Chapter 3 Problem Solutions

or student made this assumption from the beginning, then this answer follows almost by inspection.

Problem 3.24

The student should realize that both the Laplacian and the averaging process are linear operations, so it makes no difference which one is applied first.

Problem 3.25

The Laplacian operator is defined as

\[\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \]

for the unrotated coordinates and as

\[\nabla^2 f = \frac{\partial^2 f}{\partial x'^2} + \frac{\partial^2 f}{\partial y'^2} \]

for rotated coordinates. It is given that

\[x = x' \cos \theta - y' \sin \theta \quad \text{and} \quad y = x' \sin \theta + y' \cos \theta \]

where \(\theta \) is the angle of rotation. We want to show that the right sides of the first two equations are equal. We start with

\[
\frac{\partial f}{\partial x'} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial x'} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial x'} = \frac{\partial f}{\partial x} \cos \theta + \frac{\partial f}{\partial y} \sin \theta.
\]

Taking the partial derivative of this expression again with respect to \(x' \) yields

\[
\frac{\partial^2 f}{\partial x'^2} = \frac{\partial^2 f}{\partial x^2} \cos^2 \theta + \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial y} \right) \sin \theta \cos \theta + \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x} \right) \cos \theta \sin \theta + \frac{\partial^2 f}{\partial y^2} \sin^2 \theta.
\]

Next, we compute

\[
\frac{\partial f}{\partial y'} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial y'} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial y'} = \frac{\partial f}{\partial x} \sin \theta + \frac{\partial f}{\partial y} \cos \theta.
\]

Taking the derivative of this expression again with respect to \(y' \) gives

\[
\frac{\partial^2 f}{\partial y'^2} = \frac{\partial^2 f}{\partial x^2} \sin^2 \theta - \frac{\partial f}{\partial x} \left(\frac{\partial f}{\partial y} \right) \cos \theta \sin \theta - \frac{\partial f}{\partial y} \left(\frac{\partial f}{\partial x} \right) \sin \theta \cos \theta + \frac{\partial^2 f}{\partial y^2} \cos^2 \theta.
\]

Adding the two expressions for the second derivatives yields

\[
\frac{\partial^2 f}{\partial x'^2} + \frac{\partial^2 f}{\partial y'^2} = \frac{\partial^2 f}{\partial x'^2} + \frac{\partial^2 f}{\partial y^2}.
\]