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Abstract— This paper examines the achievable performance
gains when a particular class of cooperative relaying known as
best-select is employed. In essence, best-select seeks to improve
performance by exploiting diversity. We closely examine a par-
ticular topology when the number of nodes is finite as well when
the node density goes to infinity. Determining the performance
is complicated by the correlation of the channel gains between
nearby channels (i.e., when the receivers are nearby and the
transmitters are nearby). This challenge is overcome by modeling
the channels as spatially continuous diffusion processes and as
a random field and then using a Poisson clumping heuristic. In
the example network and metric studied, it is found that in the
limit, node cooperation can provide an increase in the end-to-
end performance by 35 dB (i.e., a factor of ∼3000) in a 5-hop
network. This result motivates further work in the design of
multihop cooperative protocols.

I. INTRODUCTION

One of the most important features of mobile wireless
networks is the variability of channels. In traditional wireless
networking, great pains are taken to mitigate the impact of
the variability of channels. While all layers must cope with
the effects of time-varying channels, there has been extensive
effort at the network layer. For example, there are a number
of techniques that seek to find precomputed backup paths (e.g.
[1]). Thus, when a primary path fails, a new route search
is not required to find a new path. However, time-varying
channels does not only imply that links may break, it also
implies that some links are better than others. Indeed, in the
context of communication theory, channel diversity means that
there may be some channels between the same transmitter
and receiver (but with different antennas) that have better
performance than other channels. This diversity is closely
related to the stochastic nature of channels. Specifically, if
channel gains can be modeled as a set of independent random
variables, then the larger the set, the higher the probabil-
ity that one channel will provide good performance. While
communication theory provides a clear picture of diversity
between a single transmitter and single receiver (each with
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one or more antennas) (e.g., Chapter 11 of [2]), diversity
in the setting of multihop wireless networks is only recently
receiving attention. This paper explores the benefits that may
be obtained when diversity is fully exploited within multihop
wireless networks. This paper focuses only on the performance
potential. Questions about how such diversity can be exploited
and the cost in terms of overhead and congestion is left for
future work and is partially investigated in [3] and [4].

In this paper, it will be shown that diversity may provide
tremendous benefits. For example, in the environment explored
here, we find that diversity can lead to end-to-end performance
gains of up to a factor of 3000 across a 5 hop network (the
definition of the metric is provided in the next section). At
first glance, an improvement of a factor of several thousand
seems unreasonably large. However, one must consider that
dynamic range of a physical layer such as 802.11 exceeds
50 dB. That is, a good channel may be 50 dB better than a
bad channel, i.e., a good channel may be 100000 times better
than a bad channel. The critical challenge for communication
theorist or practitioner is to achieve communication even when
the channel is bad. However, at the network layer, there is
the option of seeking to use other better channels. If these
alternative channels are sufficiently good, then one might well
expect an improvement of several orders of magnitude. Indeed,
in this paper, such improvements are found.

This paper proceeds as follows. In the next section, the
problem is stated and basic terminology defined. In Section
III, the performance is found where the correlation between
channels is neglected. In this section, the node occupancies
(which will be defined later) are may be dependent. Section
III-A presents a short discussion of a computationally effi-
cient approximation that assumes that the node occupancies
are independent. Based on this approximation, Section III-B
examines several different topologies. Interestingly, it is ob-
served that the improvement offered by diversity is not greatly
impacted by the topologies. In Section IV, the performance is
determined when the channels are correlated. Accommodating
correlated channels allows one to consider the case when the
number of nodes goes to infinity. This section is based on
modeling the channels as an Ornstein-Uhlenbeck process and
then employing the Poisson Clumping Heuristic [5].



It should be noted that this work is closely related to the
active research in cooperative communication, including [6],
[7], [8], [9], [10], [11], [12], [13]. However, here the focus is
on multihop networks.

II. PROBLEM DEFINITION AND TERMINOLOGY

The goal of diversity exploiting routing schemes is to utilize
alternative routes that provide better performance than an
arbitrarily selected one. To make this problem more specific,
consider the topology shown in Figure 1. In this paper we will
explore the benefit of allowing to use alternative paths besides
the nominal route, which consists of using relays along the
center (i.e., the shortest geographic path). Alternatively, we
explore the possibility of using the path that is best in terms
of a particular route metric. Here the route metric of interest is
the maximum channel loss1 along the route. That is, each link
of a path has a particular channel loss, and the route metric is
the maximum of these link channel losses. To put it another
way, the route metric is the channel loss of the worst link
along the route. This paper examines the performance gain
that is achieved by using a route that is optimal in terms of
this route metric as compared to the nominal route.

Since the received signal strength is proportional to the
transmitted power divided by the channel loss, the channel
loss is closely related to the SNR. Hence, minimizing the
maximum channel loss is the same as maximizing the mini-
mum SNR experience by each receiver along the route. There
are several motivations for trying to minimizing the maximum
channel loss. For example, in most physical layer schemes, the
probability of a transmission error across a link falls to zero
quickly as the SNR increases beyond a threshold. Thus, the
probability of successfully delivering a packet to a destination
along a route is dominated by the probability of successfully
transmitting a packet over the worst link along the route.
Similarly, if the transmission power at each link is adjusted so
that a target SNR is met (e.g., to meet a target link transmission
error probability), then the energy to deliver a packet from
the source to destination is dominated by the energy required
to transmit across the worst link along the path. Also, if the
bit-rate across each link is maximized under the constraint
that the transmission error probability is less than a specified
threshold, then the throughput along the route is given by the
bit-rate across the slowest link, which, again, is the worst link
along the route in terms of channel gain. See [13], for further
examination of metrics.

In order to compute the average performance, we compute
the cumulative probability function of the route metric along
the best path. We denote this probability2 with U i.e.,

U (r) := P (there exists a path with min channel loss < r) .

1The channel loss is the recipocal of the channel gain. Hence, a good
channel has a small channel loss.

2It is more convenient to use channel loss rather than channel gain.
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Fig. 1. The objective is to find the best path from source to destination.
The nominal path is made up of the nodes along the center. In this paper,
we explore the impact of being allowed to use any combination of nodes.
However, each hop must be between two nodes in adjacent relay-sets and the
route must always proceed toward the destination. The distance between the
relay-sets is d, and the space between adjacent nodes is h. Each relay-set
spans a vertical distance 2×Range.

We employ the terminology of percolation. Fixing r, we say
that a link is open if the channel loss is less than r, and closed
otherwise. A node is said to be occupied if there is a sequence
of open links from the source to the node. Thus, U (r) is the
probability that the destination is occupied.

This paper focuses on the topology shown in Figure 1. The
figure shows the source and destination as well as several
sets of nodes that are made up of nodes placed in a vertical
line. As indicated in the figure, these sets are called relay-
sets. The relay-sets are numbered with the first relay-set being
closest to the source. It is assumed that each transmission
carries the packet from a node in the n-th relay-set to a node
in the (n+ 1)-th relay-set, but the exact node within each
relay-set that relays the packet can be adjusted. As is also
indicated in Figure 1, the nodes are labeled with node (n, i)
being the i-th node in the n-th relay-set. We assume that the
number of nodes in each relay-set is fixed, and is sometimes
denoted as M . Sometimes it is convenient to think of the
source as a node in the zeroth relay-set, i.e., (0, bM/2c), where
bM/2c is the largest integer that is less than or equal to M/2.
Similarly, the destination is (N, bM/2c). Note that sometimes
it is convenient to denote the number of nodes in each relay-set
as b2×Range/hc rather than M .

We assume that the channel loss is composed of a de-
terministic part that depends on the distance between the
transmitter and receiver and a random part that has a log-
normal distribution. Specifically, let (n, i) be the ith node in
the nth relay-set as indicated in Figure 1. The probability
that the link from (n, i) to (n+ 1, j) is open is denoted by
qThresh (|i− j|) where

qThresh (|i− j|) := (1)

P

µ
Thresh > X + 2.7× 10 log10

µq
d2 + h2 (i− j)

2

¶¶
where X is Gaussian with mean 0 and standard deviation σ,
and Thresh such that if the channel loss is less than Thresh,



then transmission can be decoded. Here the attenuation factor
is set to 2.7 [14]. Other possible values range from 1.6 to
4. Note that we focus on shadow-fading as modeled with by
a log-normal random variable [14]. We do not consider fast-
fading or Rayleigh fading. One reason for this is that in wide
bandwidth communication, the bandwidth is wide enough that
the impact of fast-fading is limited [14]. Nonetheless, future
work will consider the impact of fast-fading (e.g., [3]). (1) does
not indicate the correlation of the channel loss between nearby
channels (i.e., channel where the sources and destinations are
nearby). This will be considered in Section IV.

III. INDEPENDENT CHANNELS AND DEPENDENT NODE
OCCUPANCIES

One way to determine the performance is to represent the
occupied nodes in a relay-set as a Markov chain where the
state of the Markov chain is the vector of which nodes are
occupied or not occupied. Then a ∈ {0, 1}M is an element
in the state-space of the Markov chain where there are M
nodes in each relay-set. In particular ai = 1 implies that the
ith node is occupied and ai = 0 implies that the ith node is
not occupied. The state can be represented more succinctly as
an integer between 0 and 2M − 1, i.e., A =

PM
i=1 ai2

i. Then
the probability transition matrix for this Markov chain is

QThresh (A,B) := (2)
P (moving from state A to state B)

=
Y

{i:bi=1}

⎛⎝1− Y
{j:aj=1}

(1− qThresh (|i− j|))

⎞⎠
×

Y
{i:bi=0}

⎛⎝ Y
{j:aj=1}

(1− qThresh (|i− j|))

⎞⎠
To understand (2), note that the probability of node i not
being occupied is the probability that each link from every
occupied node in the previous relay-set is closed, which isY
{j:aj=1}

(1− qThresh (|i− j|)) where {j : aj = 1} is the set of

nodes that are occupied. Furthermore, the set of nodes that are
occupied in state B is {i : bi = 1}. Thus, the probability of
being in state B is the probability that each node i is occupied
if bi = 1 and each node with bi = 0 is not occupied.

From (2), it is straightforward to compute the probability
distribution of the occupied nodes within the n-th relay-set.
Specifically, we can think of the source as the bM/2c-th node
within the 0-th relay-set where bM/2c is M/2 rounded down
to the nearest integer. Thus, we set the probability distribution
of the occupied nodes within the 0-th relay-set to be V with
VA = 1 if A = 2bM/2c. The probability distribution of of the
set of occupied/unoccupied nodes n hops from the source is
V Qn

Thresh, where QThresh is a 2M × 2M matrix.

The destination can be thought of as the bM/2c-th node

5 10 15 2040

50

60

70

Hops

Av
er

ag
e 

Be
st

 M
in

. 
C

ha
nn

el
 L

os
s 

(d
B

) h=20m
h=60m

5 10 15 2040

50

60

70

Hops

Av
er

ag
e 

Be
st

 M
in

. 
C

ha
nn

el
 L

os
s 

(d
B

) h=20m
h=60m

5 10 15 2040

50

60

70

Hops

Av
er

ag
e 

Be
st

 M
in

. 
C

ha
nn

el
 L

os
s 

(d
B

)

Hops

Av
er

ag
e 

Be
st

 M
in

. 
C

ha
nn

el
 L

os
s 

(d
B

) h=20m
h=60m
h=20m
h=60m

5 10 15 2040

50

60

70

5 10 15 2040

50

60

70

Hops

Av
er

ag
e 

Be
st

 M
in

. 
C

ha
nn

el
 L

os
s 

(d
B

)

Hops

Av
er

ag
e 

Be
st

 M
in

. 
C

ha
nn

el
 L

os
s 

(d
B

) h=20m
h=60m
h=20m
h=60m

Fig. 2. Average maximum channel loss along the best path. The solid curves
are for the case when h = 20m and the marked curves are for h = 60m.
The upper most curve is when there is only one node in each relay-set, i.e.,
when diversity is not exploited. This curve is the same regardless of the value
of h. As the size of the relay-sets grows, the maximum channel loss along
the best path decreases. This figure shows the performance for relay-set size
of 1, 2, 4, 6, · · · , 14. The best performance is indicated by the lowest curve
and corresponds to the case where M = 14.

in the N -th relay-set. Given that the probability distribution
in the N th relay-set is U , the probability that the bM/2c is
occupied is found by summing the elements of U over all the
states that have the bM/2cth node occupied. Specifically, set
W to be a row vector with WA = 1 if abM/2c = 1 where
A =

PM
i=1 ai2

i. Then the probability that the destination is
occupied is

Γ (Thresh) = V ×QN
Thresh ×W . (3)

Finally, from (3) the probability distribution of the max-
imum channel loss along the best route from the source to
destination can be determined. Figure 2 shows the expected
value of the maximum channel loss along the best path as
a function of the number of hops from source to destination
where the number of nodes within the relay-set is 1, 2, 4, ...14
and distance between neighboring nodes within a relay-set is
h = 20m and h = 60m. In this case, the standard deviation
of the shadow fading was 11 dB (i.e., σ = 11 dB) and the
distance between relay-sets was 100m (i.e., d = 100 m). Note
that the M = 1 case is the case when there is only one path
from source to destination. Thus, the M = 1 case corresponds
to when diversity is not exploited and hence represents the
benchmark performance.

In Figure 2, the largest relay-set size is 14. In this case, there
are 214 elements in the state-space and the state transition ma-
trix has 228 elements3. With the processors available, this was
the largest topology whose performance could be computed in
a realistic amount of time.

3It is possible to compute the probability distributions without computing
the entire state transition matrix.



A. Independent Channel and Independent Node Occupancy -
An Approximation

A dramatic improvement in computation can be obtained
by assuming that the occupancy of a node is independent
of whether other nodes within the same relay-set are also
occupied. It will be shown that this independence assumption
provides an upper bound on performance. Furthermore, it
will be observed that for large relay-sets, this independence
assumption does not have a significant impact on the accuracy.

First we compute the probability of occupancy under the
independence assumption. Let the probability that the j-th
node in the n-th relay-set is occupied be Pn,Thresh (j). Then
probability that node i in the (n+ 1)-th relay-set is occupied
is

Pn+1,Thresh (i) (4)

= 1−
MY
j=1

((1− Pn,Thresh (j))

+ (1− qThresh (|i− j|))Pn,Thresh (j))

= 1−
MY
j=1

(1− qThresh (|i− j|)Pn,Thresh (j)) .

As above, the fact that the source is occupied is expressed
by P0,Thresh (i) = 1 for i = bM/2c and 0 otherwise and
note that the probability of there exists a path from source to
destination such that the maximum channel loss is less than
Thresh is PN,Thresh (bM/2c), which can be easily computed
from 4.

This approximation yields performance relationships that
are quite similar to those shown in Figure 2, and hence is not
shown. Instead, consider Figure 3, which shows the difference
between the expected performance found using (4) and (2).
Observed that for large networks the error is less than 1 dB
and converges as the length of the path grows. For smaller
networks, the error is larger, but for small relay-set sizes,
an approximation is not needed since the actual performance
can be easily computed. It can also be noticed that the
error is always positive implying that the approximation is
always larger than the actual value. This is always the case as
explained next.

Proposition 1: The assumption that the event that a node is
occupied is independent of the event that other nodes within
the same relay-set are occupied is leads to an upper bound on
performance.

Proof: Let Ui be the event that node (n, i) is occupied
and node i has and open link to node (n+ 1, k). Then the
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Fig. 3. The difference between the exact value of the optimal value of the
route metric and an approximation where the approximation assumes that the
occupancy of a node in a relay-set is independent of the occupancy of other
nodes within the same relay-set. This figure shows this error for networks
with 2 - 14 nodes per relay-set and for networks with 2 to 20 hops. Note that
an error of 0 dB means that there is no error and an error of 3 dB means that
the approximation suggests a performance that is 3 dB better than the actual
performance. The results here are for d = 100m and h = 20m.

probability that node (n+ 1, k) is occupied is P

Ã[
i

Ui

!
and

P

Ã[
i

Ui

!
=
X
i

P (Ui)−
X
i6=j

P (Ui ∩ Uj) .

Under the assumption that the events Ui are independent

P̃

Ã[
i

Ui

!
=
X
i

P (Ui)−
X
i6=j

P (Ui)P (Uj) ,

where P̃ denotes the probability under the independence
assumption. However, since the events Ui are increasing,

P (Ui ∩ Uj) ≥ P (Ui)P (Uj) . (5)

Thus P̃

Ã[
i

Ui

!
≥ P

Ã[
i

Ui

!
. For further discussion on

increasing events see Chapter 2 of [15].

B. Performance for Some Different Topologies

Using (4), it is computationally tractable to consider a wide
variety of topologies. For example, suppose that nth relay-set
consists of a strip of nodes centered along the line (n× d, y)
for −∞ < y < ∞. Or more generally, for −d/2 < x < d/2
and−∞ < y <∞ the nth relay-set includes a node at location
(n× d, 0)+(x, y) with probability ρn (x, y) (setting ρn (x, y)
to 0 or 1 provides a fixed deterministic topology). Then (4)
can be generalized to

Pn+1,Thresh (x, y) = ρn (u, v)× (1− (6)

Y
−d<2<u<d/2
−∞<v<∞

(1− qG (x− u, v − y)Pn,Thresh (u, v))

⎞⎟⎟⎠ .
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upper curve is the performance when diversity is not used, i.e., M = 1.
The lowest curve is found with (6), while the middle curve is from Monte
Carlo simulation. Note that the simulation and approximation closely match.

where

qG (x− u, v − y) := P (Thresh >

X + 2.7 · 10 log10
µq

(d+ x− u)2 + (v − y)2
¶¶

,

with X ∼ N (0, 11).

With (6) we explore the performance for some topologies
other than the one shown in Figure 1. First we consider the
performance when the nth relay-set is composed of a set of
nodes located at (n× d, 0)+ (ih, jh) for −d/h < i, j < d/h,
i.e., the relay-set is the lattice of nodes centered around
(n× d, 0) with spacing between node h. Figure 4 shows the
performance for d = 400 and h = 10. For reference two other
curves are also shown. The upper most curve corresponds to
the performance when diversity is not used (i.e., M = 1),
while the two lower curves show different estimates of the
performance when the relay-sets are as just described. The
lowest curve was found using (6) while the second to the
lowest was found from simulations. This plot confirms the
appropriateness of the approximation (4) and (6). This curves
also shows that the improvement in performance exceeds 40
dB at 5 hops.

Next we compare performance several topologies. As op-
pose to most other examples in this paper, the relay-sets in
these examples are 400 m. apart. Referring to Figure 5, (a)
horizontal 1 and (b) horizontal 2 have relay-sets configured
into horizontal lines (as oppose the vertical lines as in Figure
1). (a) horizontal 1 has the nodes uniformly spaced, where as
(b) horizontal 2 has the nodes more clustered around the center
relay-set. Specifically, in (a) horizontal 1 the ith node in the
nth relay-set is located at (n400, 0)+

¡
400
M i, 0

¢
where there are

M nodes in the relay-set, and in (b) horizontal 2 the ith node
of the nth relay-set is located at (n400, 0)+(10 (M/2 + i) , 0).
The vertical topologies are similar, the ith node in the nth
relay-set in (c) vertical 1 is located at (nd, 0) +

¡
0, 400M i

¢
,

and the ith node the relay-set in (d) vertical 2 is located at
(nd, 0) + (0, 10 (M/2 + i)). The last topology, (e) rectangle,
has the nodes in a rectangle clustered around the center of the
relay-set. In this case the nodes in the relay-set are indexed by
two integers, i and j, with the node i, j located at (nd, 0) +³
10i− 5

√
M, 10j − 5

√
M
´

with i, j = 0, 1, · · · ,
√
M . Since

the computation does not account for correlation between
channels, it is important that the nodes be spaced far enough
apart so that correlation is insignificant. We assume that if the
nodes are farther than 10 m. apart, then correlation is small
(see the next section for more discussion of the correlation
between channels). This condition is maintained if M ≤ 40
in the first and third topology, and if M ≤ 402 in the fifth
topology. In the second topology if M > 40, then the relay-
sets overlap and correlations must be considered. There are no
restrictions on M in the fourth topology.

Figure 5 shows the expected improvement provided by
diversity in these topologies. More specifically, it shows the
average value of the maximum channel gain along the best
path (in dB) minus the average maximum channel gain along
the path that only used nodes located at (n400, 0). As indi-
cated, three path lengths are shown. While the topologies are
quite varied, it is surprising to observe that the performance
as a function of the number of nodes in each relay-set are
quite similar for all topologies. One important implication is
that while the topology shown in Figure 1 is only a specific
topology, other topologies show similar performance, hence
Figure 1 is able to provide insight into the performance of
these other topologies.

IV. CORRELATED CHANNELS AND INDEPENDENT NODE
OCCUPANCIES

The left-hand plot in Figure 2 shows that the performance
improves when either the size of the relay-sets increases
or when the spacing between nodes within the relay-set
decreases. Both of these trends are reasonable. As the size
of the relay-set increases, there are more paths available and
hence the probability that a good path is available increases.
As the spacing between nodes within a relay-set decreases, the
quality of the paths from any single node to all the nodes in the
next relay-set is improves. Specifically, recall that the distance
between nodes (n, i) and (n+ 1, j) is

q
d2 + h2 (i− j)2

which decreases with h, the spacing between nodes within
the same relay-set (see Figure 1). Based on the trends shown
in Figure 3, the question naturally arises as to what is the
maximum performance that can be achieved by increasing
the number of nodes in the relay-sets and by decreasing the
spacing between nodes within a relay-set. In this section this
question is answered. However, a major difficulty is that as h
decreases, the channels become correlated. For example, as h
decreases, the nodes (n, i) and (n, i+ 1) are closer together.
Hence, the channel between (n, i) and (n+ 1, j) and the
channel between (n, i+ 1) and (n+ 1, j) past through the
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Fig. 5. Performance offered by diversity for several different topologies. See the text for a discussion of the topologies examined.

same environment, are subject to the same impairments, and
therefore, have the similar loss.

The approach here models the relay-sets as a continuum
of nodes and models the channel as a diffusion process
or a random field. Then the Poisson clumping heuristic is
used to approximate the performance. Before examing the
performance of multihop networks, we first consider the 2-hop
network and then consider the channels between two relay-
sets. In the first case, the channel is modeled as a diffusion
process and in the second case it is modeled as a random field.

A. Two Hop Case

Correlated channels subject to shadow-fading have been
reasonably well studied [16], [17], [18], and this investigation
applies models from this previous work. Specifically, we
employ a diffusion-based model of the channel loss similar
to what is developed in [16]. Suppose that the relay-set
spans from location (d,−Range/2) to (d,Range/2). Let the
shadow-fading part of the channel loss (in dB) from the source
located at (0, 0) to the node located at (d, y) be given by
L1y where −Range ≤ y ≤ Range. Define L2y similarly but
for the shadow-fading from the node at location (d, y) to the
destination at location (2d, 0). Thus, there is two hops between
the source and destination. The stochastic part of the channels
are modeled as Ornstein-Uhlenbeck process, specifically,

dL1y = −αL1ydy + σ
√
2αdB1

y , (7)
dL2y = −αL2ydy + σ

√
2αdB2

y ,

where Bi
y are Brownian motion processes with B1 and B2

independent. It has been observed through measurements that
α ≈ 1

10m−1 [18]. Furthermore, while σ may range from
4 to 12dB, we use σ = 11dB. Note that (7) implies that
Ly˜N (0, σ) and

E (LyLx) = σ2 exp (−α (|y − x|)) . (8)

Therefore, in the limit, as the node density goes to infinity,
the probability that there exists a path from source to destina-
tion such that each link has a channel loss that is lower than
Thresh is given by

U∞ (Thresh,Range) :=

P (∃ a y such that −Range < y < Range,
L1y + 2.7× 10 log10

³p
d2 + y2

´
< Thresh,

and L2y + 2.7× 10 log10
³p

d2 + y2
´
< Thresh

´ .

While such probabilities are difficult to exactly compute, a first
order estimate can be easily found as long as Thresh is small
enough. In particular, if Thresh is small, then the probability
of the event occurring rare and can be approximated with the
Poisson clumping heuristic (See [5] for details). Specifically,
a 2-hop path such that both haps have a channel loss less
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Fig. 6. Discrete channel simulated and continuous approximation of the
cumulative distribution of the maximum channel loss along the best path over
a 2-hop network. The discrete channel simulations used nodes spaced 0.1 m
apart. In both estimates, the relay-sets were 160 m. long. The relay-sets were
100 m apart.

than Thresh is a nonhomogeneous Poisson process with
rate λ (y). Thus, the probability of suitable path passing
through any relay located between −Range and Range is
approximately Û∞ (Thresh,Range), where

Û∞ (Thresh,Range) = 1− exp
ÃZ Range

−Range
λ (y) dy

!
.

The rate λ is given by

λ (y) = −αu (y)× 2φ0,σ (u (y)) (1− Φ0,σ (u (y))) ,

where −αu (y) is the drift in (7), φ0,σ (u) is the probability
density of a Gaussian random variable with 0 mean and
standard deviation σ, Φ0,σ (u) is the cumulative distribution
of a Gaussian random variable with mean 0 and standard
deviation σ, and

u (y) = 2.7× 10 log10
³p

d2 + y2
´
− Thresh. (9)

Thus, 2φ0,σ (u (y)) (1− Φ0,σ (u (y))) δy is approximately the
probability of the channel loss being in a small region around
where two-hop route metric exceeds Thresh (i.e., the channel
loss of both channels from the source to the node at position y
and from node at y to the destination are both below Thresh).

Figure 6 show values of Û∞ (Thresh,Range) and esti-
mates values of U∞ (Thresh,Range) for Range = 160m.
The estimate to U∞ models the continuum of channels with
discrete set of channels. We call this a discrete channel
estimation as compared to Û∞, which is an approximation
of the continuum of channels.

The discrete channel estimation can be found with Monte
Carlo simulations. To this end, we define V 1 to be a realization
of the channel losses from the source to the relay-set and V 2

to be a realization the channel losses to the destination from
the relay-set. Thus, V 1

i is the channel loss from the source to
the node at (d,−Range+ hi) and V 2

j is channel loss from
the node at (d,−Range+ hi) to the destination. Note that

V 1 = HTW 1 + C where, in this case HTH is the Cholesky
factorization of

P
with

P
i,j = σ2 exp (−αh |i− j|) and

Ci = 2.7 × 10 log10
µq

d2 + (−Range+ hi)
2

¶
and W 1 is

vector of uncorrelated Gaussian random variables with zero
mean and variance of one. V 2 is generate in the same way.
Finally, the realization contains a suitable path if there exists
an 0 ≤ i ≤ 2 × Range/h such that V 1

i <Thresh and
V 2
i <Thresh. Figure 6 shows the cumulative distribution

of the maximum channel loss along the best path for h = 0.1.
Furthermore, for this fine spacing of nodes, the approximation
Û∞ of the U∞ is close to the discrete channel estimate if
Thresh is small enough. The large error for large Thresh is
expected since the approximation is only for rare events.

B. Channels Between Two Relay-Sets

Before using the Poisson clumping heuristic to estimate the
performance across a multihop network, we examine the per-
formance between two relay-sets. In this case, the correlation
between channels is slightly more complicated. Specifically,
consider the channels between nodes located at (nd, u) and
((n+ 1) d, x) and between (nd, v) and ((n+ 1) d, y). If x ≈ y
and/or u ≈ v, then these channel will be correlated. Let
L (u, x) be the stochastic part of the channel between (nd, u)
and ((n+ 1) d, x). Then [19]

E (L (u, x)L (v, y))
= σ2 exp (−α (|u− v|+ |x− y|)) (10)

Note that (10) becomes (8) if u = v.

It is clear that L is a random field, or more specifi-
cally, L is a product Ornstein-Uhlenbeck process [5]. That
is, L is a two parameter process (as oppose the L in
the previous section which was a single parameter process)
with E (L (u, x)L (v, y)) ≈ σ2 (1− α |u− v|− α |x− y|)
for α |u− v|+ α |x− y| small.

Let URR
∞ (Thresh,Range) be the probability that there

exists a channel between the two relay-sets that has channel
loss less than Thresh, or

URR
∞ (Thresh,Range) := P (∃ x and y such that
−Range < x, y < Range and L (x, y) < Thresh) .

The Poisson clumping heuristic can also be applied to product
Ornstein-Uhlenbeck processes. We denote the approximation
of URR

∞ as ÛRR
∞ and, as above, our approximation models

URR
∞ with a nonhomogeneous Poisson distribution, i.e.,

ÛRR
∞ (Thresh,Range)

= 1− exp
ÃZ Range

−Range

Z Range

−Range
λ (x, y) dxdy

!
.



In this case,

λ (x, y) = α2 (u (x, y))3 φ0,1 (u (x, y)) ,

where

u (x, y) =
1

σ

µ
2.7× 10 log10

µq
d2 + (x− y)

2

¶
− Thresh

¶
.

(11)

Figure 7 shows ÛRR
∞ (Thresh,Range) along with a dis-

crete channel estimate of URR
∞ . The discrete channel estimate

is generate in a similar fashion as above, but is significantly
more computational complex. Specifically, for 0 ≤ i ≤
2Range/h and 0 ≤ j ≤ 2Range/2, let Vi×2Range/h+j be
the channel loss from the node located at (nd,−Range+ hi)
to the node located at ((n+ 1) d,−Range+ hj). Then define
the correlation matrix

Σi×2Range/h+j,k×2Range/h+l := σ2 exp (−α (|i− k|+ |j − l|)) .

Then
Vi×2Range/h+j = H 0W + C

where HTH is the Cholesky factorization of Σ,

Ci×2Range/h+j = 2.7 × 10 log10

µq
d2 + (hi− hj)

2

¶
,

and W vector of uncorrelated Gaussian random variables
with zero mean and variance of one. Thus, if there is an i, j
such that Vi×2Range/h+j < Thresh, then there is a channel
between the two relay-sets that has channel loss less than
Thresh.

In Figure 7, Range = 10 m., h = 0.3 m., and d =
100 m. In this case there are 60 nodes in each relay-set,
and hence there are 602 channels. Thus, Σ is a 602 × 602
matrix, which is nearly the largest matrix for which Cholesky
factorization can be easily performed (e.g., with Matlab). On
the other hand, Range = 10, is a rather small relay-set and
h = 0.3 is not particularly fine (Recall that in Figure 6
h = 0.1 and Range = 160.). Nonetheless, Figure 7 shows
reasonable agreement between the two estimates. For example,
the medians differs only by about 3 dB. Again, since the
approximation is only valid for rare events, there is large error
for Thresh large.

C. Performance Over a Multihop Network

Combining the above techniques, it is possible to approxi-
mate the performance over a multihop network. Specifically,
the technique developed in Section IV-A is used for the first
and last hop, and the technique developed in Section IV-B
is used for intermediate hops. Following similar notation as
above,

UMH
∞ (Thresh,Range) := P (there exists a path
with maximum channel loss < Thresh) .
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Fig. 7. Cumulative distribution of the maximum channel gain between two
relay-sets. The relay-sets were 100 m. apart and 20 m. long. The discrete
simulation approximated the relay-set with nodes spaced 0.3 m. apart. The
continuous approximation used the Poisson clumping heuristic.

We approximate UMH
∞ with ÛMH

∞ , where

ÛMH
∞ (Thresh,Range) = 1−

exp

ÃZ Range

−Range
· · ·
Z Range

−Range
λ (x, y2, · · · yN−1, z)

dxdy2, · · · dyN−2dz) .
where

λ (x, y2, · · · yN−1, z)
= αu (x)φ0,σ (u (x))Φ

c
0,1 (u (x, y2)) · · ·

×Φc0,1 (u (yN−2, yN−1))Φc0,1 (u (yN−1, z))Φc0,σ (u (z))
+ α2 (u (x, y2))

3 φ0,1 (u (x, y2))Φ
c
0,σ (u (x))Φ

c
0,1 (u (y2, y3)) · · ·

×Φc0,1 (u (yN−2, yN−1))Φc0,1 (u (yN−1, z))Φc0,σ (u (z))
+ · · ·
+ α2 (u (yN−2, z))

3
φ0,1 (u (yN−2, z))Φ

c
0,σ (u (x))

×Φc0,1 (u (x, y2)) · · ·Φc0,1 (u (yN−3, yN−2))Φc0,σ (u (z))
+ αu (z)φ0,σ (u (z))Φ

c
0,σ (u (x))Φ

c
0,1 (u (x, y2)) · · ·

×Φc0,1 (u (yN−2, yN−1))Φc0,1 (u (yN−1, z)) ,
with Φcµ,σ (x) = 1− Φµ,σ (x), u (x) is given by (9), u (x, y)
is given by (11), and N is the number of hops between the
source and destination.

Following techniques discussed in the previous sections, it is
possible the estimate UMH

∞ with a discrete channel estimate.
Of course, this technique suffers from the drawback that it
can only be performed on topologies with only a moderate
number of nodes in each relay-set (e.g., less than 60 nodes
per relay-set). Figure 8 shows the cumulative distribution of
the maximum channel loss along the best path over a 3-hop
network. Here Range = 10 m., and d = 100 m. Two estimates
are shown, ÛMH

∞ (Thresh, 20) and the discrete channel esti-
mate of U∞ (Thresh, 20), where the discrete channel estimate
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Fig. 8. Cumulative distribution of the maximum channel loss over the best
path over a 3-hop network. The continuous approximation used the Poisson
clumping heuristic.

had h = 0.3 m. As above, the two estimate are in reasonable
agreement when Thresh is small. For example, the medians
are within approximately 3 dB of each other.

The performance for larger values of Range and more hops
can be approximated via ÛMH

∞ . Figure 9 shows the median
value of the maximum channel loss along the best path for
several values of Range and for networks with up to 5 hops
with d = 100 m. Note that due to the difficulty of computing
high dimensional integrals, the longest paths examined had
only 5 hops.

Figure 9 shows that as the Range increases, the perfor-
mance improvement due to adding more nodes decreases.
This is reasonable since the added nodes are quite far away
from the geometric minimum path. On the other hand, when
Range = 80, there are still some improvements possible by
including nodes that are quite far from the geometric minimum
path. While not shown here, improvements were observed for
the 2-hop network when Range was allowed to grow to 100
m. Considering that the relay-sets are 100 m apart, this shows
that improvements can be achieved by considering paths with
a geometric length4 that is 40% longer then the path with
shortest geometric length.

For reference purposes, the maximum channel gain along
the path with shortest geometric length is shown. We see that
for the topology examined here, diversity allows nearly 35 dB
of improvement over the path shortest geometric length. Thus,
in this case, diversity improves the performance by a factor of
approximately 3000.

4The geometric length of a path is the sum the distances between adjacent
nodes.
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Fig. 9. Achievable performance provided by diversity for the topology shown
in Figure 1.

V. CONCLUSIONS

The performance impact of diversity over multihop net-
works was examined. Several techniques for determining the
performance were developed. The first method assumes that
the node spacing was large enough so that channel correlation
could be ignored. However, this method is computationally
difficult and can accommodate at most 14 nodes per relay-
set. An approximation of this method was developed that was
shown to provide an upper bound on performance. However,
the bound appears to be quite good yielding an error in the
expect performance of 1 dB for networks with large relay-sets.
While approach can be applied to a variety of topologies, it
is required that the nodes are spaced far enough apart that
channel correlations can be ignored. In order to examine the
performance for high node densities, the correlation must be
accounted for. This was accomplished by modeling the relay-
sets as a continuous set of nodes, and hence the channels were
modeled as a continuum of channels. In this case the channels
are modeled as diffusion processes (specifically, a Ornstein-
Uhlenbeck processes) or random fields (specifically, a product
Ornstein-Uhlenbeck processes). The Poisson clumping heuris-
tic was used to approximate the performance in this case. For
the topology examined, it was found that diversity can improve
performance (in terms of the route metric considered) by about
35 dB.

One future direction is to examine the performance
in more general topologies, but with very dense nodes.
In this case, the channel from location (w,x) to (y, z)
is written L (w, x, y, z), hence the channels are a 4-
parameter random field. And E (L (s, t, u, v)L (w, x, y, z)) =

σ2 exp

µ
−α

µq
(s− w)2 + (t− x)2 +

q
(u− y)2 + (v − z)2

¶¶
.

The Poisson clumping heuristic must be extended to examine
the performance of such channels.
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