Image Segmentation

Objective: extract attributes (objects) of interest from an image
- Points, lines, regions, etc.

Common properties considered in segmentation:
- Discontinuities and similarities

Approaches considered:
- Point and line detection
- Edge linking
- Thresholding methods
 - Histogram, adaptive, etc.
- Region growing and splitting

Detection of Discontinuities
- Mask filtering approach:
 \[R(x, y) = x_1 x_2 x_3 + x_4 + x_5 + x_6 + x_7 + x_8 \]
- Isolated point detection: \(|R| \geq T\)
- Example:
 - X-ray image
 - T=90% of max value
 - Input, gradient, threshold output

Line Detection
- Line detection masks
 - Detects lines one pixel wide
 - Line orientation specific
 - Set orientations specific thresholds
 - Second derivative based
Line Detection Example

- Wire-bond mask for electronic circuit
- Application of -45° edge mask
- Result of thresholding

Edge Detection

- Concepts:
 - Edge – local
 - Boundary – global
- Ideal edge:
 - Step
- Practical edge:
 - Ramp
 - Ideal edges are smoothed by optics, sampling, illumination conditions
 - Inch thickness determined by transition region

Edge Example – Noiseless Case

- Ramp edge
- The first derivative:
 - Pulse
- Thick edges
- Second derivative:
 - Spikes at onset and termination
 - Zero crossing marks edge center

Edge Example – Noisy Case

- Gaussian noise corrupted edge
- Derivatives amplify noise
- Even modest levels of noise severely degraded gradient-based edge detection
- Possible solution: noise smoothing prior to edge detection
Gradient Operators

- Two-dimensional gradient:
 \[\nabla \left[\frac{f_x}{f_y} \right] = \frac{f_y}{f_x} \]
 - Magnitude:
 \[\sqrt{f_x^2 + f_y^2} \]
 - Direction (angle)
 \[\tan^{-1} \left(\frac{f_y}{f_x} \right) \]
 - Perpendicular to edge
 - Approximation:
 \[\nabla \approx \frac{1}{2} \left(\begin{array}{c} f_x \\ f_y \end{array} \right) \]
 - Shown: mask realizations

Gradient Operators and Example

- Application: Horizontal, vertical and (additive) gradient

Gradient Example (I)

- Preprocess image
 - Smooth detail textures
 - Thicken edges
 - Filter: 5x5 averaging filter

Gradient Example (II)

- Extension to 45° gradients and their application
Laplacian of a Gaussian (LoG)

- Recall Laplacian:
 \[\nabla^2 f \quad \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

- Edge detection limitations:
 - Produces double edges
 - Insensitive to edge direction
 - Sensitive to noise

- Pre-smooth with Gaussian filter

- Combined (linear) smoothing and derivative operations

\[\nabla^2 f \left(\frac{r}{\sigma} \right) = - \left[\frac{r^2 - \sigma^2}{\sigma^4} \right] e^{-r^2/\sigma^2} \]

LoG Example

- Angiogram example
 - Sobel output shown for reference
 - To obtain edges:
 - Threshold LoG
 - Mark zero crossings
 - Numerous false (spaghetti) edges
 - First derivative more widely used
 - LoG models certain aspects of the human visual system

Edge Linking

- Procedures often yield broken edges
 - Noise, illumination irregularities, etc.
- Link neighboring segments based on predefined criteria
 - Example criteria:
 - Strength of gradients
 \[\| \nabla f(x_0, y_0) \| \leq E \]
 - Direction of gradients
 \[\| \nabla f(x_0, y_0) \cdot \alpha(x_0, y_0) \| < \Delta \]
 - Applied over predefined search neighborhood

Edge Linking Example

- Goal: license plate localization
- Shown: horizontal and vertical gradient images
- Linking criteria:
 - Gradient \(\geq 25 \)
 - Angle differences \(\leq 15^\circ \)
- Final result:
 - Linked edges
 - Search for license plate based on rectangle side ratios
Hough Transform (I)

- General approach:
 - Project feature into a parameter space
 - Examples: lines, circles, etc.
- Line case:
 - Defining parameters: slope and intercept
 - Map lines into the single (slope, intercept) 2-tuple
 - Advantage: an infinite number of points get mapped to a single 2-tuple
- Reverse operation for isolated (binary) points
 - Line case: a point is located on an infinite number of lines
 - Map to all (slope, intercept) 2-tuples corresponding to the infinite number of lines passing through the point
 - Result: a curve in the (slope, intercept) plane

Hough Transform (II)

- Line equation:
 \[y = ax + b \]
- Parameter space:
 - Fix \(x_i \) and \(y_j \)
 - Line in parameter space:
 \[b = -x_i a + y_j \]
 - All lines (in parameter space) for points on a line in image space cross at a single point
 - Crossing point: common (slope, intercept)

Hough Transform Example (I)

- Image space:
 - Five points
- Parameter space curve intersections:
 - Lines connecting points in image space
Hough Transform Example (II)

- Edge localization example
- Input: infrared image
- Process:
 - Edge detection
 - Hough transform
 - Peak detection
 - Map (lines) back to image space
- Generalizations to other shapes

Collimation of X-Ray Images (I)

- Problem: identify region of exposure
- Problem: x-ray scattering smoothes edges
- Solution:
 - Enhance edges
 - Detect edges
 - Radon transform detected edges
 - Hough transform generalization
 - Identify lines
 - Map border (lines) back to image space

Collimation of X-Ray Images (II)

- Radon transform:
 \[R(\rho, \theta) = \int f(x, y) \delta(x \cos \theta + y \sin \theta - \rho) \, dx \, dy \]
- Examples:
 - Sample border
 - Noise free and noisy cases
 - Image and transform domain representations
 - Peaks in transform domain correspond to lines in image domain

Collimation of X-Ray Images (III)

- Test case categories and the percentage of images in each category:
 - (I) 52%
 - (II) 9%
 - (III) 14%
 - (IV) 23%
 - (V) 10%
 - (VI) 7%
 - (VII) 6%
 - (VIII) 5%
Collimation of X-Ray Images (IV)

Sobel edge detection results

Collimation of X-Ray Images (V)

Radon transform of edge detection results

Collimation of X-Ray Images (VI)

Collimation results based on lines detected in the radon transform domain

Thresholding Approaches

- Thresholding is appropriate when:
 - Objects and background have different intensities
 - Multimodal distribution
- Threshold can be set:
 - Globally
 - Locally
 - Adaptively
- Utilized multiple thresholds
Illumination Effects

- Recall image model:
 \[f(x,y) = f_{(x,y)_{(c,y)}} \]
- Utilizing the log:
 \[\tilde{f}(x,y) = \ln(f(x,y)) = \ln(f_{(x,y)_{(c,y)}}) = f_{(x,y)_{(c,y)}} \]

- If components independent:
 - Convolve distributions
 - If \(f_{(x,y)} \) is constant
 - Density is a delta
 - Uneven illumination yields convolved, distorted distributions
 - No longer separable

K-Means Algorithm

- Clustering algorithm
 - Apply to spatial or multidimensional samples
 - Apply to intensities (one-dimensional) to cluster histogram
- Procedure:
 1. Place \(K \) points in the space
 - Initial cluster centroids
 - Set randomly or with a priori knowledge
 2. Assign all points (pixel values) to the cluster defined by the closest centroid
 3. Recalculate the positions (values) of the \(K \) centroids
 - Utilized appropriate distance metric (Euclidean, city block, etc.)
 4. Repeat Steps 2 and 3 until centroid movements are below a fixed threshold

K-Means Clustering Example

- \(K=2 \)
 - Arbitrarily choose \(K \) objects as initial cluster centers
 - Assign each object to most similar center
 - Update the cluster means
 - Reassign

Java Demo

Fingerprint Example

- Input image: grayscale
 - Histogram shows two modes
- Set threshold with K-means algorithm
 - \(K=2 \)
Mixture Model and the EM Algorithm (I)

- Statistical modeling
 - Relaxation of K-means
- Assume samples are from a mixture of two Gaussians:
 \[Y_1 \sim N(\mu_1, \sigma^2_1) \]
 \[Y_2 \sim N(\mu_2, \sigma^2_2) \]
 \[Y = (1-\Delta)Y_1 + \Delta Y_2 \]
 where \(\Delta \in \{0,1\} \) with \(\Pr(\Delta=1)=\pi \)
- The PDF of the samples is thus
 \[p_Y(y) = (1-\pi)p_{\theta_1}(y) + \pi p_{\theta_2}(y) \]
 where \(p_{\theta_1}(y) \) is a Gaussian PDF with parameters \(\theta = (\mu, \sigma^2) \)

Mixture Model and the EM Algorithm (II)

- Objective: given \(N \) observed samples, determined all parameters
 \[\theta = (\pi, \theta_1, \theta_2) = (\pi, \mu_1, \sigma^2_1, \mu_2, \sigma^2_2) \]
- Estimation technique: Maximum Likelihood
 - Log-likelihood function:
 \[L(\theta; Z) = \sum_{i=1}^{N} \log(\pi p_{\theta_1}(y_i) + (1-\pi) p_{\theta_2}(y_i)) \]
 - Direct maximization is difficult
 - Solution: suppose we know the values of the \(\Delta_i \)’s
 - Log-likelihood function reduces to:
 \[L(\theta; Z, \Lambda) = \sum_{i=1}^{N} \log(\pi p_{\theta_1}(y_i) + (1-\pi) p_{\theta_2}(y_i)) \]

EM Algorithm for Two-Component Gaussian Mixture

1. Make an initial guesses for the parameters \(\hat{\mu}_i, \hat{\sigma}_i^2, \hat{\pi}_i, \hat{\Delta}_i \)
2. Expectation Step: compute the responsibilities
 \[\hat{\gamma}_i = \frac{\pi p_{\theta_1}(y_i)}{(1-\pi)p_{\theta_1}(y_i) + \pi p_{\theta_2}(y_i)}, \quad i=1, 2, \ldots, N \]
3. Maximization Step: compute the weighted means and variances
 \[\hat{\mu}_i = \frac{\sum_{i=1}^{N} (1-\hat{\gamma}_i) \hat{Y}_i}{\sum_{i=1}^{N} (1-\hat{\gamma}_i)} \]
 \[\hat{\sigma}_i^2 = \frac{\sum_{i=1}^{N} (1-\hat{\gamma}_i)(\hat{Y}_i - \hat{\mu}_i)^2}{\sum_{i=1}^{N} (1-\hat{\gamma}_i)} \]
 \[\hat{\mu}_2 = \frac{\sum_{i=1}^{N} \hat{\gamma}_i \hat{Y}_i}{\sum_{i=1}^{N} \hat{\gamma}_i} \]
 \[\hat{\sigma}_2^2 = \frac{\sum_{i=1}^{N} \hat{\gamma}_i (\hat{Y}_i - \hat{\mu}_2)^2}{\sum_{i=1}^{N} \hat{\gamma}_i} \]
 and the mixing probability \(\hat{\pi} = \frac{\sum_{i=1}^{N} \hat{\gamma}_i}{N} \)
4. Integrate steps 2 and 3 until convergence
Three Mixture Example

- Model samples as three Gaussian mixtures
- Initialize with guess
- Colors indicate probability of belonging to each parent distribution
- Shown:
 - Samples with probabilities
 - Initial guess distributions
 - Distribution variance contour
 - Iterations 1-6 and final result (iteration 20)

Relation Between EM and K-Means

- In the EM (Baum-Welch) algorithm
 - Utilized binary decisions: \(f_i = 1 \) if \(y_i - \hat{\mu}_2 < |y_i - \hat{\mu}_1| \)
 - Then \(\hat{\mu}_1 \) and \(\hat{\mu}_2 \) are unweighted means
 \[\hat{\mu}_1 = \frac{\sum f_i y_i}{\sum f_i} \quad \hat{\mu}_2 = \frac{\sum (1-f_i) y_i}{\sum (1-f_i)} \]
 - Equivalent to K-means (K=2)
- Trivially generalized to a larger number of partitions/mixtures
- Mixture model gives soft (probability) cluster assignments
- Generalizations
 - Fuzzy C-Means
 - Samples assigned to more than one cluster – membership function
 - Assignments are functions of distance
 - K-medoids – use cluster median as central representative point
 - More robust

Adapted Thresholding (I)

- Simple approach:
 - Partition image
 - Check homogeneity in each partition
 - Example: test variance
 - Segment nonhomogeneous partitions
 - Example: K-means
- Shown:
 - Global thresholding
 - Adaptive thresholding
Adapted Thresholding (II)

- Enlargements of:
 - Correctly segmented partition
 - Bimodal histogram
 - Incorrectly segmented partition
 - (Nearly) uni-modal histogram

- Solution:
 - Finer partitioning

Optimal Thresholding (I)

- Considered two objects
 - Foreground/background
 - Overlapping PDFs
- Overall (mixture) PDF:
 \[p(x) = \frac{1}{P_1 + P_2} \]
- Probability of classifying Object 2 as Object 1:
 \[E_2(T) = \int p_2(z) dz \]
- Probability of classifying Object 1 as Object 2:
 \[E_1(T) = \int p_1(z) dz \]
- Overall probability of error:
 \[E(T) = P_1 E_2(T) + P_2 E_1(T) \]

Optimal Thresholding (II)

- Solve for optimal threshold \(T \):
 \[\frac{d E(T)}{dT} = \frac{1}{P_1} \int p_1(z) dz + \frac{1}{P_2} \int p_2(z) dz \]
 \[= P_1 p_1(T) - P_2 p_2(T) \]
 \[\Rightarrow P_1 p_1(T) = P_2 p_2(T) \]
- In the Gaussian case:
 \[p(x) = \frac{1}{\sqrt{2\pi} \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
 - Solution is in the form of the quadratic:
 \[AT^2 + BT + C = 0 \]
 - Results may yield two thresholds:
 - If both distributions have a common variance, \(\sigma^2 \):
 \[T = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} = \frac{\mu_1 - \mu_2}{2\sigma^2} \left(\frac{\sigma_1^2 + \sigma_2^2}{\sigma_1^2} \right) \]

Cardiogram Example (I)

- Objective:
 - Automatically outline heart ventricle boundaries
 - Utilizes contrast medium
- Preprocessing:
 - Intensity log mapping to counter exponential radioactive absorption effects
 - Subtraction of base (noncontrast) image
 - Image (frame) averaging to reduce noise
- Procedure:
 - Subdivide image
 - Generate local histograms
Cardiogram Example (II)

- Procedure (cont’d):
 - Fit (uni/bi-modal) Gaussian distributions to histograms
 - For blocks with bimodal distributions:
 - Set adaptively determined threshold
 - Set boundaries by taking derivative of thresholded image

Region-Based Segmentation

- Previous approaches utilized continuities and/or pixel value attributes (gray value)
 - They do not operate on or directly consider regions
- Region-based formulation:
 - Let R be the entire image region
 - Segment R into n subregions, R_1, R_2, \ldots, R_n such that:
 1. $R = R_i$ for all i
 2. R_i is a connected region, $i = 1, 2, \ldots, n$
 3. $P(R) = \text{TRUE}$ for $i = 1, 2, \ldots, n$
 4. $P(R_i) = \text{FALSE}$ for $i \neq j$
 - $P(R_i)$ is a logical operator that defines the properties of the region
 - Example: $P(R_i) = \text{TRUE}$ if the pixel values in R_i are from a predefined set

Region Growing

- Approach:
 - Group pixels/subregions into larger subregions based on a set criteria
 - Criteria examples: gray level, texture, color, size, shape
 - Multiple criteria: gray value and size, etc.
 - Iterative procedure
 - How to set the seed regions, number of regions?
 - How to set criteria?
 - When to stop?

Region Growing Example (I)

- Objective:
 - Segment x-ray image to identify weld failures
- Set seed points:
 - All pixels having maximum (255) value
- Region growing criteria:
 - Absolute gray value difference ≤ 65
 - Set as difference between maximum value and first mode in histogram
 - Pixel is B-connected to at least one pixel in the region
Region Growing Example (II)

- Shown results:
 - Input
 - Seed regions
 - Results of region growing
 - Region boundaries

- Observations:
 - Histogram is not suited to strict thresholding
 - Connectivity criteria critical to satisfactory result

Region Splitting and Merging

- Alternative approach to seed regions:
 - Subdivide image into a set of arbitrary, disjoint regions
 - Merge and/or split the set of regions to satisfy region segmentation conditions
 - Value similarity, connectivity, etc.

- Quadtree method:
 - Split into four disjoint quadrants any region \(R_i \) for which \(P(R_i) = \text{FALSE} \)
 - Merged in the adjacent regions \(R_i \) and \(R_k \) for which \(P(R_i \cup R_k) = \text{TRUE} \)
 - Stop when no further merging or splitting is possible

Quadtree Split-Merge Example

- Homogeneity criteria:
 - \(P(R_i) = \text{TRUE} \) if \(\sum |z_i - m_i| \leq 2 \sigma_i \) for at least 80% of the pixels in \(R_i \)
 - Region mean: \(m_i \)
 - Region standard deviation: \(\sigma_i \)

- Shown: input, quadtree and threshold segmentations
 - Threshold set as midpoint between main histogram modes
 - Thresholding loses details

Morphology

- **Mathematical Morphology** focuses on extracting image components
 - Useful in the representation and description of region shapes
 - Examples: boundaries, skeletons and convex hulls

- Set operations
 - Typically applied to binary images
 - Multilevel extensions exist
Basic Set Operations

- Let A and B be sets in \mathbb{Z}^2
- Standard operations:
 - Union
 - Intersection
 - Complement
 - Difference
 - Reflection
 - Translation

Dilation

- The dilation of A by B:
 \[A \oplus B = \{ x \mid (y, y) \in B \cap (x, x) \in A \} \]
- Result:
 - The set of all displacements, z, such that the reflection of B and A overlap by at least one element
- Rewrite dilation:
 \[A \oplus B = \{ z \mid (y, y) \in B \cap (x, x) \in A \} \subseteq \hat{B} \cap \hat{A} \]
- Dilation structuring element: B

Dilation Example

- Dilation application:
 - Filling in gaps
- Example:
 - Scanned text

Erosion

- The erosion of A by B:
 \[A \ominus B = \{ x \mid (y, y) \in B \cap (x, x) \notin A \} \]
- Result:
 - The set of all displacements, z, such that B, translated by z, is contained in A
- Note dilation and erosion are duals of each other with the respective complementation and reflection:
 \[(A \ominus B)^c = A \ominus B \]
Erosion Example

- Erosion application: Elimination of irrelevant detail
 - A function of detail (structuring element) size
 - Example: 13x13 structuring element removes small details
 - Erosion removes (and shrinks) details
 - Postprocess through dilation: expands remaining details

Opening

- Opening smooths the contour of an object, breaks narrow isthmuses, and eliminates in protrusions
 \[A \ominus B = (A \ominus B) \ominus B \]
 - The erosion of \(A \) by \(B \), followed by dilation of the result by \(B \)

- Opening and closing our duels of each other with respect to complementation and reflection
 \[(A \oplus B)' = (A' \ominus B) \]
 - The dilation of \(A \) by \(B \), followed by erosion of the result by \(B \)
 - Opening and closing our duels of each other with respect to complementation and reflection

Closing

- Closing smooths the contour of an object, fuses narrow breaks and long thin gulfs, eliminate small holes, and fills gaps in the contour
 \[A \odot B = (A \odot B) \odot B \]
 - The dilation of \(A \) by \(B \), followed by erosion of the result by \(B \)

- Opening and closing our duels of each other with respect to complementation and reflection
 \[(A \odot B)' = (A' \oplus B) \]
Opening and Closing Example (II)

- **Fingerprint example**
- **Objective:**
 - Remove noise and connect broken lines
- **Operations:**
 - Opening
 - Eliminates noise
 - Closing
 - Connects broken lines

Watershed Segmentation (I)

- **Methodology:** topographical interpretation of image
 - Three types of points:
 - Points belonging to a regional minimum
 - Points that drain to a common minimum point
 - A drop of water released at all such points flows downhill, reaching a common minimum
 - Points referred to as catchment basin or watershed points
 - Points that can drain to more than one minimum point
 - Points referred to as divide or watershed lines

Watershed Segmentation (II)

- **Interpretation:**
 - Punch a hole in each regional minimum
 - Flood entire topography from below with rising water
 - Build dams to prevent catchment basins from merging
 - Once fully flooded, only dams remain
 - Dams define (closed) boundaries

Watershed Segmentation (III)

- Let M_1 and M_2 denote the set of points and two regional minima
- Catchment basins associated with the two regional minima:
 - $C_{n-1}(M_1)$ and $C_{n-1}(M_2)$
 - Defines a set of points (pixel locations) that drain to each of the minima
 - Flooding stage denoted by $n-1$
 - Union of points:
 - $C_{n-1}(M_1) \cup C_{n-1}(M_2)$
 - Catchment basin merging occurs at step n if:
 - C_{n-1} has two connected components
 - At step n there is a single, one connected component, q
Watershed Segmentation (IV)

- Dam construction:
 - Dilate \(C_{n-1}(M_1) \) and \(C_{n-1}(M_2) \) subject to:
 1. The dilation is constrained to \(q \).
 2. Dilation is not performed on points that cause the sets to merge.

- Example:
 - Top: \(C_{n-1}(M_1) \) and \(C_{n-1}(M_2) \)
 - Middle: \(q \)
 - Bottom: dilation

Watershed Algorithm (I)

- The watershed algorithm is typically applied to a gradient image.
- Regional minima (coordinates) in image \(g(x,y) \): \(M_1, M_2, \ldots, M_R \)
- Set containing the coordinates of the samples in the catchment basin associated with \(M_i \): \(C(M_i) \)
- Set of image points less than threshold \(n \):
 \[T[n] = \{(x,y) | g(x,y) < n \} \]
- Flood the image, and mark all pixels \(< \) the flood plane.

Watershed Algorithm (II)

- Union of flooded catchment basins:
 \[C[n] = \bigcup_{M_i} C(M_i) \]

- Union of all catchment basins:
 \[C[\max] = \bigcup_{M_i} C(M_i) \]

- Maximum image value: max
- Minimum image value: min

- Note: \(C[n-1] \subseteq C[n] \subseteq T[n] \)

- Each connected component in \(C[n-1] \) is contained in exactly one connected component of \(T[n] \)

Watershed Algorithm (III)

- Initialization: \(C[\min] = T[\min] \)
- Recursively determine \(C[n] \) from \(C[n-1] \):
 - Set of connected components in \(T[n] \): \(\mathcal{X}[n] \)
 - Three possibilities for each \(q \in \mathcal{X}[n] \):
 1. \(q \cap C[n-1] \) is empty
 2. A new minimum is encountered
 3. \(q \cap C[n-1] \) contains one connected component of \(C[n-1] \)
 4. \(q \cap C[n-1] \) contains more than one connected component of \(C[n-1] \)
 - A ridge separating two (or more) catchment basins is encountered
 - A dam is built to prevent flooding across basins
 - Dilate \(q \cap C[n-1] \) with a 3x3 structuring element, restricting the dilation to \(q \)
 - See previous description
Watershed Segmentation Example

- Diffuse object example
- Images shown:
 - Observation
 - Gradient
 - Watershed result
 - Watershed result superimposed on observation

Over Segmentation

- Watershed advantages:
 - Closed boundaries
 - Good edge localization
- Watershed disadvantages:
 - Over segmentation
 - Excessive number of minima
- Over segmentation solutions:
 - Preprocessing filtering
 - Restrict minima by using markers
 - Merged generated regions

Over Segmentation – Prefiltering

- Original image gradient contains excessive minima
- Prefiltering:
 - Median removes isolated minima
 - Thresholding removes inconsequential background minima
- Postprocess to remove background lines
- Results of gradient definition

Over Segmentation – Markers

- Use markers to define “super minima”
 - Region that is surrounded by greater magnitude points
 - Points in region form a connected component
 - Points in the connected component have the same gray level value
- Marked points shown on a smoothed image
 - Light gray denotes markers
- Apply watershed
 - Markers are the only allowable minima
 - Each region contains a single marker and background
 - Partition each region into foreground and background
 - Each region is considered in independent “image”
 - Final results consist of boundaries around the foreground in each marker defined region