Angular Map-Driven Snakes With Application to Object Shape Description in Color Images

Adriana Dumitruș, Member, IEEE, and Anastasios N. Venetsanopoulos, Fellow, IEEE

Abstract—We propose a method for shape description of objects in color images. Our method employs angular maps in order to identify significant changes of color within the image, which are then used to drive snake models. To obtain an angular map, the angle values of the vectors corresponding to color image pixels are first computed with respect to a reference vector, and organized in a two-dimensional matrix. To identify significant color changes within the original image, the edges of the angular map are next extracted. The resulting edge map is then presented to a snake model. Distance and gradient vector flow snake models have been employed in this work. Experimental results show, not only that the resulting object shape descriptions are accurate and quite similar, but also that our method is computationally efficient and flexible.

Index Terms—Angular color map, gradient vector flow, object shape description, snakes.

I. INTRODUCTION

SHAPE description of visual objects is required in many applications such as image and video retrieval, video structuring for browsing and animation [1], cartoon frame filling [2], segmentation [3], and tracking [4]. The shape of an object can be easily described qualitatively by words (using terms such as elongated, rounded, with sharp edges) or by sketches [5]. Describing the shape of an object quantitatively, however, is more difficult and numerous boundary-based and region-based shape description methods have been proposed. Chain codes, geometric border representations, Fourier transforms of the boundaries, polygonal and spline representations, curvature scale-space representations, and deformable (active) models are examples of boundary-based shape methods that have been employed for shape description. Simple scalar region descriptors, moments, region decompositions, and region neighborhood graphs are region-based methods that have been proposed for the same task [1], [5], [6]. Boundary-based active (snake) methods have been particularly successful in describing complex shapes and/or shapes that change dynamically, thereby overcoming the limitations of other shape description methods.

A snake is defined as a curve that evolves within the image until it matches the boundaries of a target object [7], [8]. Snake models have been extensively applied to shape description of objects in bi-level and gray-level images, despite a few problems that are associated with snake initialization and poor convergence to boundary concavities. Snake models have been rarely applied to shape description of objects in color images, with few exceptions such as [9]–[11]. Because they are based on the theory of surface evolution and geometric flows, color snakes of [9]–[11] have quite high computational costs. Therefore, their application to object shape description remains limited. Solutions to apply snake models to color images that likely yield better efficiency consist of:

1) performing color space transforms and then applying snake models to the image planes which contain most of the color information;
2) performing color edge detection and then applying a snake model that is designed for bi-level images to the resulting edge map;
3) including in the snake model terms that depend on the color characteristics of all color planes and applying the snake model to a single image plane;
4) applying snake models separately to each of the color planes [12].

Despite being generally simple, color space transforms are computationally expensive and increase the processing time that is associated to the description of the object shape [13]. Color edge detection applied to the original image is impractical in applications that require processing of mixed databases, which consist of bi-level, gray-level, and color images. Defining color-based terms for the snake models is generally difficult and it is a topic of ongoing research. Applying parametric snake models separately to each color plane has been considered of limited use [9], because of the difficulty in combining the resulting snake shapes into a final contour of the object shape. Although methods that successfully combine the snake shapes obtained in each of the color planes have been proposed [12], they still require processing of all of the image planes. Of course, this is time consuming when processing based on sequential implementations is employed.

To address the above problems, in this work we propose a shape description method of objects in color images using angular map-driven snakes. In our method, the angle value of each vector corresponding to a pixel in the color image is computed, the resulting angle values are next assembled in an angular map, which is then used to drive snake models. Distance snake models [14] and gradient vector flow snake models [15] are selected in

Manuscript received November 10, 2000; revised September 17, 2001. This work was performed at the University of Toronto, Toronto, ON, Canada, and was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the University of Toronto. The associate editor coordinating the review of this manuscript and approving it for publication was Dr. Mark S. Drew. A. Dumitruș is with AT&T Labs Research, Middletown, NJ 07748 USA (e-mail: adriana@research.att.com).
A. N. Venetsanopoulos is with the Edward Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada (e-mail: anv@dsp.toronto.edu).

Publisher Item Identifier S 1057-7149(01)10570-1.
this work, and they are driven by two versions of the angular map.

By making available color information to the snake models and by inheriting the capabilities of the distance and gradient vector flow snake models, respectively, our angular map-based shape description method is clearly effective. Moreover, our proposed method is efficient because 1) it avoids color space transforms, color edge detection, and processing of multiple color planes; 2) it makes use of snake models which can be equally applied to bi-level, gray-level, or color images in a database of mixed pictures; and 3) it makes use of an angular map which is either available (for instance, in applications such as color-based image and video retrieval) or may be computed efficiently using a specified region-of-interest within the image. Finally, our method is flexible, in the sense that the angular map may be computed with respect to different reference vectors. This allows precise and coarse descriptions of object boundaries of higher and lower interest, respectively, by the snake models. Object shape description in medical images, for instance, would particularly benefit from the flexibility of our proposed method, as different parts of the object boundaries (e.g., tumor) may require more accurate descriptions than others for diagnostic purposes.

The rest of the paper is divided in five sections. Section II presents main ideas related to the snake models. Section III provides a detailed presentation of our proposed angular map-driven snake method. Experimental results and conclusions are included in Sections IV and V, respectively.

II. BACKGROUND

Numerous snake models and variations have been proposed since Kass et al. introduced their (today known as traditional) snake model in [7]. Traditional parametric snake models are curves that are described by \(\mathbf{x}(s) = (x(s), y(s)) \), where \(x, y \) are the coordinates of the snake curve within the image, and \(s \) is a parameter which is proportional to the arc length of the snake curve [7]. A snake iteratively changes its position according to the minimization of an energy function given by

\[
E(\mathbf{z}) = \int_0^1 E_{\text{int}}(\mathbf{z}(s)) \, ds + \int_0^1 E_{\text{ext}}(\mathbf{z}(s)) \, ds
\]

\[
= \frac{1}{2} \int_0^1 \left(\alpha(s) \left(\frac{\partial \mathbf{z}(s)}{\partial s} \right)^2 + \beta(s) \left(\frac{\partial^2 \mathbf{z}(s)}{\partial s^2} \right)^2 \right) \, ds
\]

\[
+ \int_0^1 E_{\text{extra}}(\mathbf{z}(s)) \, ds
\]

(1)

where \(E_{\text{int}}, E_{\text{ext}}, \alpha(s) \), and \(\beta(s) \) are the internal energy, the external energy, the snake tension, and the snake rigidity, respectively. Typically, the external energy is given by \(E_{\text{ext}} = I(x, y) \) and \(E_{\text{extra}} = -\nabla I(x, y) \) for bi-level and gray-level images, respectively, where \(I(x, y) \) and \(\nabla \) stand for the original image or the original image convolved with a two-dimensional Gaussian function, and the Laplace operator, respectively.

The snake that minimizes the energy functional \(E(\mathbf{z}) \) in (1) must satisfy the Euler equation \(\mathbf{F}_{\text{int}} + \mathbf{F}_{\text{ext}} = 0 \), where the internal force \(\mathbf{F}_{\text{int}} \), the external force \(\mathbf{F}_{\text{ext}} \), \(\alpha \), and \(\beta \) are given by

\[
F_{\text{int}} = \alpha(s) \left(\frac{\partial^2 \mathbf{z}(s)}{\partial s^2} \right) - \beta(s) \left(\frac{\partial \mathbf{z}(s)}{\partial s} \right)
\]

\[
F_{\text{ext}} = -\nabla E_{\text{ext}}.
\]

III. PROPOSED METHOD

Our goal is to obtain an accurate and flexible shape description of objects in color images with reasonable computational costs. To achieve our goal, we propose an angular map-driven snake method, which is illustrated in Fig. 1. In what follows, we describe each of its processing stages.

Let a color image be represented by a set of two-dimensional image planes in a selected color space. Let each of these image planes be represented as a matrix, each matrix element \(M_i(x, y) \) consisting of a pixel value in row \(x \) and column \(y \) [20], [21]. The proposed method consists of three steps. First, we compute the values of an angular color map, which are given by

\[
\theta_1(x, y) = 1 - \frac{2}{\pi} \arccos \left(\frac{\mathbf{v}(x, y) \cdot \mathbf{v}_{\text{ref}}}{\|\mathbf{v}(x, y)\| \|\mathbf{v}_{\text{ref}}\|} \right)
\]

or by

\[
\theta_2(x, y) = \theta_1(x, y) \left[1 - \left(\frac{\mathbf{v}(x, y) - \mathbf{v}_{\text{ref}}}{\sqrt{3 \times 2S^2}} \right) \right]
\]

yielding the angular maps \(\{\theta_1\} \) or \(\{\theta_2\} \), respectively. Notation \(\mathbf{v}(x, y) \) stands for a vector consisting of the values of all of the pixels located at the position \((x, y) \) within the color image planes. For instance, \(\mathbf{v}(x, y) \) is the vector \(\mathbf{v}(x, y) = [R(x, y), G(x, y), B(x, y)] \) in the RGB color space, where \(R(x, y) \), \(G(x, y) \), and \(B(x, y) \) denote the values of the pixels located at the position \((x, y) \) in the \(R \), \(G \), and \(B \) color planes, respectively. Notations \(\mathbf{v}_{\text{ref}}, \theta_1 \), and \(\theta_2 \) stand for a reference vector, the value of the angle given by (2) between the vector \(\mathbf{v}(x, y) \) and the reference vector \(\mathbf{v}_{\text{ref}} \), and the value of the angle given by (3) between the vector \(\mathbf{v}(x, y) \) and the reference vector \(\mathbf{v}_{\text{ref}} \), respectively.
Second, we identify significant color changes within the original image by extracting the edges of the angular map. Third, the resulting edge map \(f(x, y) \) is presented to a snake model in order to obtain a shape description of the color object. In this work, we select distance [14] and gradient vector flow [15] snake models for our object shape description.

If a distance snake model [14] is selected, a potential function which depends on the distance \(d(s) \) between the snake points and the closest edge points of the edge map \(f(x, y) \), can be computed. Using the Euclidean distance, this potential function is given by:

\[
P(d(s)) = \sum_{i} ||z(s_i) - f(x_i, y_i)||^2,
\]

where \(z(s_i) = \langle x(s_i), y(s_i) \rangle \). The external force \(\mathbf{F}_{\text{ext}} \), which is computed as the negative gradient of the potential function \(P(d(s)) \), is obtained by:

\[
\mathbf{F}_{\text{ext}} = -\nabla P.
\]

Notations \(f(x, y) \) and \(\mu \) stand for the edge map computed using the angular map and a regularization parameter, respectively. The gradient vector flow field is obtained directly by solving numerically the Euler equations given by [15]:

\[
\mu \nabla^2 u - (u - f_x)(f_x^2 + f_y^2) = 0 \tag{5}
\]

\[
\mu \nabla^2 v - (v - f_y)(f_x^2 + f_y^2) = 0. \tag{6}
\]

The position of the gradient vector flow snake curve is changed iteratively such that the energy functional given by (4) is minimized.

To summarize, the algorithm described earlier computes an angular map image plane which characterizes the original multiplane color image. This angular map illustrates color changes within the original image, which are then provided to the snake model. We note that, the angular map \(\{\theta_2\} \), consisting of values given by (2), has been employed previously in the context of vector filtering, edge detection and color-based image retrieval. We also note that, the angular map \(\{\theta_2\} \) is computed using a modified version of the angular distance measure introduced in [22] in the context of color-based image retrieval. In modifying the angular distance of [22] by retaining only the weighted angle term (i.e., we have been motivated by the fact that, the angular map \(\{\theta_2\} \) not only has to allow the identification of color discontinuities within the image, but also it has to allow meaningful comparisons of the results with those obtained by the angular map \(\{\theta_1\} \). Therefore, the value of \(\theta_2 \) given by (3) is the same as that of \(\theta_1 \) given by (2) (that is, zero), for vectors \(\mathbf{v} \) that are orthogonal with the reference vector \(\mathbf{v}_{\text{ref}} \). For vectors \(\mathbf{v} \) that are collinear to the reference vector \(\mathbf{v}_{\text{ref}} \), the values of \(\theta_2 \) are less than one, because of the weighting factor which is dependent on the magnitudes of the vectors being compared, while the value of \(\theta_1 \) is equal to 1.

Clearly, the main difference between the angular maps \(\{\theta_1\} \) and \(\{\theta_2\} \) is the fact that the former takes into account only the angle of the color vectors, whereas the latter takes into account both the angle and the magnitude of the color vectors. Both angular maps \(\{\theta_1\} \) and \(\{\theta_2\} \), however, indicate color changes within the image. We can illustrate this by using two simple examples. In the first example, which is illustrated in Fig. 2(a), a blue circle is placed on a green background. Both graphical representations of the angular maps \(\{\theta_1\} \) and \(\{\theta_2\} \) show that, the color changes in the image correspond to the object boundary. To further illustrate the effectiveness of the color angular maps, a second example is provided in Fig. 2(b). By contrast to Fig. 2(a), we here employ the image BREAM, which contains several colors. Even so, the object boundary is correctly identified using both of the color angular maps and it is shown more clearly in the graphical representation of the angular map \(\{\theta_2\} \).

In the examples illustrated in Fig. 2, both angular maps have been computed with respect to the reference vector \(\mathbf{v}_{\text{ref}} = [111] \). When \textit{a priori} knowledge regarding the color content of the image is available, other reference vectors may be selected, which may enhance significantly the angular map values corresponding to the object boundaries. More specifically, by selecting a different reference vector, the angular maps will yield more accurate information for some of the object outline segments, while yielding less accurate information about others. This is illustrated in Fig. 3. The boundaries of the blue circle on a half-green and half-red background are more visible when the reference vectors are selected to be equal to \(\mathbf{v}_{\text{ref}} = [100] \) (red) or \(\mathbf{v}_{\text{ref}} = [010] \) (green). We also note that, this is even more clear in the graphical representation of the angular map \(\{\theta_1\} \), whereas in that of \(\{\theta_2\} \), the weighting term which depends on the magnitudes of the vectors being compared, contributes to reducing this effect.

Simple gray-level edge detection may be applied to the resulting angular maps in order to detect color changes within the original image. This solution has several advantages. By applying edge detection to a single image plane, computational costs of methods such as [23], [24], which identify directions of major changes in vector data, are avoided. Moreover, an initial approximation of the object boundary is not required for the computation of the edge map, as compared to methods such as [25], which compute color variations by differences between inside and outside contour points. Finally, in image databases that contain both gray-level and color images, it is particularly convenient to apply the same edge detection tool to the original image and angular map, respectively.
IV. EXPERIMENTAL RESULTS

In what follows, we illustrate the performance, flexibility, and computational advantages of our proposed angular map-driven snake method for object shape description.

A. Implementation Details

Several implementation issues need to be addressed before illustrating the performance of our method, namely the image test set, the color space, the initialization conditions, the parameter values, the number of iterations, the computation of the edge maps and the evaluation indexes. The images used in our experiments are color frames from the video sequence BREAM and the color pictures Seagull, Hibiscus and Rose from the Kodak image set [26]. The shapes of the objects within these images contain smooth and high detail, as well as convex and concave segments.

Our images are represented in the RGB, normalized RGB and opponent color spaces. The representation in the RGB color
Fig. 4. Performance of the distance snake in the (a) RGB, (b) normalized RGB, and (c) opponent color spaces using the angular color map $\{\theta_1\}$ given by (2) and the color images BREAM, SEAGULL, HIBISCUS, and ROSE. The final snakes are superimposed over the original images.

Fig. 5. Performance of the gradient vector flow snake in the (a) RGB, (b) normalized RGB, and (c) opponent color spaces using the angular color map $\{\theta_1\}$ given by (2) and the color images BREAM, SEAGULL, HIBISCUS, and ROSE. The snakes are superimposed over the original images.

space is motivated by the fact that, images are most frequently stored as such. The representation in the normalized RGB color space, which consists of normalized colors (chromaticity coordinates) that are given by the nonlinear transform $r = R/(R + G + B)$, $g = G/(R + G + B)$, and $b = B/(R + G + B)$ of the R, G, and B color planes, respectively, is also commonly used because the normalized colors have better stability with respect to illumination changes than their R, G, and B correspon-
We initialize the snake models using user-defined polygonal regions-of-interest, although any shape of region-of-interest may be selected. The parameter values and the number of iterations are the same in all of our experiments and they are equal to $\alpha = 0.05$, $\beta = 0$, and $\mu = 0.2$, where α, β and μ are the elasticity, rigidity and regularization parameters of the gradient vector flow snake model, respectively [15]. The number of iterations has been selected to be equal to 500. The edge maps are computed using Sobel edge detectors for all of the angular maps.

We evaluate the accuracy of the shape contours subjectively and objectively. More specifically, we perform visual inspection of the shape contours and we compute the normalized perimeter and the normalized surface-area of the snake object [27], and the normalized number of missed pixels. The normalized perimeter is computed as the ratio between the snake object perimeter and the actual object perimeter. The normalized surface-area is computed as the ratio between the actual object surface-area and the shape contours and we compute the normalized number of missed pixels as the ratio between the number of missed pixels and the actual object surface-area.

B. Results

We compute the values of the angular map $\{\theta_1\}$ given by (2). Next, we present the edge image plane obtained using the resulting angular map to the snake model. Figs. 4 and 5 illustrate the shape descriptions obtained using distance and gradient vector flow snake models, respectively, and the test images in the RGB, normalized RGB and opponent color spaces. The angular map has been computed with respect to the reference vectors $\mathbf{v}_{ref} = [1 \ 1]$ for Fig. 4(a) and (b), and Fig. 5(a) and (b), and $\mathbf{v}_{ref} = [1 \ 0 \ 0]$ for Fig. 4(c) and Fig. 5(c), respectively. As these figures illustrate, the accuracy of the gradient vector flow snake model is higher than that of the distance snake model. This is also confirmed by the values of the objective indexes in Tables I and II. The normalized number of missed pixels decreases for the snake object boundaries obtained by the gradient vector flow snake as compared to those obtained by the distance snake for all of the images. Moreover, each of the snake models yields almost identical shape descriptions for the same image object in both RGB and normalized RGB color spaces. In general, the shape description results improve when the images are represented in the opponent color space, as shown in Figs. 4 and 5, and Tables I and II. This is mostly visible in Fig. 4(c) and Fig. 5(c) for the image ROSE, which is particularly difficult to process by the snake models because of the object of interest (the rose) being located behind a fence (which yields strong edges within the image). In the opponent color space, both snake models identify correctly most of the rose boundary, as opposed to the RGB and normalized RGB color spaces, where the snake models are sometimes attracted to the fence edges.

Similar results to those illustrated in Figs. 4 and 5 have been obtained using the angular map $\{\theta_2\}$ given by (3), when the reference vectors have been selected to be identical to those mentioned above. This is, of course, motivated by the fact that, in this case the angular maps given by (2) and (3) yield identical values. When different values of the reference vectors are selected, however, the performance of the gradient vector flow snake model using the image ROSE is better than that of the distance snake model. Moreover, as Fig. 6 shows, the performance of the gradient vector flow snake model using the angular map $\{\theta_1\}$ is better than that obtained using the angular map $\{\theta_2\}$.

To illustrate the impact of the reference vector on the accuracy of the resulting shape description, we have selected numerous values of \mathbf{v}_{ref} in our experiments. Fig. 6 illustrates a simple example. By selecting the reference vector to be [0 1 0], the shape description obtained by the gradient vector flow snake model using the image ROSE in the opponent color space and the angular map $\{\theta_1\}$ is more accurate than that in Fig. 5(c). In the

3 The assumption that a region-of-interest is available is valid in light of the numerous applications which require either a coarse approximation of the object location or a user-defined region-of-interest.

4 The surface-area of the object is defined as the total number of pixels within the actual object.

5 For perfect shape descriptions, the normalized perimeter is equal to one, the normalized surface-area is also equal to one, and the normalized number of missed pixels is equal to zero.
Fig. 6. Performance of the gradient vector flow snake in the opponent color space using (a) the angular map θ_1 given by (2) and (b) the angular map θ_2 given by (3), and the color image ROSE. The snakes are superimposed over the original image.

RGB and normalized RGB color spaces, the numbers of missed pixels are also consistently reduced by selecting the reference vector as the dominant color, as Fig. 7 illustrates for the images ROSE and SEAGULL. Similar results hold for shape descriptions obtained using the angular map $\{\theta_2\}$. For this angular map and selections of the reference vector which are close to the mean vector of the image, the resulting shape descriptions and the normalized numbers of missed pixels are included in Table III. Clearly, the reference vectors v_1 and v_2, which are the closest to the mean vectors of the images BREAM and ROSE, respectively, yield angular maps which in turn, lead to the most accurate shape descriptions of those included in the table. Finally, we note that, even when the reference vector is selected incorrectly, as in the right-most column of Fig. 6, the resulting shape description still matches partially the object boundaries.

The CPU times required by the computation of the angular maps $\{\theta_1\}$ and $\{\theta_2\}$, distance potential forces and gradient vector flow forces, respectively, for a typical image of size equal to 256×256 pixels, are included in Table IV. For such an image size, the computation of the angular map $\{\theta_1\}$ is approximately two times faster than that of the angular map $\{\theta_2\}$. We note that, in numerous applications, such as color-based image retrieval using angular distance measures, the angular map may be already available. When the angular map is not available, however, it is efficient as well as sufficient (especially for medium to large images) to compute it within a specified region-of-interest. As Table IV also shows, the CPU time required by the computation of the angular map values for a typical region-of-interest employed in our experiments decreases significantly as compared to that required by its computation using the entire image, again in favor of the angular map $\{\theta_1\}$. Moreover, the CPU time required by the computation of the distance potential forces and gradient vector flow forces for a region-of-interest is approximately the same, therefore the selection of either of the two snake models has the same impact on the proposed method.

C. Discussion

In this section, we comment on the accuracy, flexibility, and computational demands of our proposed method. The accuracy of the resulting object shape description depends on the selection of the angular map, color space, reference vector, and snake model. In terms of accuracy, both angular maps $\{\theta_1\}$ and $\{\theta_2\}$ yield good descriptions of the object shape. The results obtained using the angular map $\{\theta_1\}$, however, outperform those obtained using the angular map $\{\theta_2\}$. This is motivated by the fact that, the values of $\{\theta_2\}$ are weighted angle values. By contrast, the values of $\{\theta_1\}$ are angle values without weighting. Consequently, $\{\theta_1\}$ indicates more visibly the color changes. As such, for shape description purposes, the angular map $\{\theta_1\}$
The selection of the angular map \(\{ \theta_2 \} \) yields higher speed of our proposed method, than that of the angular map \(\{ \theta_1 \} \). Moreover, when viewed in a general sense, as the application of a transform to a color image, the computation of the angular map given by (2) or (3) also requires less computational resources than color space transforms such as RGB to HSV, or RGB to CIELAB \([13]\).

V. CONCLUSIONS

We have proposed an angular-map driven snake method for object shape description in color images. By making use of color information and the abilities of selected (distance or gradient vector flow) snake models, our method is highly effective. By avoiding color space transforms, color edge detection, and processing of multiple color planes, and by using snake models that can be also applied to bi-level or grayscale images, our method is also efficient. By making use of an angular map which is either available or may be computed easily using various reference vectors, our method is flexible. As such, the proposed angular-map drive snake method is well suited to numerous applications that require object shape description in color images, including image database retrieval and medical imaging.

REFERENCES

Anastasios (Tas) N. Venetsanopoulos (S’66–M’69–SM’79–F’88) received the Diploma of Engineering degree from the National Technical University of Athens (NTU), Greece, in 1965, and the M.S., M.Phil., and Ph.D. degrees in electrical engineering from Yale University, New Haven, CT, in 1966, 1968, and 1969, respectively.

He joined the Department of Electrical and Computer Engineering at the University of Toronto, Toronto, ON, Canada, in September 1968 as a Lecturer and he was promoted to Assistant Professor in 1970, Associate Professor in 1973, and Professor in 1981. Since July 1997, he has been Associate Chair—Graduate Studies of the Department of Electrical and Computer Engineering and was Acting Chair of the Electrical and Computer Engineering Department, during the period of January 1999–July 1999. In 1999, The Bell Canada Chair in Multimedia was established in the ECE Department, made possible by a donation of $1.25 M from Bell Canada, matched by an equal amount of university funds. He assumed this position as Inaugural Chairholder in July 1999. He has served as Chair of the Communications Group and as Associate Chair of the Department of Electrical and Computer Engineering. He was on research leave at the Imperial College of Science and Technology, the National Technical University of Athens, the Swiss Federal Institute of Technology, the University of Florence and the Federal University of Rio de Janeiro, and was Adjunct Professor at Concordia University. He has served as a Lecturer in 138 short courses to industry and continuing education programs and as Consultant to numerous organizations. He is a contributor to 29 books, and is a coauthor of *Nonlinear Digital Filters: Principles and Applications* (Norwell, MA: Kluwer, 1990), *Artificial Neural Networks: Learning Algorithms, Performance Evaluation and Applications* (Norwell, MA: Kluwer, 1993), *Fuzzy Reasoning in Information, Decision and Control Systems* (Norwell, MA: Kluwer, 1994), and *Color Image Processing and Applications* (Berlin, Germany: Springer-Verlag, 1990), and has published more than 650 papers on digital signal and image processing and digital communications. He was Editor of the *Canadian Electrical Engineering Journal* (1981–1983).

Dr. Venetsanopoulos has served as Chair on numerous boards, councils and technical conference committees, including IEEE committees, such as the Toronto Section (1977–1979) and the IEEE Central Canada Council (1980–1982); he was President of the Canadian Society for Electrical Engineering and Vice President of the Engineering Institute of Canada (1983–1986). He was a Guest Editor and Associate Editor for numerous IEEE journals. He is a member of the IEEE Communications, Circuits and Systems, Computer, and Signal Processing Societies, as well as a member of Sigma Xi, the Technical Chamber of Greece, the European Association of Signal Processing, the Association of Professional Engineers of Ontario (APEO) and Greece. He was elected as a Fellow of the IEEE “for contributions to digital signal and image processing.” Fellow of EIC, “for contributions to electrical engineering” and was awarded an Honorary Doctorate from the National Technical University of Athens, in October 1994. In October 1996, he was awarded the “Excellence in Innovation Award” of the Information Technology Research Centre of Ontario and Royal Bank of Canada, “for innovative work in color image processing and its industrial applications.” In 2000, he was awarded the Millennium Medal of IEEE. Since July 2001, he has been serving as the Dean of the College (Faculty) of Applied Science and Engineering of the University of Toronto.