUMERICAL REMARK: Practically, p , q  are chosen as 
simple monomials in the components of the past, fu- 
ture. It is important to scale the large power appear- 
ing in p(y-),q(y+), for otherwise the high power terms 
become dominant over the low power terms. In such a 
nonparametric procedure as ACE, the distortion func- 
tions 8,4 need to be interpolated from clusters of data 
points, with inevitable inaccuracies. Thus, contrary to 
the linear case where Ak is fairly reliable, it is not quite 
so in the nonlinear case, where the k-fold composition 
of the 4's yields inaccurate k-step predictions beyond 
k = 5. 
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3.3 Nonlinear auto-regressive models 
Here, we develop a simplified approach that relies on 

The primary motivation is that this method leads to 
simple nonlinear Auto-Regressive (AR) models. The 
simplified nonlinear CCA procedure goes as follows: 
As before, let f = &. Define E ( p  (y_)~(y-)~) = 

L-LT, E(y+yT) = L+LT along with the SVD 
I' (p (y-) , y+) = UTCV. There are L canonical cor- 
relation coefficients and to allow for comparison with 
the previous case, we take all of them into consider- 
ation. Under these circumstances, the supremum is 
trivial, that is, the supremum is achieved for all 1's; 
however, it is convenient to choose the optimal distor- 
tion as q5 = UILI1. The canonical past and future 
are dehed as p(y-) = ULI'p (y - ) ,  y+ = VLT'y+. 
Now, we do the linear regression of y+ on p (y-). It is 
easily seen that 

= L - z h c f ?  (rT (P (9-1 ,Y+> r (P (Y-),Y+>) 
for A = L+rTLZ1 (in canonical coordinates 71 = 
E). Observe that E(y+ Ip (y-)) # L+rTLI1p (y-) (in 
canonical coordinates E(y+Ip (y-)) # Cp (y-)) unless 
the processes y+,p(y-) (y+,p(y-)) are jointly Gaus- 
sian, which is unlikely to occur without nonlinear pro- 
cessing of the past. Define g+ = L+rTLZ'p(y-) 
(in canonical coordinates = Ep(y-)). With 
this notation, we get a model of the form c+(k) = 
L+rTLz'p(y- (k) ) .  Taking the first row of the above 
yields the AR model. 

4 Results and Interpretation 

Figures 3 and 4 show that, in the case of the dumbbell 
topology, an attack can easily be detected by observ- 
ing the link utilization. However, in the case of the 
parking-lot topology, Figures 7 and 8 show no signifi- 
cant difference between the attack and nonattack link 
utilization, calling for more sophisticated techniques to 
detect the attack. 

The mutual information plots for the dumbbell topol- 
ogy are shown in Fig. 5 and Fig. 6, while those of the 
parking lot topology are shown in Fig. 9 and Fig. 10. 
The first observation is that the nonlinear CCC's are 
consistently higher than the linear CCC's, as expected, 
confirming the existence of nonlinearities in the signals. 
Also fairly consistent is the increase of the mutual infor- 
mation with both the sampling period and the lag. The 
increase of the mutual information with the sampling 
period can be justified as follows: As the sampling p e  
riod increases, the signal is more integrated and hence 

Figure 3: Link utilization time-series for non-attack data 
for dumbbell at sampling period 0.01 sec. 

topology. 

smoothed over and hence looks more deterministic. As 
the lag increases, more random variables in both the 
past and the future are included, resulting in increased 
mutual information. However, the change in mutual in- 
formation resulting from m attack can go either way: 
In the dumbbell topology? the mutual information in- 
creases under attack while in the parking lot topology, 
it decreases. The explanation for the increase under st- 
tack is as follows: CBR traffic is a deterministic signal, 
and if CBR occupies most of the link utilization, the 
sequence is more predictable and hence the information 
increases. For the parking lot topology, CBR occupies a 
small part of the link utilization, under attack, the sig- 
nal is more mixed and hence less predictable, resulting 
in a decrease of mutual information. (A similar fact- 
that the Kolmogorov compleVty could go both ways 
under attack-has also been observed in [15] .) 

The prediction error plots for the parking lot topology 
are shown in Fig. 11,12 and 13. The main conclusion 
is that the normal/attack gap increases as we go from 
simple linear prediction, to nonlinear AR prediction, 
and eventually to nonlinear statespace prediction. 

5 Concluding Remarks 

These early investigations have demonstrated that 
some specific flooding attack scenarios, while not visi- 
ble to the naked eye, create dynamical shift substantial 
enough for the mutual information to be affected and 
for the corrupted data to depart from the prediction 
of the baseline models. It appears that the most reli- 
able way to detect the atkack is by analysis of the link 
utilization along a bottleneck link. Other attacks, like 
SYN, which disrupts the normal sequencing of control 
and data packets, require a distinction between con- 
trol and data packets, ancl will be reported elsewhere. 
Here the signal was treated as stationary although the 
autocorrelation test shows that the incremental signal 
is more stationary although modeling the incremental 
signal, did not appear to improve results. 
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Figure 4: 

Figure 5: 

Link utilization time-series for attack data at 
sampling period 0.01 sec. for dumbbell topol- 
ow. 

Figure 8: Link utilization time-series for attack data at 
sampling period 0.01 sec. for parking lot topol- 
ow. 

Mutual infomtion at Different Sa- Peria 

sampline mod 

Figure 9: Mutual information versus sampling period for 
parking lot topology. Clearly, there is a sub- 
stantial increase in mutual information in the 
NLCCA case as compared with the LCCA case. 

Mutual information versus sampling period for 
dumbell topology. Note that the mutual infor- 
mation for the NLCCA is higher than that of 
the LCCA, indicating presence of nonlinearity 
in the signal. 

Figure 10: Mutual information versus lag for parking 
lot topology. Note that the difference be- 
tween the mutual informations of the non- 
attack and attack cases is higher in the N G  
CCA case than in the LCCA case. 

Figure 6: Mutual information versus lag for the dumbbell 
topology. 

Figure 11: The normalized mean quare linear state space 
prediction error under normal and attack con- 
ditions. Observe that the normal/attack gap 
is small. 

Figure 7: Link utilization timeseries for non-attack data 
at sampling period 0.01 sec. for parking lot 
topology. 
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Figure 12: The normalized mean square nonlinear AR 
prediction error in the normal and attack 
cases versus the number of steps ahead. Ob- 
serve the degradation of the prediction under 
attack for a large number of steps ahead. 

Figure 13: The normalized mean square nonlinear state 
space prediction error in the normal and at- 
tack cases versus the number of steps ahead. 
Observe the substantial increase in the nor- 
mal/attack gap compared to the linear case. 
Note, however, that the plot is valid only for 
a small number of steps ahead because of the 
numerical unreliability of compounding non- 
linear functions. 
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