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ABSTRACT:
Broadband spectrograms from surface ships are employed in convolutional neural networks (CNNs) to predict the

seabed type, ship speed, and closest point of approach (CPA) range. Three CNN architectures of differing size and

depth are trained on different representations of the spectrograms. Multitask learning is employed; the seabed type

prediction comes from classification, and the ship speed and CPA range are estimated via regression. Due to the lack

of labeled field data, the CNNs are trained on synthetic data generated using measured sound speed profiles, four

seabed types, and a random distribution of source parameters. Additional synthetic datasets are used to evaluate the

ability of the trained CNNs to interpolate and extrapolate source parameters. The trained models are then applied to

a measured data sample from the 2017 Seabed Characterization Experiment (SBCEX 2017). While the largest

network provides slightly more accurate predictions on tests with synthetic data, the smallest network generalized

better to the measured data sample. With regard to the input data type, complex pressure spectral values gave the

most accurate and consistent results for the ship speed and CPA predictions with the smallest network, whereas

using absolute values of the pressure provided more accurate results compared to the expected seabed types.
VC 2021 Acoustical Society of America. https://doi.org/10.1121/10.0003502
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I. INTRODUCTION

Large container and oil tanker merchant ships produce

broadband noise as they move through the ocean. The emit-

ted noise propagates through the ocean waveguide and, thus,

contains information about the seabed for bottom limited

environments. These ships of opportunity (SOO) tend to

travel along straight tracks at a constant velocity (along

shipping lanes) and the automatic identification system

(AIS)1 provides sufficient information to estimate their

range and speed. The broadband noise from SOO has been

studied, and a model for the broadband spectral shape was

developed by Wales and Heitmeyer,2 which represents the

noise from the highly nonlinear interaction between turbu-

lence from the ship hull and propeller motion. The propaga-

tion of the broadband SOO noise through the ocean

environment means that received SOO spectrograms contain

significant information about the seafloor. This information

can be used to infer the seabed properties as well as the clos-

est point of approach (CPA) range and ship speed.

SOO noise has been used for seabed characterization in

optimization algorithms. Battle et al.3 applied near-

matched-field processing for geoacoustic inversion to ship

noise received on a towed horizontal line array (HLA) at

356 Hz and noted that even quiet ships radiate enough noise

for basic geoacoustic inversion. Nicholas et al.4 used three

low-frequency tones received on an L-shaped array to per-

form environmental inversion and matched-field tracking

and noted that the vertical aperture of the array provides

environmental information and ship range and depth infor-

mation, whereas the horizontal aperture provides ship

bearing information. Heaney5 noted the challenges of predict-

ing the full ocean response due to environmental mismatch

and variability with range and instead moved to prediction of

average field levels and time spreads of the acoustic field in

the ocean. Heaney then used SOO noise (200–500 Hz) to

perform geoacoustic inversion of the ship radiated noise from

a single hydrophone. Park et al.6 used the SOO signals on a

towed HLA in a time-reversal technique to estimate the

geoacoustic parameters. Koch and Knobles7 used 15 min of

SOO noise (at 120–200 Hz) on subapertures of a HLA to

obtain geoacoustic parameter values. Tollefsen and Dosso8

quantified the information content of five low-frequency com-

ponents received on a moored HLA and concluded that prob-

lems with low signal-to-noise ratio (SNR) can be overcome

by combining multiple data segments, and Stotts et al.9 used

a 10–250 Hz spectrogram to examine the impact of interfer-

ing noise signals on the parameter estimates.

a)This paper is part of a special issue on Machine Learning in Acoustics.
b)Electronic mail: david.vankomen@gmail.com, ORCID: 0000-0003-0610-

0806.
c)ORCID: 0000-0002-9729-373X.
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Other studies have expanded the geoacoustic inversion

problem through waveguide invariant extraction and other

statistical estimation techniques. Gervaise et al.10 used

inversion techniques on SOO noise (50–500 Hz) from a sin-

gle hydrophone to extract the waveguide invariant for geo-

acoustic inversion, although they concluded that attenuation

cannot be estimated accurately with their inversion scheme

and density and sound speed estimation required injection of

a priori information about the bottom. The same study notes

[see Eq. (2)] that if the ship range varies slowly enough,

then effects from the Doppler shift can be ignored. Crocker

et al.11 measured SOO noise with an autonomous underwa-

ter vehicle and used Bayesian methods (with one-third

octave band levels 125–8000 Hz) to obtain posterior proba-

bility distributions for the properties of a lower half-space.

Byun et al.12 applied ray blind deconvolution to the vertical

line array (VLA) data at 200–900 Hz to estimate the Green’s

function for the ocean environment and inform matched-

field processing. Gemba et al.13 calculated channel impulse

responses from 2.5 s of SOO noise measured on a VLA by

estimating ray paths with sparse Bayesian learning on three

VLAs. Muzi et al.14 used a VLA and time-averaged SOO

noise (5–500 Hz) to estimate passive bottom loss and noted

that incorrect bottom loss estimation is a major source of

error in sonar performance prediction. Xu et al.15 used joint

time-frequency inversion for seabed parameters with ship

noise recorded on a VLA. Tollefsen and Dosso8 used

Bayesian techniques with ship noise on a towed HLA to

obtain estimates of geoacoustic parameters and uncertainties

and showed how ship range and the bearing relative to the

HLA are related to these uncertainties.

SOO noise has also been used for source parameter esti-

mation such as in the source range. For examples, Koch and

Knobles7 and Stotts et al.9 simultaneously obtain geoacous-

tic and source track parameter values. Tollefsen and Dosso

have applied a nonlinear Bayesian marginalization tech-

nique to track a surface ship in three dimensions.16,17 As

extensions of this study, research was done into the impact

of multiple sources18 and multiple fixed arrays.19

Deep learning efforts have also used SOO noise for

source localization. Huang et al.20 trained networks on

extracted features (500–1000 Hz) from simulated surface

ships to predict the range at individual time steps on data

from a 16 element VLA. Niu et al.21,22 used deep learning

techniques for SOO localization by calculating normalized

complex sample covariance matrices (300–900 Hz on a

VLA) from simulated ship noise in varied environments.

More recently, Niu et al.23 used complex pressure values

(100–200 Hz) on a single hyrophone in a multistep approach

with an initial residual network identifying large source

range classes and then used a secondary set of residual net-

works for smaller classes for the source range (based on pre-

dictions from the first network) and depth. Ozanich et al.
used both a deep network24 and a feed-forward neural

network approach25 to estimate the direction of the arrival

of ship sources. Ferguson et al.26 used convolutional

neural networks (CNNs) on 0.1 s waveguide invariant-based

cepstrums up to 10 kHz calculated from a broadband source

from a single sensor recording of a passing motorboat. Liu

et al.27 used the magnitude of spectrum values (550–1050 Hz)

on a VLA with CNNs to localize towed transmitter sources

through time with simulated and measured samples.

This paper moves beyond these prior deep learning

approaches in that broadband SOO spectrograms are now

employed to yield information about both seabed properties

and the source track. Specifically, SOO spectrograms

(300–1500 Hz over a 15 min time interval) on a single sen-

sor are used in CNNs to classify a seabed type and estimate

the ship’s CPA and speed. In this work, only four seabed

classes are used, representing a sparse characterization of

the seabed. Three different multitask CNN architectures are

employed to investigate the impact of the CNN depth and

number of network parameters on generalizability, i.e., the

ability of the CNN to make predictions on data drawn from

a different statistical distribution than the training set. A

comparison based on input data type is also presented to

decide if complex values, squared magnitudes, or levels

work best. Synthetic SOO spectrograms are used during

training due to a lack of labeled field data. The trained net-

works are applied to additional synthetic datasets to evaluate

their ability to interpolate and extrapolate. Finally, the

trained networks are applied to SOO noise measured during

the 2017 Seabed Characterization Experiment (SBCEX

2017). These tests show the potential for CNNs to distin-

guish a seabed type, ship speed, and CPA range from broad-

band spectrograms and highlight the importance of avoiding

overfitting with very deep networks.

II. BACKGROUND

The CNNs are trained on synthetic data because one

measured SOO spectrogram was available for an initial test

of the networks. This measured spectrogram is from the

Kalamata and was recorded during the SBCEX 2017

(Ref. 28) in the New England Mud-Patch. Though many

sensors were present during the experiment, the data used

in this study were collected at a VLA deployed by the

Marine Physical Laboratory of the Scripps Institution of

Oceanography (MPL), which was located in the southeast

(SE) region of the experimental area of the study at

[40.442�N, 70.527�W]. Denoted VLA 2, this 16 hydrophone

array had an element spacing of 3.75 m with the lowest sen-

sor at 5 m above the ocean floor. For this preliminary study,

only the recording from channel 8 (33 m from the ocean

floor in approximately 75 m of water) was used.

VLA 2 recorded the passage of the Kalamata.

According to the AIS database, the Kalamata container ship

had a CPA to the VLA of 3.29 km and was traveling at

19.9 kn. The draft of the hull is 8 m. The measured

Kalamata spectrogram from channel 8 of VLA 2 is shown in

Fig. 1(a). The spectrogram is calculated via a fast Fourier

transform on the pressure time series, sampled at 25 000 Hz,

using 50% overlap and blocks of 212 samples. Due to low-

frequency background noise, the 300–1500 Hz band is
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selected for this work. The resulting 15 min spectrogram has

the CPA at 7.5 min, which centers the characteristic “U”

shape of ship spectrograms. Although the ship noise is visi-

ble over a longer period of time, 15 minutes was selected to

balance computation time and storage needs of the synthetic

datasets (Sec. III A).

The authors realize that one data sample is not sufficient

to fully test deep learning models. To address this concern,

two synthetic datasets are generated for validation purposes,

and multiple network architectures and types of input data

are explored. Ten training instances are executed for each

network-input data combination and applied to two valida-

tion datasets and the measured data sample. The use of ten

training instances allows for a statistical look at perfor-

mance, taking into account the random initializations of the

weights in the networks. These validation datasets combined

with the multiple networks provide an in-depth look at how

using CNNs on SOO spectrograms could perform and con-

sists of the bulk of the discussion in this work.

III. METHODS

Supervised deep learning models require training data-

sets of many labeled samples. Due to the scarcity and

expense of labeled field data, synthetic data are used

during the training and validation steps. Nearly 50 000 SOO

spectrograms are simulated using four different seabed

types with water column sound speed profiles (SSPs)

representative of the SBCEX 2017 experiment for numerous

ship speeds and CPAs to provide datasets for training and

validation of the CNNs. These trained CNNs are then

applied to measured data as preliminary evidence of how

SOO spectrograms can be used to obtain estimates of the

seabed type and source parameters. Details regarding these

steps are provided in Secs. III A–III C.

A. Synthetic data

Synthetic SOO spectrograms are generated using a

modeled source spectrum and a range-independent, normal

mode model. The source spectrum of the radiated ship noise

is approximated by the ensemble source model described by

the unlabeled equation in Sec. 3 of Wales and Heitmeyer.2

The source spectral density level in dB as a function of fre-

quency, f, is calculated as

Sðf Þ ¼ S0 � 10 log ðf 3:594Þ

þ 10 log ðð1þ ðf=340Þ2Þ0:917Þ; (1)

where S0 might be described as the “y-intercept” of the

source spectrum. The levels from Eq. (1) are converted to

pressures (in Pa) and a random phase is assigned for each

frequency. The source pressure spectrum is then multiplied

by the Green’s function of the propagation to simulate the

received pressure spectrum.

FIG. 1. (Color online) Example SOO spectrograms. (a) Absolute and (b) normalized spectrograms of the Kalamata measured on channel 8 of the Marine

Physical Laboratory of the Scripps Institution of Oceanography (MPL) VLA 2 during SBCEX 2017. (c) Absolute and (d) normalized synthetic spectrograms

for a ship traveling 20.0 kn with a CPA of 3.3 km—similar to the Kalamata—using the mud-over-sand seabed type. The “normalized” spectrograms use the

maximum pressure of the spectrogram as the reference instead of 1 lPa.
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The Green’s function is modeled with ORCA,29 a

range-independent, normal mode model for acousto-elastic

ocean environments. The simulated ocean environments

include different combinations of SSPs and four seabed

types. The four representative seabed types selected for this

study are the same as those used in Van Komen et al.:30 (1)

deep mud,31 (2) mud-over-sand,32 (3) sandy-silt,33 and (4)

sand.34 The ocean SSPs are taken from measurements made

during the SBCEX 2017, shown in Fig. 2, with the ocean

depths of the profiles selected between 73 and 78 m to

approximate changes in the bathymetry across the area

spanned by the experiment. A fixed ocean depth was ran-

domly selected for each SSP-seabed combination for use in

the range-independent calculations of the ORCA model.

The seabed at the SBCEX 2017 is known to contain mud,28

but the approach of this paper could be applied if seabed

properties were unknown and an approximate seabed classi-

fication were desired from the SOO data.

The SOO source is modeled with a quasi-static assump-

tion corresponding to a point source at discrete locations

throughout time. The SOO are assumed to travel in a

straight line at a constant velocity. No Doppler shift was

included due to the effects being small at the near-CPA

range for the frequencies used.10 CPA range—the minimum

range between the ship and the hydrophone—is assumed to

occur at the center of the time vector, t. Range positions

over the entire interval, r, are calculated based on time and

speed, and the corresponding Green’s functions are

obtained.

The frequency-dependent Green’s functions are multi-

plied by the source spectrum to calculate the received com-

plex spectrum, ~Pðf Þ, at each time position. By iterating

through each range/time, the spectra are then combined to

form a complex matrix of the time-evolving complex pres-

sure, P, with Pij ¼ ~Pðfi; tjÞ. This process is repeated for all

selected combinations of seabed type, SSP, ship speed, CPA

range, and effective ship source depth to generate the syn-

thetic dataset.

The frequency and time dimensions of the synthetic P

matrices must match those of the final data being tested. In

this study, decisions were guided by considering a promi-

nent SOO event recorded by MPL VLA 2: the passage of

the Kalamata (details in Sec. II). The measured Kalamata

spectrogram (the time-evolving power spectrum) is shown

in Fig. 1(a) for the 300–1501.7 Hz band (with a Df spacing

of 6.1 Hz) over 15 min (with time step intervals of 3 s). This

frequency band and time span were chosen as a result of the

clarity of the striations in the measured spectrogram. Thus,

each synthetic data sample, P, contains 301 time steps and

198 frequencies.

An example spectrogram generated for the mud-over-

sand bottom at the same CPA and with the same speed as

that of the measured ship is shown in Fig. 1(c) for compari-

son with the measured spectrogram from the Kalamata ship

[Fig. 1(a)]. The difference between the measured and syn-

thetic power spectral levels occurs because the exact source

level of the Kalamata is unknown, corresponding to an

unknown S0 in Eq. (1). To circumvent this limitation, each

P is normalized by its absolute maximum. The normalized

spectral levels, LP, are shown in Figs. 1(d) and 1(b). This

normalization discards information about the range that is

contained in both the absolute levels and the relative levels

between individual samples of differing source and receiver

parameters, thus, presenting an additional challenge for

deep learning.

The normalization used in this study differs from recent

work by Niu et al.23 in which different frequency bands

(over the 100–200 Hz interval) were normalized separately

to account for the frequency-dependent source spectrum.

This frequency-band normalization is not needed in the cur-

rent work because (1) the 300–1500 Hz band is above any

apparent tones, and (2) the Wales-Heitmeyer2 model is used

to synthesize the SOO spectral shape leaving only a single

parameter (S0) that is unknown.

The synthetic training dataset needs to contain sufficient

variability to account for the real-world conditions that exist

in the measured data as discussed in Van Komen et al.30 To

provide variability, the training dataset was generated with

the following parameters. To represent the ocean, 50 differ-

ent SSPs were used in combination with the four designated

seabeds. Ten SSPs were drawn from measurements made

during the SBCEX 2017 shown in Fig. 2. For each SSP, five

water depths were randomly assigned over 75 m 6 0–3 m

(while preserving the SSP gradient). The distribution of the

randomly assigned ocean depths across the 50 SSPs is

shown in Fig. 3(d). The 50 SSPs combined with each of the

four seabeds creates 200 ocean environments used for

simulation.

For each of these environments, nine ship speeds, nine

CPA ranges, and two source depths were selected. The com-

binations of these source parameters and the 200 environ-

ments produced a dataset containing 32 400 samples for

training. Previous internal studies showed that using ran-

domly drawn source parameters improved the generalizabil-

ity of the network as long as a sufficient number of samples

FIG. 2. (Color online) Ten SSPs measured during the SBCEX 2017.

Random water depths were used with each SSP to create the 50 training and

30 validation SSPs. These profiles are slightly upward refracting, but the

range of sound speeds in the x axis exaggerates such effects.
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were selected over the entire span of the labels of interest.

Maintaining fixed values in the dataset has the potential to

reinforce common values that are present in the real-world

data. To follow these guidelines, both fixed and random sets

of the source parameters were used for each of the 200 envi-

ronments. The nine CPA values for each environment

included three fixed values (3, 8, and 13 km) and six addi-

tional ranges randomly drawn between 0.5 and 15.5 km. The

ship speed values included three fixed values (18, 20, and

22 kn) and six random values drawn between 16 and 24 kn.

The two ship depths were randomly drawn to be between

6.5 and 9.5 m for each environment. Histograms of the

source parameters over the 200 environments used in

the training are shown as gray boxes in Fig. 3. The peaks in

the distributions for the CPA and ship speed correspond to

the fixed values, selected to ensure that each of the 200 envi-

ronments contained several of the same source parameters

as a means of consistency. Whereas the simulations could

be improved further by employing additional parameter ran-

domness at each of the selected time windows in the spec-

trograms, this step was omitted for consistency and

processing constraints while generating the data. The histo-

gram is converted to a smooth line using kernel density esti-

mates (solid lines) generated via the “distplot” function

from the Seaborn Python library.

To test the ability of the networks to interpolate

between labels used in the training data samples and extrap-

olate beyond the edges of the training labels, two validation

datasets were generated using the same procedure as was

used for the training dataset. To test the ability of the net-

works to interpolate, validation dataset 1 (5400 samples)

contains source parameters similar to those encountered in

the training dataset but with slight adjustments. Thirty SSPs

were used (from the same ten measured SSPs but with only

three random water depths each). Four ship speeds were

selected (18 and 22 kn for every environment and two ran-

domly drawn between 16 and 24 kn), and nine CPAs were

drawn (4, 9, and 14 km for every environment along with

six random CPAs between 0.5 and 16 km). The remaining

parameters were the same. The kernel density estimates of

the water depths and source parameters used in validation

dataset 1 are shown as dashed lines in Fig. 3. Validation

dataset 1 measures the ability of the trained networks to

interpolate.

The ability of the networks to perform at the edges of

the training domain and extrapolate beyond are tested with

validation dataset 2. For this second validation dataset, the

same 30 SSPs were used as for validation dataset 1, but the

CPAs (1, 2, 14, and 15 km for every environment with eight

random CPAs between 0.5 and 16 km) and ship speeds (16

and 25 kn for every environment with two random CPAs

between 14 and 26 kn) were chosen to be clustered closer to

the edges of the values used for the training dataset.

Validation dataset 2 contains 8640 samples. The kernel den-

sity estimates of the water depths and source parameters

used in validation dataset 2 are shown as dotted lines in

FIG. 3. Normalized histograms (shaded gray areas) and kernel density estimates (solid lines) of the random parameters selected for the training dataset. (a)

Ocean depths over the 50 SSPs, (b) CPA ranges, (c) ship speeds, and (d) source depths over the 200 environments. The large peaks correspond to values that

were selected for each environment. The dashed and dotted lines represent the kernel density estimates of the various parameters for the two validation sets.
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Fig. 3. Results of the training and validation are discussed in

Sec. IV A.

1. Data and label preparation for training

Because spectra can be represented as complex values or

magnitudes (in Pascals) or levels (in decibels), the type of input

that should be used with CNNs is studied in this paper. This

work evaluates if CNNs learn better on the complex values P,

the squared absolute value of those values jPj2, or the levels

LP. For P, the real and imaginary parts are split into two chan-

nels in which the real part is channel 0 and the imaginary part

is channel 1, analogous to the red, blue, and green channels in

digital images. jPj2 and LP are input as single channels, similar

to the single black and white channel. As mentioned in

Sec. III A, all samples are also individually normalized before

being passed to the network. For the ith data sample, jPj2 is

normalized by jPj2i =jPj
2
i;max and jPj is normalized by

jPji=jPji;max. In the case of the levels input type, the normaliza-

tion is applied as LP;i ¼ 20 log ðjPij=jPi;maxjÞ.
Another preparatory step was the normalization of the

CPA and ship speed labels (a common practice with neural

networks35). Instead of the networks learning raw values in

meters and knots, the networks learn scaled labels. Since the

CPA in the training set varies between 0.5 and 15 km and

the ship speed varies between 16 and 24 kn, this scaling

forces the values to be on the same scale, which has the

potential to expedite learning and mitigate potential biases

due to the different scales. This scaling corresponds to tak-

ing the distributions of each label (Fig. 3) and scaling and

shifting each distribution to lie between 0 and 1. While dif-

ferent types of scaling may be employed, in this work, each

set of labels, y, are scaled via

ŷi ¼ ðyi �minyÞ=ðmaxy�minyÞ; (2)

where ŷ are the scaled labels, yi corresponds to the raw label

of data sample i, and the bold font indicates the vector of

labels for all of the data samples.

B. CNN topology

For this study, three different neural networks were

selected to make simultaneous predictions on the seabed

type, CPA, and ship speed. The first two CNNs were hand-

designed and incorporate different numbers of convolutional

layers with the full network architectures shown in Fig. 4.

The third CNN is an implementation of “AlexNet,” pre-

sented in Krizhevsky et al.,36 originally designed to classify

between 1000 different classes of images in the ImageNet37

database.

Although various opinions on CNN design exist in the

community, the two hand-designed CNNs were created with

simplicity in mind and to compare the effect of depth and

number of parameters on predictions. The first CNN, named

Selkie3, has three convolutional layers, each followed by

maximum pooling layers. These convolutional layers are

followed by two hidden layers before reaching the output

layer. The second CNN (Selkie5) differs by having five con-

volutional layers with no pooling. In both networks, the con-

volutional layers use Rectified Linear Unit (ReLU)

activations and are followed by batch normalization.

Selkie3 was designed to include pooling to reduce the num-

ber of features in each layer while using small filters (ker-

nels) to reduce the number of learnable parameters. Selkie5

uses more convolutional layers with more channels to give

the model more learnable parameters. The stride parameters

of the convolutions reduce the features within each layer

instead of allowing that reduction to come directly from the

pooling layers (as in Selkie 3). Selkie5 has larger hidden

layers than Selkie3 has because more parameters in the hid-

den layers can allow more complex linear transformations.

Selkie3 has 4.3� 106 parameters, whereas Selkie5 has

14.2� 106 parameters. Both networks used kernel sizes and

strides in the convolutional layers to allow an overlap across

the input and intermediate spaces in an effort to learn pat-

terns across differing bands of frequencies and time steps.

No formal hyperparameter tuning study was done to find the

most optimal set for these particular networks; such a study

is beyond the scope of the current work.

The implementation of AlexNet used in this paper

comes from using half of the network size depicted in Fig. 2

of Krizhevsky et al.36 and is referred to as “HalfAlexNet”

throughout the current study. Krizhevsky et al.36 mention

dividing the network for simultaneous training across two

graphics processing units (GPUs), and one of those halves

was implemented for this study. HalfAlexNet has over

15.6� 106 learnable parameters.

C. Training CNNs

The implementation of the neural networks mentioned

in Sec. III B was done in Python 3 using the open-source

PyTorch framework38 (version 1.5.0). PyTorch was writ-

ten using Python-native syntax with a focus on speed and

usability and provides the tools required for loading data,

building models, and training on a GPU using algorithms

standard to the machine learning community. In particular,

this study uses the PyTorch implementation of the Adam

optimizer39 for stochastic optimization during training. As

with the procedure detailed in Van Komen et al.,40 a

cosine annealing learning rate was used to limit the vari-

able learning rate used by the Adam optimizer. (The

method of warm restarts in the original paper by

Loschilov et al.41 was not used.) The annealing learning

rate was implemented to expedite learning and prevent

overfitting.

Because of the random initialization of the weights and

splits of the dataset into batches, ten instances of each net-

work type were trained for each type of input. Training mul-

tiple networks allows a statistical approach to evaluating the

model’s performance as every new instance of a model is

initialized with random values for all parameters. Each net-

work was trained for 50 epochs to provide a baseline for

comparisons by giving each network trained the same
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number of iterations during training, as well as to reduce

the amount of training time and avoid common overfitting

problems when networks are trained for too long. Results in

Sec. IV illustrate that 50 epochs was sufficient, although

future work seeks to improve these outcomes. Early stop-

ping was not implemented because of the large number of

networks being trained with an annealing learning rate and

the self-scaling loss function (detailed in Sec. III C 1). The

networks were trained on a (NVIDIA Tesla T4 GPU, Santa

Clara, CA) to accelerate learning.

1. Multitask learning

The final decision for CNN implementation is how to

assign outputs for the final layer. Networks learn to make

predictions through a loss function that determines how pre-

dictions are compared to assigned labels during training.

Through the selection of a loss function, these outputs can

be trained to make different types of predictions such as

regression or classification. Prior studies using a one-second

pressure time series30,40 and towed tonals42 used a regres-

sion approach to learn a number representing both the sea-

bed type and source labels. Although some success was seen

using regression to predict a seabed type, regression loss

functions generally rely on a definition of distance between

the truth and prediction. Whereas differences in range,

speed, or depth have a physical connection to distance, the

choice to represent the seabed type as discrete numbers does

not have a physical connection to distance. The seabed types

(used in Refs. 30 and 40, and the current study) were ordered

from highest to lowest bottom loss to provide a sequential pro-

gression, but the “distance” between seabeds 1 and 2 is not

the same as the distance between seabeds 2 and 3. Thus, in

this work, the seabed type is found through classification

FIG. 4. (Color online) Network topology for the two hand-designed CNN networks in this study. (a) Selkie3 features three convolutional layers, each fol-

lowed by a maxpooling step. (b) Selkie5 features five deeper convolutional layers with no pooling steps. Each network also has two hidden layers before the

output layer.
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while the ship speed and CPA range are found via

regression.

To accomodate both types of predictions, the multitask

method proposed in Kendall et al.,43 which weighs losses

for individual tasks by considering the homoscedastic uncer-

tainty through learning the weighting, was implemented.

This multitask method works by calculating an original loss

value for each of the outputs of the network (mean squared

error for regression and cross-entropy for classification)

and then scaling each loss by a learnable parameter. When

building the network, the final output layer needs to include

enough neurons to accomplish each of the tasks. For this

particular study, out of the six output neurons used, the first

four were reserved for classification on the seabed type

and the last two were reserved for the CPA and ship

speed. Although more details on this implementation of

scaling loss can be found in Ref. 43, we also implemented a

variable transformation44 of the learnable parameters ri

via gi ¼ 2 log ri. This transformation changes Eq. (7) in

Ref. 43 to

Xi

n¼1

1

2ri
Li þ log

Yi

n¼1

ri ¼
1

2

Xi

n¼1

ðe�giLi þ giÞ; (3)

where Li is the loss obtained for each task i. This transfor-

mation avoids numerical instability as the original equation

limits r 2 R>0 and allows g 2 R.

Thus, during training, the network learns how to prop-

erly scale the loss values for each of the tasks. In this partic-

ular study, the initial gi were selected to be 1.0, 0.5, and 0.8

for the seabed type, CPA, and ship speed, respectively. No

exhaustive testing was performed on what the initial gi

should be. However, because these values are learnable

parameters, the network adjusts them to minimize overall

loss along with the other network parameters, therefore,

these initial gi were sufficient.

IV. RESULTS AND DISCUSSION

The results of the predictions from the trained neural

networks are presented in this section. In particular, model

validation and model generalization are presented. As

explained in Neilsen et al.,42 the difference between valida-

tion and generalization of the CNN models is important,

especially when using both synthetic and measured data.

For the validation results, we present CNN predictions on

synthetic SOO spectrograms with similar environments as

the training data but different source parameters and slightly

varied water depths. For the generalization result, we pre-

sent CNN predictions on a measured SOO spectrogram. To

provide a statistical representation of the CNN performance,

the metrics used to quantify predictive ability for the regres-

sion tasks are root mean squared error (RMSE) and standard

deviation of the RMSE over the ten training instances for a

combination of CNNs and input data type. For the classifica-

tion task, the percentage of times the correct class has the

highest output is defined as the accuracy.

A. Validation

Two methods of validation are presented in this section.

The first is k-fold cross-validation,45 in which the training

dataset is divided into k random splits. The network trains

on k � 1 of those splits and tests on the remaining splits.

The network is then reinitialized and training is performed

on the next combination until all k blocks have been used

for testing.

To validate that all three networks are learning relation-

ships between the features of the training dataset and the six

outputs, k-fold cross-validation was done with k¼ 5. As an

example, the fivefold validation results on the complex P

inputs are shown in Table I. For seabed type predictions,

HalfAlexNet has the highest accuracy of 98.98%, although

Selkie3 and Selkie5 trail by less than a percentage point. For

the CPA predictions, HalfAlexNet has the lowest RMSE of

0.28 km, whereas the RMSE for Selkie3 and Selkie5 are

approximately 0.05 km greater. For ship speed, Selkie3 has

the lowest RMSE at 0.61 kn, similar to Selkie5, whereas

HalfAlexNet has a speed RMSE of 1.04 kn. These results

show that overall the networks perform similarly and are

learning features that allow for estimations of the seabed

type, CPA, and ship speed, although more testing is

required.

The models trained through k-fold cross-validation are

not used for further testing in this study. Instead, ten instan-

ces of each CNN/input data type combination are trained on

100% of the training dataset (32 400 samples) as an alterna-

tive to a random subset as in the k-fold cross-validation.

These fully trained models are then applied to the synthetic

validation datasets (Sec. III A) and measured data sample.

The second type of validation involves testing the net-

works on different separate datasets simulated in the same

manner as for the training dataset but with different values

for water depth, CPA range, and speed as shown in Fig. 3.

The results of the ten training instances of each network

applied to the 5400 samples in validation dataset 1 are dis-

played in Fig. 5. The metrics used are the average inaccu-

racy of the seabed classification (100 - accuracy) and the

RMSE of the CPA and ship speed. The results from all three

networks (colors) and all three input data types (horizontal

axis) are shown in Fig. 5. The numbers in boxes indicate the

exact height of the bars. The error bars indicate the standard

deviation over the ten trained instances for each CNN.

Validation dataset 1 was designed to investigate the

ability of the trained networks to interpolate between source

parameters in the presence of a slight ocean depth mismatch

TABLE I. Results from fivefold cross-validation tests using P as input. The

bold numbers indicate the highest performing network for that metric,

although results for all three networks are similar.

Network Seabed accuracy CPA RMSE Speed RMSE

Selkie3 99.55% 0.33 km 0.61 kn

Selkie5 98.98% 0.34 km 0.63 kn

HalfAlexNet 99.84% 0.28 km 1.04 kn
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(see Fig. 3). For validation dataset 1, all seabed predictions

have an accuracy above 90%, which indicates that all of the

networks are learning features required for seabed classifica-

tion. Analysis of individual results shows—across all

networks—that misclassifications generally involved confu-

sion between the sandy-silt seabed and the sandy seabed.

This confusion is understandable because under visual

inspection, synthetic spectrograms for the same ship speed

and CPA using the sandy-silt and sandy seabeds appear

nearly identical to the naked eye as a result of the similari-

ties in propagation over the distances involved and frequen-

cies included. The network that performed best on seabed

predictions was HalfAlexNet, using jPj2 as input, although

the Lp input performs less than 0.2% poorer. Selkie3 and

Selkie5 give seabed predictions similar to those of

HalfAlexNet. This similar performance is significant

because Selkie3 has around 10� 106 fewer parameters than

Selkie5 and HalfAlexNet have.

For the CPA range and speed, HalfAlexNet performs

best on jPj2, but the input data type impacts the predictions

more than the network architecture does. As shown in

Fig. 5, HalfAlexNet has the lowest RMSE on the CPA range

and speed, but the RMSE values in the other networks differ

by less than 0.15 km for the CPA and less than 0.2 kn for the

ship speed. The mean absolute percent errors (MAPE) for

all three networks were calculated, although they vary by

less than 1%. A larger difference is seen when based on the

input data type. For this first validation set, jPj2 gives lower

errors for both the CPA and ship speed.

Validation dataset 2 was designed to test the ability of

the networks to extrapolate. Validation dataset 2 has the

same ocean depth mismatch as for validation dataset 1, but

the distribution of the CPAs and speeds are concentrated on

the edge of and outside the values used in the training as

shown in Fig. 3. The average performance on the ten net-

work instances on the 8640 samples of validation dataset 2

is summarized in Fig. 6. The performance on validation

dataset 2 is generally worse than that on validation dataset

1, as expected, because of the extreme nature of the speed

and CPA selection used, the networks were never trained on

speeds outside 16–24 kn, and few CPAs were included out-

side the 1–15 km range. For these edge cases, the networks

are still near or above 90% accuracy on seabed classifica-

tion. This time, HalfAlexNet on LP performs the best on

seabed classification with an accuracy of 97.83%, although

Selkie5 and Selkie3 still have accuracies greater than 97%

for these source parameter edge cases.

The biggest increase in error between the two validation

datasets is in the CPA and speed predictions as expected

because many of them extend beyond the ranges used during

training. When looking at individual network predictions,

the speed and CPA ranges tend to be underpredicted at the

largest ranges and speeds, whereas they are generally over-

predicted at the smallest ranges and speeds. In part, these

FIG. 5. (Color online) Results from ten training instances of each network on validation dataset 1 containing 5400 samples and designed to test the ability of

the networks to interpolate (see Fig. 3). Results for (a) the seabed prediction inaccuracy, (b) the RMSE for the CPA range, and (c) the RMSE for the ship

speed are grouped by input type on the horizontal axis with color indicating the network type. The height of the bars and numbers in boxes indicate the

mean values, and the error bars indicate the standard deviation over the ten training instances.
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trends can be attributed to the label normalization process

mentioned in Sec. III A 1. Since the smallest speed in the

training dataset, for example, was 16 kn, that value was nor-

malized to zero while the largest speed of 24 kn was normal-

ized to one. Any true values less than 16 would then have

their normalized value as less than 0, which the network

never needed to predict during training. The same holds for

values above the maximum. This label normalization is ben-

eficial for training and testing on datasets within the bounds

of the training set but potentially becomes a detriment for

datasets that contain samples beyond those bounds. For the

purposes of this study, the label normalization suffices as

the measured data, discussed next, falls within the bounds of

the training dataset.

An interesting observation from both validation datasets

is how the different data input methods produce different

results. In general, the differences in results based on input

type are larger than differences due to the network type.

When using the complex P matrix, the models have the

lowest seabed accuracy across all networks. The prediction

results when using jPj2 or LP are close for all network types,

but jPj2 does slightly better than LP does on all of the pre-

dictions. This difference could be a result of the squaring of

the jPj causing larger differences between features that help

the networks learn. These validation tests emphasize the

importance of the input data type and have shown the per-

formance of the networks in the presence of slight ocean

depth mismatch and for source labels near and beyond the

edges included in the training data.

B. CNN generalization on measured data

The generalizability of the network is tested by

applying the trained networks to the measured spectrogram

from the Kalamata (described in Sec. II). AIS data for the

Kalamata during this time indicates an approximate CPA

range of 3.3 km and speed of 19.9 kn. The expected seabed

prediction is the mud-over-sand seabed as it was obtained

from a maximum entropy optimization for the SBCEX

2017 area32 or the deep mud, which has similar surficial

properties, including an angle of intromission (at which

there is nearly complete transmission of acoustic energy

from the water into the sediment). For the jPj2 and LP input

types, the Kalamata spectrograms were obtained using

time-averaging, whereas those for P were not. The predic-

tions of all the networks on the Kalamata sample are shown

in Fig. 7.

The individual prediction distributions of each network

for the CPA range and speed show how the smallest network

has the most reliable predictions using P. To represent the

statistical distribution of results, Figs. 7(b) and 7(a) show

violin plots (a combination of normalized distributions and

box-and-whisker plots) of the CPA and speed predictions,

respectively. The combination of network and input data

FIG. 6. (Color online) Results from ten instances of each network on validation dataset 2 containing 8640 samples, which had more speeds and CPAs near

and beyond the boundary of those values in the training dataset (see Fig. 3). Results for (a) the seabed prediction inaccuracy, (b) the RMSE for the CPA

range, and (c) the RMSE similar to Fig. 5.
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that most consistently predicts a CPA range and speed close

to the AIS data (dashed lines) is Selkie3 trained on the P

input data; the tighter distribution for the speed and CPA

than for the other networks indicates the robustness of the

predictions to the random initializations of the network.

Even though some of the medians of other networks are

closer to the truth (the dashed horizontal line), the tighter

distribution shows more confidence and repeatability from

Selkie3.

That the best predictions come from the Selkie3 model

on P is surprising because of the slightly worse performance

on the validation datasets (Sec. IV A). This result could be

an example of overfitting due to the 14þ million paramaters

present in Selkie5 and HalfAlexNet. Although the larger

networks perform the best in the validation results (Sec.

IV A) drawn from the same statistical distribution as the

training data, these networks do not generalize as well as

Selkie3 does on measured data. To investigate this further,

the learned weights of the linear layers were examined by

determining if their absolute values were less than a target

threshold. As the number of weights increased, not only did

the number of these small weights increase, the percentage

of small weights to total number of weights did as well.

These findings serve as a caution against using the deepest

networks presented in the literature as they might be too

large for a specific problem. However, as the complexity of

the problem increases (i.e., including further seabed types or

adding an additional source parameter to learn), those larger

network sizes may provide better results.

The seabed type classification results are depicted dif-

ferently in Fig. 7(c). Stacked barcharts of the predictions are

used for the seabed class. The color and shading represent

the different seabed classes. The height of each bar indicates

the percentage of times (out of the ten trained networks) that

each seabed had the highest classification output. The input

data type is again listed on the horizontal axis, but the net-

work type is now indicated with a number: (1) Selkie3, (2)

Selkie5, and (3) HalfAlexNet.

The different results for seabed classification relate to

the physics of ocean acoustics. First, the key propagation

feature for the frequencies included (300–1500 Hz) is the

angle of intromission (where there is nearly complete trans-

mission of energy into the sediment) due to the speed of

sound at the top of the seabed being less than the speed of

sound of the water at the bottom of the ocean. With this in

mind, the jPj2 and jLPj predictions of a combination of deep

mud and mud-over-sand are reasonable. In contrast, the

complex P inputs increase the difficulty in getting an accu-

rate seabed prediction. The time-averaged jPj and jPj2
inputs reduce the uncorrelated noise in the spectrograms

and, thus, allow the networks to identify a seabed with an

angle of intromission 100% of the time for Selkie3 and

HalfAlexNet and 80% of the time for Selkie5. Thus, for sea-

bed type predictions on the Kalamata measured data, P is

FIG. 7. (Color online) Results from ten instances of each network on the measured Kalamata spectrogram. Violin plots (a normalized probability distribution

kernel with the median and quartile ranges over the ten training instances) of (a) the CPA range and (b) the speed predictions. (c) Stacked barchart showing

the percentage of predictions for each seabed type. The input data type is listed on the horizontal axis. The three networks are distinguished by color in (a)

and (b), similar to Figs. 5 and 6, and by numbers on top of the bars in (c) with 1¼Selkie3, 2¼Selkie5, and 3¼HalfAlexNet.
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not a reasonable input type. Whereas further testing on more

measured data is required, the improved performance with

jPj2 and jLPj make sense as the seabed type is often tied to

bottom loss.

Because the true source level of the Kalamata was

unknown (see Fig. 1), the simulated levels do not match the

measured levels. To account for this difference, the data

were normalized, which discarded information about range.

One idea for future implementation is to include a source

level parameter as a label for the CNN to learn. In addition,

the measured spectrogram contains significantly more noise

than the synthetic spectrograms, which increases the uncer-

tainty in the predictions. The addition of random noise dur-

ing training on the synthetic data could potentially teach the

network to ignore such noise.

V. CONCLUSION

This study provides evidence that CNNs trained on syn-

thetic SOO spectrograms have the potential to make predic-

tions on the seabed type, ship speed, and CPA range.

Specifically, 15 min SOO spectrograms spanning

300–1500 Hz were simulated with four seabed types, ten

measured SSPs with different ocean depths, and a variety of

source speeds and CPAs on a single hydrophone. The syn-

thetic training dataset was used to train CNNs to make these

predictions. The trained CNNs were then applied to addi-

tional synthetic testing datasets and a spectrogram from the

ship Kalamata measured during the SBCEX 2017.

The results from the validation studies indicate that

SOO spectrograms contain learnable features and patterns

that CNNs can identify to make predictions. Predictions

from three network architectures were each compared with

three input types. To better quantify the network perfor-

mance, ten training instances of each network are applied to

the testing sets, which leads to a statistical representation of

the results that indicates repeatability. On the validation

cases, the seabed type accuracy was greater than 97% when

the squared magnitudes of the complex pressure, jPj2, or

levels, LP, were used. Inaccuracies in seabed classification

for the validation tests were related to the similarities

between a deep mud and mud-over-sand seabed or a sandy-

silt and sandy seabed due to the frequency range used.

Although the spectrograms were individually normal-

ized, the CPA range and speed prediction errors were small

for the validation sets. When the validation data were tested

on samples with slight water depth mismatch and CPA

range and speed within the bounds included in the training

data, the RMSE was less than 0.6 km and 1 kn, respectively.

When the validation data were generated with source param-

eters at the edges and outside the training data, these errors

increased to 0.8 km and 1.5 kn, showing that even the net-

works performed well on synthetic data near the edges of

the training distribution regardless of the data input method.

The ability of the networks to generalize was investi-

gated using a measured data sample. Although only data

from a single ship, the Kalamata, were used, results from

ten instances of each network for each dataset type indicated

that a smaller network generalizes better to the noisier mea-

sured data. The smallest network was able to provide good

CPAs and speed predictions while also providing reasonable

seabed predictions. However, the input data type impacted

the predictions. The CPA range and speed predictions were

most consistently near the expected values using the real

and imaginary parts of the complex pressure, P. However,

using P for seabed classification did not work well as the

networks chose more reflective environments no matter the

size of the network. When the input was time-averaged jP2j
or spectral levels in decibels, the networks consistently

chose the environments with an angle of intromission.

The use of ship spectrograms in neural networks is a

promising tool for ocean acoustics. This prelimiary study

needs to be followed by future work to expand the findings.

First, introducing random noise representative of ambient or

wind noise into the training data could help the network

learn to ignore noise in the input data. Additional testing on

the generalizability to measured data is needed. This study

only used a single receiver at 33 m; hence, additional

receivers on the array could also be used. The source level

could be added as a learned label so the normalization

would not be necessary. A proper way to systematically

increase the variety of seabed types is necessary as well.
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