Lecture 10
FIR Filtering Intro

READING ASSIGNMENTS
- This Lecture:
 - Chapter 5, Sects. 5-1, 5-2 and 5-3 (partial)
- Other Reading:
 - Recitation: Ch. 5, Sects 5-4, 5-6, 5-7 and 5-8
 - CONVOLUTION
 - Next Lecture: Ch 5, Sects. 5-3, 5-5 and 5-6

LECTURE OBJECTIVES
- INTRODUCE FILTERING IDEA
 - Weighted Average
 - Running Average
- FINITE IMPULSE RESPONSE FILTERS
 - FIR Filters
 - Show how to compute the output y[n] from the input signal, x[n]

DIGITAL FILTERING
- CONCENTRATE on the COMPUTER
 - PROCESSING ALGORITHMS
 - SOFTWARE (MATLAB)
 - HARDWARE: DSP chips, VLSI
- DSP: DIGITAL SIGNAL PROCESSING
The TMS32010, 1983
First PC plug-in board from Atlanta Signal Processors Inc.

Rockland Digital Filter, 1971
For the price of a small house, you could have one of these.

Digital Cell Phone (ca. 2000)
Free (?) with 2 year contract

DISCRETE-TIME SYSTEM

\[x[n] \rightarrow \text{COMPUTER} \rightarrow y[n] \]

- OPERATE on \(x[n] \) to get \(y[n] \)
- WANT a GENERAL CLASS of SYSTEMS
 - ANALYZE the SYSTEM
 - TOOLS: TIME-DOMAIN & FREQUENCY-DOMAIN
 - SYNTHESIZE the SYSTEM
D-T SYSTEM EXAMPLES

- **EXAMPLES:**
 - **POINTWISE OPERATORS**
 - SQUARING: \(y[n] = (x[n])^2 \)
 - **RUNNING AVERAGE**
 - RULE: "the output at time \(n \) is the average of three consecutive input values"

- **SYSTEM:**
 - \(x[n] \) \(\rightarrow \) \(y[n] \)

DISCRETE-TIME SIGNAL

- \(x[n] \) is a LIST of NUMBERS
- INDEXED by "\(n \)"

3-PT AVERAGE SYSTEM

- **ADD 3 CONSECUTIVE NUMBERS**
- Do this for each "\(n \)"

Make a TABLE

The following input–output equation:

\[
y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])
\]

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n < -2)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(n > 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x[n])</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(y[n])</td>
<td>0</td>
<td>(\frac{2}{3})</td>
<td>2</td>
<td>4</td>
<td>(\frac{14}{3})</td>
<td>4</td>
<td>2</td>
<td>(\frac{5}{3})</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\(n=0 \)

\(y[0] = \frac{1}{3}(x[0] + x[1] + x[2]) \)

\(n=1 \)

\(y[1] = \frac{1}{3}(x[1] + x[2] + x[3]) \)

INPUT SIGNAL

\[
y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])
\]

OUTPUT SIGNAL

\[
y[n] = \frac{1}{3}(x[n] + x[n+1] + x[n+2])
\]
PAST, PRESENT, FUTURE

Sec. 5.2 The Running Average Filter

FIR Filtering
(a weighted sum over past, present, and future points)

Figure 5.4 The running-average filter calculation at time index \(n \) uses values within a sliding window (shaded). Dark shading indicates the future \((\ell > n) \); light shading, the past \((\ell < n) \).

ANOTHER 3-pt AVERAGER

- Uses “PAST” VALUES of \(x[n] \)
- IMPORTANT IF “\(n \)” represents REAL TIME
- WHEN \(x[n] \) & \(y[n] \) ARE STREAMS

\[
y[n] = \frac{1}{3} (x[n] + x[n-1] + x[n-2])
\]

GENERAL FIR FILTER

- FILTER COEFFICIENTS \(\{b_k\} \)
- DEFINE THE FILTER

\[
y[n] = \sum_{k=0}^{M} b_k x[n-k]
\]

For example, \(b_k = \{3, -1, 2, 1\} \)

\[
y[n] = 3x[n] - x[n-1] + 2x[n-2] + x[n-3]
\]

GENERAL FIR FILTER

- FILTER COEFFICIENTS \(\{b_k\} \)

\[
y[n] = \sum_{k=0}^{M} b_k x[n-k]
\]

- FILTER ORDER is \(M \)
- FILTER LENGTH is \(L = M+1 \)
- NUMBER of FILTER COEFFS is \(L \)
GENERAL FIR FILTER

SLIDE a WINDOW across x[n]

\[y[n] = \sum_{k=0}^{M} b_k x[n-k] \]

- M-th Order FIR Filter Operation (Causal)
- Weighted Sum over M + 1 points
- Running onto the Data
- Zero Output

SPECIAL INPUT SIGNALS

* x[n] = SINUSOID
* x[n] has only one NON-ZERO VALUE

\[\delta[n] = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases} \]

UNIT IMPULSE SIGNAL δ[n]

\[
\begin{array}{cccccccccc}
 n & \ldots & -2 & -1 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
\delta[n] & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & \ldots \\
\delta[n-3] & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & \ldots \\
\end{array}
\]

δ[n] is NON-ZERO when its argument is equal to ZERO

FILTERED STOCK SIGNAL

INPUT

OUTPUT

UNIT IMPULSE SIGNAL δ[n - 3]

Figure 5.7 Shifted impulse sequence, δ[n - 3].
MATH FORMULA for $x[n]$

- Use SHIFTED IMPULSES to write $x[n]$

 $$x[n] = 2\delta[n] + 4\delta[n-1] + 6\delta[n-2] + 4\delta[n-3] + 2\delta[n-4]$$

SUM of SHIFTED IMPULSES

<table>
<thead>
<tr>
<th>n</th>
<th>...</th>
<th>-2</th>
<th>-1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2\delta[n]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$4\delta[n-1]$</td>
<td>0</td>
</tr>
<tr>
<td>$6\delta[n-2]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$4\delta[n-3]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$2\delta[n-4]$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$$x[n] = \sum_{k} x[k]\delta[n-k]$$

This formula ALWAYS works

$$x[n] = \ldots + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \ldots \quad (5.3.6)$$

4-pt AVERAGER

- CAUSAL SYSTEM: USE PAST VALUES

 $$y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$$

- INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$

 $$x[n] = \delta[n]$$

 $$y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$$

- OUTPUT is called "IMPULSE RESPONSE"

 $$h[n] = \{\ldots, 0, 0, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0, \ldots\}$$

4-pt Avg Impulse Response

- $\delta[n]$ "READS OUT" the FILTER COEFFICIENTS

 $$h[n] = \{\ldots, 0, 0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0, \ldots\}$$

- "h" in $h[n]$ denotes Impulse Response

- NON-ZERO When window overlaps $\delta[n]$
FIR IMPULSE RESPONSE

- Convolution = Filter Definition
- Filter Coeffs = Impulse Response

\[
y[n] = \sum_{k=0}^{M} b[k] x[n-k] \quad y[n] = \sum_{k=0}^{M} h[k] x[n-k]
\]

FILTERING EXAMPLE

- 7-point AVERAGER
 - Removes cosine
 - By making its amplitude (A) smaller

\[
y_7[n] = \sum_{k=0}^{6} \left(\frac{1}{7}\right) x[n-k]
\]

- 3-point AVERAGER
 - Changes A slightly

\[
y_3[n] = \sum_{k=0}^{2} \left(\frac{1}{3}\right) x[n-k]
\]

3-pt AVG EXAMPLE

Input: \(x[n] = (1.02)^n + \cos(2\pi n / 8 + \pi / 4) \) for \(0 \leq n \leq 40 \)

7-pt FIR EXAMPLE (AVG)

Input: \(x[n] = (1.02)^n + \cos(2\pi n / 8 + \pi / 4) \) for \(0 \leq n \leq 40 \)