Problem 4.3

Ideal low-pass filter with variable bandwidth. The transfer function of the matched filter for a rectangular pulse of duration \(\tau \) and amplitude \(A \) is given by

\[
H_{opt}(f) = \text{sinc}(fT)\exp(-j\pi fT)
\]

(1)

The amplitude response \(|H_{opt}(f)| \) of the matched filter is plotted in Fig. 1(a). We wish to approximate this amplitude response with an ideal low-pass filter of bandwidth \(B \). The amplitude response of this approximating filter is shown in Fig. 1(b). The requirement is to determine the particular value of bandwidth \(B \) that will provide the best approximation to the matched filter.

We recall that the maximum value of the output signal, produced by an ideal low-pass filter in response to the rectangular pulse occurs at \(t = T/2 \) for \(BT \leq 1 \). This maximum value, expressed in terms of the sine integral, is equal to \((2A/\pi)\text{Si}(\pi BT)\). The average noise power at the output of the ideal low-pass filter is equal to \(BN_0 \). The maximum output signal-to-noise ratio of the ideal low-pass filter is therefore

\[
(SNR)_0' = \frac{(2A/\pi)^2\text{Si}^2(\pi BT)}{BN_0}
\]

(2)

Thus, using Eqs. (1) and (2), and assuming that \(AT = 1 \), we get

\[
\frac{(SNR)'_0}{(SNR)_0} = \frac{2}{\pi^2BT} \text{Si}^2(\pi BT)
\]

This ratio is plotted in Fig. 2 as a function of the time-bandwidth product \(BT \). The peak value on this curve occurs for \(BT = 0.685 \), for which we find that the maximum signal-to-noise ratio of the ideal low-pass filter is 0.84 dB below that of the true matched filter. Therefore, the "best" value for the bandwidth of the ideal low-pass filter characteristic of Fig. 1(b) is \(B = 0.685/T \).
Figure 1

Figure 2