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Abstract

In this paper we prove that the off-line policies proposed in a previous paper [1] for secure routing
in communication networks are actually saddle-point solutions and therefore not overly “conservative.”
We show this in a more general setting than the one originally proposed in [1] as it allows us to handle,
e.g., attacks on nodes. It had been shown before that secure routing designed to handle single-link
attacks maximizes throughput by maximally distributing packets over the available paths from source to
destination. The routing policies constructed to handle single-node attacks maximally distribute packets
among all nodes and are therefore load-balancing. This type of policies thus also have application beyond
secure routing and may proof useful in wireless networks where power is at a premium.

1 Introduction

Current routing algorithms are vulnerable because the path over which a data packet travels is fairly pre-
dictable and easy to determine. This opens the door for packet interception and/or eavesdropping by an
attacker. Even when there are several paths between a source and destination, routing algorithms typi-
cally select one of the possible options and utilize that path all the time. Notable exceptions are Equal Cost
Multi-Path (ECMP) [2] and OSPF Optimized Multi-Path (OSPF-OMP) [3]. However, these algorithms were
developed to increase throughput and not to make routing robust to attacks. Therefore these algorithms
make use of multiple paths (when these are available) but they do not introduce unpredictability and there-
fore packet interception is still fairly easy to achieve. Because the path that a packet follows in a network is
easy to predict, attackers that want to intercept packets—or reconstruct a file from packets eavesdropped in
the network—can achieve their goals with a minimum number of resources. E.g., by breaking into just one
of the routers or tapping into one of the links in the minimum-hop path.

In this paper we study stochastic routing policies for a communication network that are robust with
respect to attempts of packet interception and/or eavesdropping because they exploring the unpredictability
that can be achieved by routing packets through several alternative path. To this effect we formalize the
design of the routing policy as a game between two players: the designer of the routing algorithm and
an adversary that attempts to intersect packets. We should emphasize that secure stochastic routing is
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not an alternative to other IP layer security mechanisms, such as VPNs [4] and IPsec [5], it is instead a
complementary technique to enhance security in communication networks.

The remaining of this paper is organized as follows. In Section 2 we introduce the basic notation and
formalize the secure routing problem as a zero-sum game. The saddle-point for the game is determined in
Section 3 by reducing it to an equivalent flow game that is easier to solve. In Section 4 we show how to solve
the flow game using linear programing. This also provides alternative interpretations to secure routing’s
saddle-point policies in terms of flow-maximization and load-balancing. Section 5 contains final remarks and
directions for future research.

2 Problem formulation

Consider a communication network with n nodes N connected by unidirectional links. We denote by L the
set of all links and use the notation �ji to represent a link from node j to node i. We assume that all the
nodes in the network are connected in the sense that it is possible to reach any node from any other node
through a finite sequence of links. Figure 1 shows a simple network with the corresponding sets N and L.

Example 1. Figure 1 shows an example of a 4-node/10-link network. In this network all connections
between the nodes are assumed bidirectional, which corresponds to two unidirectional links between every
two nodes that are connected. �
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Figure 1: Example of a network with 4 nodes N := {1, 2, 3, 4} and 10 links L := {�1, �2, . . . , �10}.

By a routing policy it is meant an algorithm that determines which sequence of links

{−−→s n1,
−−−→n1n2, . . . ,

−−→
nkd} ⊂ L

should be used to direct (route) a packet from a source node s ∈ N to a destination node d ∈ N . For
simplicity, and without loss of generality, we assume that L had no links entering into node s and exiting
node d. Most routing policies used in communication networks are memoryless in the sense that, when a
packet arrives at some node n ∈ N with final destination d ∈ N , the routing algorithms selects a path
from n to d independently of where the packet is coming from. We consider here the memoryless stochastic
routing policies introduced in [1]. Each stochastic routing policy is characterized by a list of probabilities
R := {r� : � ∈ L}, such that ∑

�∈L[n]

r� = 1, ∀n ∈ N , (1)

where the summation is taken over the set of links L[n] ⊂ L that exit node n. Under a policy R := {r� :
� ∈ L}, when a packet arrives at a node n ∈ N , it will be routed through the link � := −→nn′ ∈ L with
probability r�. In the sequel, we denote by Rsto to the set of lists that satisfy (1). In this paper, we mostly
consider cycle-free routing policies, i.e., policies for which a packet will never pass through the same node
twice. Formally, R ∈ Rsto is cycle-free when there is no sequence of links

S := {−−−→n1n2,
−−−→n2n3, . . . ,

−−−−−→nk−1nk,−−−→nkn1} ⊂ L, (2)

with r� > 0 for all � ∈ S. We denote by Rno−cycle the subset of Rsto consisting of cycle-free policies.
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Example 2. Figure 2 shows an example of a stochastic routing policy from the source node s = 1 to the
destination node d = 4, where at each node the packets are routed with equal probability among the possible
options. �
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Figure 2: Example of a stochastic routing policy from the source node s = 1 to the destination node d = 4.

To design routing policies that are robust with respect to interception we consider a game in which
an adversary attempts to intercept packets being routed through the network. This adversary is able to
“attack” specific links (or more generally sets of links) and intercept packets traveling in these links. To
formally define the problem we assume that the adversary can choose among a finite set P of possible pure
attacks, each characterized by a list of probabilities P := {p� : � ∈ L}. When the attacker selects the pure
attack P := {p� : � ∈ L}, the probability that it is able to intercept a packet traveling in node � is given by
p�.

Example 3. Each pure attack could correspond to the adversary selecting one specific link to scan packets
on. If the probability of successfully intercepting packets on a link that is being scanned is pintercept, the set
of all pure attacks would be given by

Psingle−link attacks := {P�̄ : �̄ ∈ L},
with each P�̄ := {p� : � ∈ L} consisting of a list for which p� is equal to pintercept for � = �̄ and 0 otherwise.
Figure 3 shows two of the ten possible single-link attacks for the network in Figure 1. �
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Figure 3: Example of two out the ten possible single-link attacks for the network in Figure 1. (a) and
(b) correspond to attacks P�3 and P�5 at links �3 = �13 and �5 = �24, respectively, each with a probability
pintercept = 50% of successfully intercepting a packet that goes through the corresponding link.

Example 4. In the previous example, each pure attack corresponded to scanning a unique link. This
could be extended to multi-link attacks. For example, each pure attack could correspond to the adversary
selecting one specific node and scanning all packets that go through the node. If the probability of successfully
intercepting packets on the node being scanned is pintercept, the set of all pure attacks would be given by

Psingle−node attacks := {Pn : n ∈ N},
with each Pn := {p� : � ∈ L} consisting of a list for which p� is equal to pintercept for every link entering node
n. Figure 4 shows two of the five possible single-node attacks for the network in Figure 1. One could also
imagine multi-node attacks or other forms of multi-link attacks that still fit in this general framework. �
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Figure 4: Example of two out the five possible single-node attacks for the network in Figure 1. (a) and (b)
correspond to attacks P2 and P4 at nodes 2 and �5 = 4, respectively, each with a probability pintercept = 50%
of successfully intercepting a packet that goes through the corresponding node.

Suppose now that the adversary selects1 one specific pure attack from those in P according to a dis-
tribution2 M ∈ [0, 1]P and routing is done according to a specific routing policy R ∈ Rsto. We can then
formalize the routing problem as a zero-sum game between routing and the adversary in which the former
attempts to minimize the probability that the packet is intercepted whereas the later attempts to maximize
this probability. This probability can be written as the expected value

ER,M [χ] (3)

of the random variable χ that is equal to 1 in case the packet is intercepted and equal to zero otherwise. The
subscript R,M in the expected value emphasizes the fact that the distribution of χ depends both on M and
R. The main problem under consideration is to determine conditions under which there is a saddle-point
solutions to the cost (3):

Problem 1. Compute saddle-point policies (R∗, M∗) ∈ Rno−cycle × [0, 1]P for which

ER∗,M∗ [χ] = min
R∈Rno−cycle

max
M∈[0,1]P

ER,M [χ] = max
M∈[0,1]P

min
R∈Rno−cycle

ER,M [χ]

The cost (3) places no penalization on the number of links that a packet will cross from the source to the
destination. However, in some cases one may want to favor shorter paths. This can be done by introducing
a new random variable χε, ε ≥ 0 that is equal to zero in case the packet is not intercepted and equal to
(1 + ε)t−1 when the packet is intercepted at the t hop. Suppose now that we consider the cost

E[χε]. (4)

For ε = 0, χε = χ and cost is the same as in (3). However, for ε > 0 (4) penalizes longer paths since the cost
incurred increases as the number of hops increases. In fact, as ε → ∞ the potential burden of an extra hop
is so large that the optimal solution will only consider paths for which the number of hops is minimal. This
leads to Equal-Cost Multi-Path routing [2]. To allow the penalization of longer path, we then generalize the
Routing Game Problem 1 as follows:

Problem 2 (Routing Game). Given ε ≥ 0, compute saddle-point policies (R∗, M∗) ∈ Rno−cycle × [0, 1]P

for which

ER∗,M∗ [χε] = min
R∈Rno−cycle

max
M∈[0,1]P

ER,M [χε] = max
M∈[0,1]P

min
R∈Rno−cycle

ER,M [χε]

3 Solution to the generalized routing game

Our immediate goal is to compute ER,M [χε] for given R ∈ Rsto, M ∈ [0, 1]P , ε ≥ 0. To this effect, assume
that the pure attack P := {p� : � ∈ L} ∈ P was selected by the adversary and that routing is done

1We assume that the selection of the pure attack is statistically independent of the routing selections for the next-hop.
2Given a finite set A, we denote by [0, 1]A the set of distributions over A.
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according to a specific routing policy R := {r� : � ∈ L} ∈ Rsto. Let then x�(t), � ∈ L, t ∈ {1, 2, . . .}
denote the probability that a packet is routed through link � at time t and has not yet been intercepted (or
eavesdropped). Denoting by s the source node, we then have

x�(1) =

{
r� link � ∈ L exits node s
0 otherwise

� ∈ L (5)

and

x�(t + 1) = r�

∑
�′∈L[�]

(1 − p�′)x�′(t) t > 1, � ∈ L, (6)

where the summation is taken over the set L[�] of links that enter the node that the link � exits. Stacking
all the {x� : � ∈ L} into a column vector x we can write (5)–(6) as

x(1) = diag[R]c, x(t + 1) = diag[R]A(I − diag[P ])x(t), t > 1, (7)

where diag[R] and diag[P ] denote diagonal matrices whose main diagonal contains the r� and the p�, respec-
tively; and A and c appropriately defined matrices that essentially encode the network connectivity. From
(7), we conclude that

x(t) =
(

diag[R]A(I − diag[P ])
)t−1

diag[R]c, t ≥ 1. (8)

We are now ready to express ER,M [χε] in terms of R and M . The proof of this lemma can be found in the
Appendix.

Lemma 1. For given ε ≥ 0, R ∈ Rno−cycle, M := {mP : P ∈ P} ∈ [0, 1]P ,

(i)

ER,M [χε] =
∑
P∈P

mP row[P ]xP , (9)

where row[P ], P := {p� : � ∈ L} ∈ P denotes the row vector containing all the p� and each xP is the
unique solution to

xP = (1 + ε) diag[R]A(I − diag[P ])xP + diag[R]c. (10)

(ii) ∑
P∈P

mP row[P ]x̄ ≤ ER,M [χε] ≤
∑
P∈P

mP row[P ]x, (11)

where x and x̄ are the unique solutions to

x = (1 + ε) diag[R]Ax + diag[R]c (12)

and

x̄ = (1 − γ)(1 + ε) diag[R]Ax̄ + diag[R]c, (13)

with γ := max
P∈P,�∈L

p�.

(iii) The right inequality in (11) is actually and equality when

diag[P ](diag[R]A)k diag[P ] = 0, ∀k ≥ 1. (14)
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The main difficulty in solving the Routing Game Problem 2 is that the cost (9) is generally not convex
over R ∈ Rsto. It turns out that the relation specified by (12) between vectors x and policies R is in some
sense one-to-one and will allow us to “convexify” the cost (9). To this effect, Let Aout be a matrix with one
row per node and one columns per link such that the entry corresponding the node n and link � is equal
to one if link � exits node n and zero otherwise. Because of (1) and the definition of the A matrix, it is
straightforward to verify that

Ain := Aout diag[R]A (15)

is independent of the routing policy R and is also a matrix with one row per node and one columns per link
but now with the entry corresponding the node n and link � equal to one if link � enters node n and zero
otherwise. The vector

cs := Aout diag[R]c (16)

is also independent of R and has as one row per node with the entry corresponding to the source node s
equal to one and all others equal to zero.

The following lemma (proved in the Appendix) establishes a one-to-one relation between the set of cycle-
free stochastic policies (which is not convex in general) with a convex set. This will be the basis for solution
of the Routing Game Problem 2.

Lemma 2. Let X denote the set of vectors x := {x� ≥ 0 : � ∈ L} that satisfy

Aoutx = (1 + ε)Ainx + cs (17)

(i) The set X is convex.

(ii) Given any R ∈ Rno−cycle there exists an x ∈ X for which

x = (1 + ε) diag[R]Ax + diag[R]c. (18)

Moreover, the norms of the vectors x ∈ X can be bounded by a constant that is independent of
R ∈ Rno−cycle.

(iii) Given any x ∈ X , there exists an R ∈ Rsto for which (18) holds. Moreover, if x is cycle-free in
the sense that there is no sequence of links (2) with x� > 0, ∀� ∈ S then R ∈ Rno−cycle. The policy
R := {r� :∈ L} is given by

r� :=
x�∑

�′∈L[�] x�′
, � ∈ L, (19)

where x := {x� ≥ 0 : � ∈ L} ∈ X and the summation is taken over the set L[�] of links that that exit
the node that � exits.

The equation (17) can be interpreted as a flow-conservation law that states that the incoming flow to a
node is equal to the outgoing flow from a node, possibly amplified by (1 + ε). Because of this we call the
element of X flow vectors.

Inspired by the two previous Lemmas we now define an auxiliary game that is easier to solve (mostly due
to the convexity of X ) and that we will use to construct the solution to the Routing Game Problem 2.

Problem 3 (Flow Game). Given ε ≥ 0, compute saddle-point policies (x∗, M∗) ∈ X × [0, 1]P , M∗ :=
{m∗

P : P ∈ P} for which∑
P∈P

m∗
P row[P ]x∗ = min

x∈X
max

M∈[0,1]P

∑
P∈P

mP row[P ]x = max
M∈[0,1]P

min
x∈X

∑
P∈P

mP row[P ]x.
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The problem just defined can now be solved using standard results:

Theorem 1. For every ε ≥ 0 the Flow Game Problem 3 has saddle-point policies (x∗, M∗) ∈ X × [0, 1]P

with x∗ cycle-free.

Proof of Theorem 1. Since the cost for the game is bilinear on the policies xX and M ∈ [0, 1]P , these take
values in convex sets, and M ∈ [0, 1]P is compact the only difficulty in applying von Neummann’s Theorem
(e.g., [6, Theorem 8.2]) is the fact that X is not bounded. To solve this difficulty we start by solving the
Flow Game Problem 3 on a compact convex subset Xbounded of X that results from the intersection of X
with a closed ball sufficiently large to contain all solutions to (18) for arbitrary R ∈ Rsto. We can now
conclude from von Neummann’s Theorem that saddle-point policies (x∗, M∗) exists for this “compactified”
problem. Moreover, we can choose x∗ to be cycle-free. This is because if x∗ has a cycle (2) with x∗

� ≥ δ > 0,
∀� ∈ S then we can subtract δ from all the x∗

� , � ∈ S and still remain in X . This is because for each node
in the cycle we are simultaneously subtracting δ from one incoming flow and from one outgoing flow so the
flow-conservation equation (17) still holds. Since this procedure never increases the cost for the minimizer
the new policy for the minimizer is still a saddle-point (together with the original M∗). By applying this
procedure several times we can eliminate3 any cycles in x∗.

It remains to prove that the saddle-point policies to the “compactified” problem are still saddle-point to the
original problem, i.e., that∑

P∈P
mP row[P ]x∗ ≤

∑
P∈P

m∗
P row[P ]x∗ ≤

∑
P∈P

m∗
P row[P ]x, ∀x ∈ X , M ∈ [0, 1]P . (20)

The left inequality is immediate from the fact that (x∗, M∗) is a saddle-point for the game on Xbounded.
Suppose now that the right inequality does not hold for some x ∈ X . Since removing cycles from a policy
never increases the cost, x can be assumed cycle-free. However, if x is cycle-free there exists some R ∈
Rno−cycle such that (18) holds (by (iii) in Lemma 2) but then there must exist an x̄ ∈ Xbounded such that
(18) also holds (by (ii) in Lemma 2). Since for every R ∈ Rno−cycle (18) uniquely defines x, we conclude that
x is actually equal to the x̄ ∈ Xbounded. Since this would contradict the fact that (x∗, M∗) is a saddle-point
for the “compactified” problem, we conclude that the right inequality in (20) must also hold.

We are now ready to prove the main result:

Theorem 2. Assume that (14) holds for every R ∈ Rno−cycle, P ∈ P. For every ε ≥ 0, the Routing Game
Problem 2 has saddle-point policies. Moreover, for every saddle-point (x∗, M∗) ∈ X × [0, 1]P of the Flow
Game Problem 3 with x∗ cycle-free, (R∗, M∗) ∈ Rno−cycle × [0, 1]P is a saddle-point for the Routing Game
Problem 2, where R∗ is constructed from x∗ using (19).

Note that (14) holds for every cycle-free policy R and pure attack P ∈ P when each pure attack does
not contain any p�, p�′ > 0, � 	= �′ such that the same packet could travel through both links � and �′

in a cycle-free path from the source s to the destination d. This is the case, e.g., for the single-link and
single-node attacks in Examples 3 and 4.

Proof of Theorem 2. Let (x∗, M∗) ∈ X × [0, 1]P be a saddle-point of the Flow Game Problem 3 with x∗

cycle-free, whose existence is guaranteed by Theorem 1. To prove the Theorem we show that (R∗, M∗) ∈
Rno−cycle× [0, 1]P is a saddle-point for the Routing Game Problem 2, where R∗ is constructed from x∗ using
(19). To this effect we need to show that

ER∗,M [χε] ≤ ER∗,M∗ [χε] ≤ ER,M∗ [χε], (21)

3A simply way to make sure that the saddle-point has no cycles is to add δ
∑

�∈L x�, δ > 0 to the cost. This makes sure

that any cycle would strictly increase the cost. By making δ → 0+ (or, in practice, picking δ very small) we obtain the solution
to the original problem.
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for every R ∈ Rno−cycle and every M ∈ [0, 1]P . Because of (iii) in Lemma 1, (21) is actually equivalent to∑
P∈P

mP row[P ]x∗ ≤
∑
P∈P

m∗
P row[P ]x∗ ≤

∑
P∈P

m∗
P row[P ]x, (22)

where x is the unique solution to (12). Left-multiplying (12) by Aout we obtain (17) because of (15) and
(16) and therefore x ∈ X . This means that (22) must hold because (x∗, M∗) is a saddle-point of the Flow
Game Problem 3.

It turns out that even when (14) does not always hold, a routing policy R∗ constructed from a saddle-
point of the Flow Game Problem 3 can still provide reasonable performance and the value of Flow Game
actually provides a worst-case bound for the cost of the Routing Game Problem 2. This is summarized in
the following Theorem:

Theorem 3. Suppose one uses a policy R∗ constructed from x∗ using (19), where (x∗, M∗) ∈ X × [0, 1]P

is a saddle-point of the Flow Game Problem 3 with x∗ cycle-free. Then the value V ∗ of the Flow Game
Problem 3 provides an upper bound on the cost of the Routing Game Problem 2, i.e.,

ER∗,M [χε] ≤ V ∗, ∀M ∈ [0, 1]P .

Proof of Theorem 3. Because of (ii) in Lemma 1, for an arbitrary M ∈ [0, 1]P we have

ER∗,M [χε] ≤
∑
P∈P

mP row[P ]x∗ ≤
∑
P∈P

m∗
P row[P ]x∗ =: V ∗,

where the second inequality is a consequence of the fact that (x∗, M∗) is a saddle-point of the Flow Game
Problem 3.

4 Solution to the Flow Game

We now concentrate in the Flow Game Problem 3, whose solution can be used to construct a saddle-point
for the Routing Game Problem 2 (cf. Theorems 2 and 3).

To solve the min-max problem we can use a fairly standard technique to reduce

V ∗ = min
x∈X

max
M∈[0,1]P

∑
P∈P

mP row[P ]x (23)

to a linear-programing optimization. First note that because the course in linear on M for fixed x, the inner
optimization is always achieved at a distribution for which one of the mP is equal to one and all the others
are equal to zero. Therefore, (23) is equivalent to

V ∗ = min
x∈X

max
P∈P

row[P ]x = min
x∈X

min
row[P ]x≤µ,∀P

µ = min
x≥0

Aoutx=(1+ε)Ainx+cs
row[P ]x≤µ, ∀P

µ. (24)

Here, we also used the fact that max{a1, a2, . . . , ak} = minai≤µ,∀i µ. Although (24) is already in the form
of a linear program, it is instructive to reformulate it as a maximization by making the change of variables
µ̄ := µ−1 and x̄ := µ−1x.

(V ∗)−1 = max
x̄≥0

Aoutx̄=(1+ε)Ainx̄+µ̄cs
row[P ]x̄≤1, ∀P

µ̄. (25)
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that the value of the game is equal to the inverse of the maximum flow µ̄ from source to destination, consistent
with the flow conservation law Aoutx̄ = (1 + ε)Ainx̄ + µ̄cs, and subject to the bandwidth constrains

row[P ]x̄ ≤ 1, ∀P ∈ P . (26)

For the single-link attacks in Example 3, (26) corresponds to a maximum bandwidth per link equal to
1/pintercept, whereas for the single-node attacks in Example 4 it corresponds to a maximum processing per
node equal to 1/pintercept. Note also that since x̄ is simply a scaled version of x, the optimal routing policy
can be computed directly from x̄, using (19). This means that the routing policies that arise from the
Routing Game Problem 2 also maximize throughput.

The solution to the single-link and single-node attacks have alternative interpretations that stem directly
from (24). In single-link attacks, row[P ]x is equal to pintercept times the flow in the link corresponding to the
P attack. Therefore, optimal routing for single-link attacks minimizes the maximum link-flow. Similarly, in
single-node attacks, row[P ]x is equal to pintercept times the flow that goes through the node corresponding to
the P attack. Thus optimal routing for single-node attacks minimizes the maximum node-flow. This means
that the routing policies that arise from the Routing Game Problem 2 also achieve load-balancing. These
policies thus also have application in problems where power is at a premium, such as in wireless networks.

5 Conclusions

In this paper we extended the game-theoretical formulation for secure routing originally proposed in [1] to
more general attacks. We determined a saddle-points for the routing game by reducing it to an equivalent flow
game that is easier to solve and provided alternative interpretations to secure routing’s saddle-point policies
in terms of flow-maximization and load-balancing. In our current research we investigate the application of
these policies to increase network throughput and also to minimize energy consumption in wireless networks.

Appendix

Proof of Lemma 1. To proof (i) suppose that the adversary selected a pure policy P ∈ P . Denoting by
xP (t) := {x�(t) : � ∈ L} a vector contains the probabilities x�(t) that a packet is routed through link � at
time t and has not yet been intercepted (or eavesdropped), the probability that a vector is intercepted at
time t is given by row[P ]xP (t). Therefore,

ER,M [χε] =
∑
P∈P

mP

∞∑
t=1

(1 + ε)t row[P ]xP (t).

Moreover, because xP evolves according to (8), we have that (9) holds with

xP :=
∞∑

t=1

(
(1 + ε) diag[R]A(I − diag[P ])

)t−1

diag[R]c. (27)

Since R is cycle-free the above series only has a finite number of nonzero terms and therefore it converges to

∞∑
t=1

(
(1 + ε) diag[R]A(I − diag[P ])

)t−1

=
(
I − (1 + ε) diag[R]A(I − diag[P ])

)−1

[7]. This means that

xP =
(
I − (1 + ε) diag[R]A(I − diag[P ])

)−1

diag[R]c,

which is equivalent to (10).
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To proof (iii) we start by showing that (14) implies that

diag[P ]
(
diag[R]A(I − diag[P ])

)k = diag[P ](diag[R]A)k, k ≥ 0. (28)

The above equality is trivial for k = 0 and assuming that it holds for some k ≥ 0, we conclude that

diag[P ]
(
diag[R]A(I − diag[P ])

)k+1 = diag[P ](diag[R]A)k
(
diag[R]A(I − diag[P ])

)
= diag[P ](diag[R]A)k+1(I − diag[P ])

= diag[P ](diag[R]A)k+1,

which shows by induction that (28) holds. From (28) and (27) we then conclude that

row[P ]xP = row[P ]
∞∑

t=1

(
(1 + ε) diag[R]A

)t−1
diag[R]c.

Since R is cycle-free we conclude that
∑∞

t=1

(
(1 + ε) diag[R]A

)t−1 diag[R]c is equal to the unique solution x
to (12) and therefore that (9) holds with xP = x.

To proof (ii) we start by showing that

(1 − γ)k diag[P ](diag[R]A)kx ≤ diag[P ]
(
diag[R]A(I − diag[P ])

)k
x ≤ diag[P ](diag[R]A)kx, ∀x, k ≥ 0.

(29)

The above inequalities are trivial for k = 0 and assuming that they hold for some k ≥ 0, we conclude that

(1 − γ)k diag[P ](diag[R]A)k diag[R]A(I − diag[P ])x ≤ diag[P ]
(
diag[R]A(I − diag[P ])

)k+1
x

≤ diag[P ](diag[R]A)k diag[R]A(I − diag[P ])x, ∀x, k ≥ 0.

Moreover since I − diag[P ] is diagonal with all the entries between 1 − γ ∈ [0, 1] and 1, we conclude that

(1 − γ)k+1 diag[P ](diag[R]A)k diag[R]Ax

≤ diag[P ]
(
diag[R]A(I − diag[P ])

)k+1
x ≤ diag[P ](diag[R]A)k diag[R]Ax, ∀x, k ≥ 0,

which shows by induction that (29) holds. From (29) and (27) we then conclude that

row[P ]
∞∑

t=1

(
(1 − γ)(1 + ε) diag[R]A

)t−1 diag[R]c. ≤ row[P ]xP ≤ row[P ]
∞∑

t=1

(
(1 + ε) diag[R]A

)t−1 diag[R]c.

Since R is cycle-free we conclude that

∞∑
t=1

(
(1 − γ)(1 + ε) diag[R]A

)t−1 diag[R]c

and ∞∑
t=1

(
(1 + ε) diag[R]A

)t−1 diag[R]c

are equal to the unique solutions x̄ and x to (13) and (12), respectively, and therefore that (11) holds.
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Proof of Lemma 2. The convexity of X is trivial since X is given by the intersection of the (convex) positive
orthant with the (also convex) affine space corresponding to the solution of the linear equation (17).

To proof (ii), we show that for a given R ∈ Rno−cycle we can simply define

x :=
∞∑

t=1

(
(1 + ε) diag[R]A)t−1 diag[R]c. (30)

First note that because R ∈ Rno−cycle the series only has a finite number of nonzero terms and therefore it
converges to

∞∑
t=1

(
(1 + ε) diag[R]A

)t−1 =
(
I − (1 + ε) diag[R]A)

)−1
.

[7]. From this and the definition of x we immediately conclude that (18) holds. To verify that the vector x
defined by (30) belongs to X note that every entry of x is nonnegative because it is the sum of nonnegative
numbers and also that left-multiplying (18) by Aout we obtain (17) because of (15) and (16). Note that
because the number of nonzero terms in the series is always smaller than n and the R are bounded, on can
construct a bound on the vectors x defines by (30) that is independent of R ∈ Rno−cycle.

To proof (iii) note that the division by the summation guarantees that the normalization condition (1) holds
and therefore that R ∈ Rsto. Moreover, this definition guarantees that if x is cycle-free then R is also cycle
free. To finish the proof it remains to show that (18) holds. To this effect, note that from the definition of
R, for every � ∈ L we have that

x� = r�

∑
�′∈L[n]

x�′ = r�Aout[n]x

where L[n] denotes that the set of links that exit the node n that � exits and Aout[n] the row of Aout

corresponding to the node n. But since x ∈ X , we then have

x� = (1 + ε)r�Ain[n]x + r�δn,s (31)

where Ain[n] and denotes the rows of Ain corresponding to the node n and δn,s is equal to one if n is the
source node s and zero otherwise. This finishes the proof because (18) is the vector version of (31).
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