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Abstract—Applications of supervised machine learning to
ocean acoustics is often limited by the lack of labeled measured
data. To overcome this, synthetic data can be used for training.
This paper explores the potential for unsupervised learning to
provide labels for measured data. Specifically, a comparison is
made between seabed classification from supervised learning and
labels inferred from unsupervised learning. Both networks are
trained on synthetic ship noise spectrograms. Six CNN-based
supervised learning methods were trained using synthetic data
labeled by seabed class. The trained networks were applied to
69 measured spectrograms from the Seabed Characterization
Experiment 2017. The results show a distinct preference for
seabeds with softer top layer (water-sediment sound speed ratios
less than one). The unsupervised ML method, k-means clustering,
is applied to same synthetic dataset, and the resulting clusters
are evaluated based on the characteristics of the synthetic data
samples placed into each cluster. The measured ship noise spec-
trograms are then passed through the trained clustering model,
and the characteristics of the assigned clusters are evaluated.
Of the 69 measured data samples, 70% are placed in clusters
showing a distinct preference for seabed classes similar to those
obtained from the CNN-based classifiers. Other measured data
samples are placed in clusters that contain synthetic data samples
from short ranges. This work illustrates the potential for using
clustering to assign preliminary labels to unlabeled data.

Index Terms—machine learning, unsupervised learning, ocean
acoustics, ship noise, spectrograms, k-means clustering, seabed
classification
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I. INTRODUCTION

Potential applications of machine learning in ocean acous-
tics are often hampered by the lack of labels for measured
data. The lack of labeled data means that supervised machine
learning algorithms are often trained on labeled synthetic
data. Another way to find labels for unlabeled data is by
clustering the data using an unsupervised learning method.
The potential for unsupervised learning to provide labels for
measured data is explored in this paper by comparing the
results of unsupervised clustering to the seabed classification
results from supervised models. Both the unsupervised and
supervised models are trained on synthetic data and then
applied to measured ship-of-opportunity (SOO) spectrograms
measured during the Seabed Characterization Experiments
(SBCEX) conducted in the New England Mudpatch in Spring
2017.

Closely related to the current work are studies that use
SOO noise and supervised learning. Van Komen et al. [1]
used a CNN to obtain ranges and ship speed predictions
on synthetic spectrograms while also providing an estimate
of basic seabed type. The difference between the type of
input data were investigated: complex spectral density, the
magnitude of the spectral density squared, and spectral density
levels. They found that the complex spectral density input
was better for estimating the range to the closest-point-of-
approach (CPA) and the spectral density levels were best for
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seabed classification. While this study only considered four
representative seabed types, a subsequent study by Escobar
et al. [2] applied five different convolutional neural networks
(CNNs) and one residual CNN (ResNet) to classify between
34 seabeds and applied the trained networks to spectrograms
of noise from ships-of-opportunity (SOO) measured during
Seabed Characterization Experiment 2017. This work found
that ResNet-18 gave the most consistent results because of the
skip connections [3]. The catalog of 34 seabeds was selected
using the Pearson correlation of broadband transmission loss
over range, as described in Forman et al. [4]. All of these
studies used a single hydrophone in the middle of the water
column, similar to what is used in this paper. Concurrent
work is looking at the benefits of using multiple receivers
and differences between using a catalog of 34 seabeds and 12
seabeds [5].

This paper compares a seabed classification approach using
supervised and unsupervised learning on SOO spectrograms.
The unsupervised ML method is k-means clustering. This
method assumes that a set of unlabeled data can be grouped
into k number of clusters based on similar features. This
investigation is carried out by training the clustering algorithm
on unlabeled synthetic data and then evaluating the charac-
teristics of the data samples placed into the same cluster.
Measured ship noise spectrograms are then passed through the
trained clustering model and the characteristics of the assigned
clusters are considered to see if the clustering can provide
seabed classification. The focus in this paper is to look at
the distribution of seabed types corresponding to the synthetic
data samples placed in the same clusters as the measured data
samples. These seabed distributions are then compared to the
seabed classification results from the ResNet-18 models. This
work illustrates the potential for using clustering to assign
preliminary labels to unlabeled data.

II. METHODS

Machine learning comes in two main flavors: supervised and
unsupervised learning. Supervised learning relies on labeled
data samples, whereas unsupervised learning operates on unla-
beled data. In both cases, a machine learning model is trained
with a training dataset. In the case of supervised learning,
the model learns how to predict the target labels associated
with the input data. The primary goal of supervised learning
is to be able to predict the target labels for new data. With a
clustering-based unsupervised learning approach, the trained
model learns how to assign input data to clusters. When a
new data sample is passed through the trained model, the data
sample is assigned to a cluster and likely has similar properties
as the training data assigned to that cluster. Thus, if you know
the properties of the training data, you can infer something
about the new data samples. This inference process is not
as powerful as actually predicting the labels via supervised
learning, but when faced with a large amount of unlabeled
data, it is important to consider the potential for unsupervised
learning to provide approximate labels.

Unlabeled data are common in ocean acoustics, because
often the source location, track, and level are unknown and
the ocean’s environmental labels are not easily defined. While
it is possible to estimate some environmental labels with
the help of GPS data and ocean databases, the use of ML
methods on unlabeled ocean acoustical data has had signifi-
cant benefits. Some commonly known unsupervised methods
include principal component analysis (PCA), which has been
used for acoustic mapping, [6] and dictionary learning, which
has been used to improve resolution of sound speed profiles
(SSPs) [7], [8]. Additional studies in ocean acoustics have
utilized unsupervised learning methods in passive sonar target
recognition using a deep belief network [9] and coral reef
bioacoustics using deep embedded clustering [10].

In unsupervised learning and often in supervised learning,
features are extracted from the data and then the feature
vectors are used as input to the machine learning algorithms.
Some examples are shown in recent papers about classifying
ship noise [11], [12]. A different approach is taken here.
Instead of deciding a priori which features should be extracted
via preprocessing, spectrograms are sent directly into the
machine learning algorithms, which minimizes the number of
decisions that must be made and, thus, reduces potential biases
introduced by the preprocessing. This approach works well for
convolutional neural networks (CNN), which are designed to
find patterns in multidimensional data. Unsupervised learning
method, however, do not look for patterns but expect the same
features to be in the same order, which means misalignment
in time or frequency can impact the results.

A. Synthetic Ship Noise Spectrograms

The difference between supervised and unsupervised learn-
ing is tested for a specific application in ocean acoustics. The
task is seabed classification using ship noise spectrograms. A
catalog of 34 seabeds was created, and synthetic data were
generated using a range-independent normal mode model,
ORCA [13], and an empirical source spectrum for the ship
noise [14] (Details about how the 34 seabeds were selected
can be found in [2], [15], and [4].) These 34 seabeds and a
wide range of source parameters (as shown in Table I) were
used to generate labeled synthetic spectrograms. The synthetic
spectrogram generation process is explained more fully in both
[1] and [2]. The resulting spectrograms contain spectral density
levels at 241 time steps over 20 minutes (with 5 sec spacing)
and 123 frequencies in the 360-1100 Hz band. Because of
the unknown source level, each data sample is scaled by its
standard deviation in squared pressure. These synthetic data
samples are used to train both the supervised and unsupervised
models.

B. Measured Data Samples

The main goal of the SBCEX 2017 was to gain a better un-
derstanding of the physical mechanisms that control acoustic
propagation in fine-grained sediments. The experiment took
place 95 km south of Martha’s Vineyard, MA, USA, an area
known as the New England Mudpatch, in approximately 75 m
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TABLE I
SOURCE PARAMETER BOUNDS FOR THE SYNTHETIC TRAINING DATASET.
RECEIVER DEPTH WAS CONSTANT AT zr = 42 m, AND WATER DEPTH IS

75 M, THE MEAN WATER DEPTH IN THE AREA OF SBCEX 2017.

S0 (dB) zs (m) CPA (km) Speed (kt)
Bounds 230-240 6-12 0.5-15 8-20

No. Fixed 0 0 5 3
No. Random 1 3 10 6

of water as shown in Fig. 1 of [16]. The seabed label names
with the suffix ” sbc”, from Table 3 in [2], originated from
published geoacoustic inversions results using SBCEX 2017
data, as described in Howarth et al. [15]. For the 34 seabed
catalog, the seabeds are ordered by the sound speed at the
top of the sediment layer; seabed types 0-15 had sound speed
ratios across the sediment-water interface less than one, as
expected in this area at the time of the experiment.

The measured data were collected by three VLAs: VLA1
and VLA2, deployed by the Marine Physical Laboratory,
Scripps Institution of Oceanography, and VLA3 deployed by
the University of Delaware. These VLAs were deployed during
the SBCEX 2017 as shown in Fig. 1 of [2] at the locations
specified in their Table 1. The data from one channel on each
VLA was used (approximate depth 42 m). The Automatic
Identification System (AIS) [17] data were used to identify
ships recorded during the deployment of these VLAs. A total
of 69 measured data samples were obtained between Julian
days 67-96 in 2017. These data samples are listed in Table II
along with their CPA range and speed.

The spectrograms were computer using a Fast Fourier
transform with the following parameters. To create each ship
noise spectrogram, the CPA time was determine and then 20
min of data were selected with CPA in the center. These
data, recorded with a sampling frequency of 25 kHz, were
downsampled to a sampling frequency was 12.5 Hz. The
Fast Fourier Transform was performed using MATLAB’s fft
command with N = 2048 and a Hamming window, which
produced a frequency resolution of 6.1035 Hz. The data were
time averaged over 10 sec with 50% overlap such that there
are 5 sec between the time steps in the resulting spectrogram.

C. k-Means Clustering

A simple and popular unsupervised learning algorithm is
k-means clustering. The k-means algorithm requires users to
choose a value for k representing the number of resulting
clusters. This value is then used for selecting k data samples
from the training set to act as the initial cluster centers known
as centroids. For each iteration, the algorithm goes through
each data sample (i.e., spectrogram) in the training dataset and
assigns it to a cluster with the smallest Euclidean distance
between the data sample and the centroids. After each data
sample is assigned to a cluster, the centroids are changed to
be the mean of the data samples in their cluster. The goal of k-
means clustering is to minimize the sum of squared distances
between each data sample and its assigned centroid. Multiple

iterations are completed until the centroids converge or the
stopping criterion is met.

Because the original k-means algorithm takes the time to go
through the whole training set for a single iteration, we use a
method called minibatch k-means. The centroids are updated
more frequently, after each batch of 100 samples instead of
after the entire dataset. This reduction in computation time
comes at the cost of lower cluster quality [18], but the resulting
clusters are sufficient for the current work.

D. Convolutional Neural Networks

Escobar et al. [2] compared six different convolutional
neural network (CNN) architectures for seabed classification.
The models used in that study were two 3-layer CNNs, three
5-layer CNNs, and one 18-layer residual CNN called ResNet-
18. Details about the model architectures are provided in
[2]. For each architecture, five-fold cross-validation produces
five models trained with different random initializations and
train/test splits of the synthetic data samples. During training,
the data samples were labeled only by the seabed type, even
though a variety of source parameters were used to generate
the training data. The models were trained for classification
between 34 seabeds with a softmax loss function.

III. RESULTS

After the k-means clustering and the CNN-based models
were trained on synthetic spectrograms, the 69 measured data
samples were passed through the networks. The classifier
output from the CNN-based models relates to the probability
that the data sample comes from a certain seabed class. The
seabed with the highest classifier output was identified as the
selected seabed. The selected seabeds for all 69 data samples
from the six CNN-based architectures, which each had five
trained models, are shown in Fig. 1. The histogram contains
2070 predictions: The most commonly predicted seabeds have
a sound speed ratio less than one across the sediment–water
interface, with seabeds 3-6 having the largest number of pre-
dictions. This results is important since physical measurements
were made in an area where seabed classification is for a fine-
grained sediment [19] and overall the analyses for SBCEXP
points towards a ratio less than unity [16]

While the supervised learning methods yield classification
output that correspond directly to the seabed classes, the
interpretation of the unsupervised learning results is more
subtle. To assess how the clustering of synthetic data could
be used to infer features from measured data samples, the
clusters of a trained k-means model were analyzed to find
trends in the properties of the synthetic ship spectrograms
placed into each cluster. Each measured data sample is then
input to the trained clustering model and assigned a cluster.
The characteristics of the synthetic data samples in each of the
assigned clusters are then evaluated. The focus in this paper
is to look at the distribution of seabed types corresponding
to the synthetic data samples placed in the same clusters as
the measured data samples. These seabed distributions are then
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Fig. 1. Selected seabeds from the six CNN-based supervised learning models. Five models of each architecture were trained and then applied to the 69
measured data samples. Thus, 2070 predictions are contained in this histogram.

Fig. 2. Seabed probability distribution plots of the synthetic data samples assigned to the same cluster as the 69 measured data samples using the k = 250
model. The cluster assignments are listed in Table II.

compared to the seabed classification results from the ResNet-
18 models.

When the 69 measured data samples (i.e., ship spectrograms
from the VLAs) are individually passed through the trained k-
means clustering model, they are each assigned to a cluster.
The assigned cluster numbers are listed in Table II. The 69 data
samples where assigned to only nine of the k = 250 clusters.
While the cluster number is not significant, the properties
of the synthetic data samples assigned to that cluster are
important because they can provide insights into appropriate
labels for the measured data samples. Specifically, the cor-
responding seabed distributions associated with the assigned
clusters assigned (based on the synthetic data samples in the

same cluster) are shown in Fig. 2. Plots of the seabed and
CPA range for the synthetic data samples in each cluster are
shown in Fig. 3.

Consider first the seabed distribution plots in Fig. 2. Of the
69 measured data samples, 48 are placed into clusters that
contain synthetic data samples primarily from seabeds 0, 3, 6,
and 9. These 48 data samples could reasonably be assigned
a specific seabed label using the most common seabed in
the cluster, or the distribution of seabeds could be used to
estimate the probability that the data sample was measured in
an area with different effective seabeds. Thus, for 70% of the
measured data samples, the unsupervised method can yield an
approximate seabed label.
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The remaining 21 samples are placed into clusters with no
distinct seabed associations in Fig. 2. Of these 21, five had
extraneous noise in the spectrograms and four had low signal-
to-noise ratio (SNR). A limitation is expected with regards to
low SNR because no extra background noise was added in the
training in the unsupervised clustering model. Also, because
the entire spectrogram is input to the k-means algorithm, any
misalignment of CPA would potentially affect the ability to
assign reasonable clusters to the data samples.

With regards to the main goal of providing labels for the
measured data, the seabed is not the only property associated
with the synthetic data samples. For example, the single ship
placed into cluster 36 has a CPA of only 0.6 km and the three
ships assigned to cluster 38 have CPA ranges 2.9-3.3 km.
The synthetic data samples in clusters 36 and 38 all have
short CPA ranges, as shown in Fig. 3. For these clusters, the
close CPA range dominates the features in the spectrograms to
train the clustering algorithm. While there is no seabed class
information for these clusters, a label of ”short CPA range”
could be applied to these four unlabeled data samples using
this approach.

IV. CONCLUSIONS

This paper has shown that an unsupervised clustering
method, such as k-means, has the potential to supply approxi-
mate labels for unlabeled datasets. This has been demonstrated
for seabed classification labels on ship noise spectrograms.

Six different CNN-based seabed classifiers were trained on
synthetic data and then applied to 69 measured data samples
from SBCEX 2017. The predicted seabeds tend to have a
sediment-water sound speed ratio less than one, as is expected
in the New England Mudpatch area.

A k-means clustering algorithm was also trained on syn-
thetic data, and the properties of the data samples assigned to
each cluster were evaluated. The 69 measured data samples
were assigned to nine clusters: 38 of them assigned to four
clusters that were related with just a few seabeds (i.e., the
synthetic data samples in the cluster came from seabeds
0,3,6,9). These seabeds were similar to those selected by
the CNN-based seabed classifiers. Four of the measured data
samples were assigned to clusters with short CPA ranges.

This work provides an example of how an unsupervised
clustering approach can be used to estimate labels for unla-
beled datasets and opens the way for further applications of
machine learning to ocean acoustics.
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Fig. 3. Histogram showing the number of synthetic data samples with different seabed types and CPA ranges for nine clusters using the k = 250 model. The
69 measured data samples were assigned to these nine clusters as listed in Table II.
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TABLE II
LIST OF SHIPS RECORDED DURING THE SBCEX 2017. THE SHIPS ARE NUMBERED 1-51; SOME OF THEM WERE DETECTED ON MULTIPLE VLAS TO

YIELD 69 MEASURED DATA SAMPLES. THE SECOND COLUMN INDICATES SHIP NAME AND THE THIRD COLUMN WHICH VLA THE DATA SAMPLE CAME
FROM: (1) VLA1-MPL, (2) VLA2-MPL AND (3) VLA-UD. THE FOURTH COLUMN IS THE CLUSTER ASSIGNED TO THE DATA SAMPLES BY THE

k-MEANS CLUSTERING. THE FIFTH AND SIXTH COLUMNS CONTAIN THE CLOSEST-POINT-OF-APPROACH (CPA) RANGE IS GIVEN IN KM, AND THE SPEED
OF THE SHIP, vsh IN KNOTS FROM AIS DATA [20]. SYMBOLS NEXT TO THE CPA RANGE INDICATE A QUALITATIVE DESCRIPTION OF THE SIGNAL.

SUPERSCRIPTS + AND − INDICATE THAT THE SOO SPECTROGRAM HAS HIGH OR LOW SNR, RESPECTIVELY. SUBSCRIPT ∗ REPRESENTS THAT A LOUD
NOISE EVENT DIFFERENT THAN THE BROADBAND NOISE GENERATED BY THE SHIP WAS PRESENT. THE SHIPS ARE ORDERED BASED ON TIME OF THE

RECORDINGS, WHICH COVERED JULIAN DAY 67 TO 96, AS LISTED IN TABLE 2 IN [2].

# Ship name VLA Cluster CPA vsh # Ship name VLA Cluster CPA vsh

1 MATAQUITO 3 27 9.5 +
∗ 19.4 29 BRITISH TRANQUILLITY 3 102 9.8−∗ 13.5

2 ALICE OLDENDORFF 3 36 0.6+ 8.3 30 CPO BALTIMORE 1 102 9.3+∗ 14.7
3 PAGNA 3 27 13.3+∗ 17.5 31 TORM SAONE 1 27 8.6− 13.0
4 JIA SHENG SHAN 3 27 9.1+∗ 11.2 32 ARDMORE SEAVANTAGE 3 102 5.0+ 15.4
5 EVER LIVING 3 102 5.8+ 18.4 33 LEOPARD 3 102 10.2+ 13.2
6 ZIM QINGDAO 3 102 8.8−∗ 11.3 34 CMA CGM MOLIERE 3 27 9.8− 15.9
7 STI CLAPHAM 3 102 4.6+∗ 11.8 35 HAFNIA GREEN 2 85 2.8+ 10.9
8 NYK RUMINA 3 102 5.0+ 19.8 35 HAFNIA GREEN 3 225 4.8+∗ 10.9
9 BARBARA 3 102 5.7+∗ 19.9 36 MSC NERISSA 1 102 8.7+ 15.6

10 MSC BREMEN 3 102 10.0+∗ 18.4 36 MSC NERISSA 3 102 9.8+ 15.6
11 OREGON HIGHWAY 3 85 0.7+∗ 15.3 z 37 VIKING BRAVERY 1 38 3.3+ 14.7
12 MSC LAUSANNE 3 102 5.5− 12.0 37 VIKING BRAVERY 2 42 3.1+ 14.7
13 NYK RIGEL 3 85 5.2+∗ 19.9 37 VIKING BRAVERY 3 38 2.9+ 14.7
14 ZIM SHANGHAI 3 42 5.3+∗ 17.9 38 MAERSK MATSUYAMA 1 102 7.2+ 11.6
15 TRANSPORT 3 102 1.5+ 8.4 38 MAERSK MATSUYAMA 2 102 4.6+ 11.6
16 BOW PIONEER 3 102 4.7+∗ 11.9 38 MAERSK MATSUYAMA 3 102 6.6−∗ 11.6
17 DISCOVERY BAY 3 102 5.9+ 13.3 39 TOMBARRA 1 102 6.4+ 16.3
18 MSC ESTHI 3 102 11.1−∗ 17.8 39 TOMBARRA 2 42 3.2+ 16.3
19 ATLANTIC CONVEYOR 1 102 9.0+ 16.1 40 ATLANTIC SEA 1 27 9.3+ 17.6
19 ATLANTIC CONVEYOR 2 248 12.2+ 16.1 40 ATLANTIC SEA 2 27 2.7+ 17.6
19 ATLANTIC CONVEYOR 3 102 10.2+ 16.1 40 ATLANTIC SEA 3 102 10.6+ 17.6
20 MSC ANIELLO 2 27 3.6+ 14.3 41 KAZDANGA 2 27 1.9+∗ 9.2
21 MSC KALAMATA 1 102 5.9+ 16.7 42 NYK DIANA 1 102 8.6+∗ 18.9
21 MSC KALAMATA 2 38 3.1+ 16.7 42 NYK DIANA 1 42 9.8+∗ 18.9
21 MSC KALAMATA 3 27 4.9+ 16.7 43 CHEMICAL PIONEER 1 102 8.5+ 16.2
22 CORRIDO 2 27 4.0+ 14.6 44 DENAK VOYAGER 1 102 6.7+∗ 10.3
23 YM UNANIMITY 2 102 3.8+ 9.1 44 DENAK VOYAGER 3 102 5.5+∗ 10.3
24 MINERVA ZOE 1 102 8.6− 12.3 45 ARCTIC BREEZE 1 248 8.2+ 14.3
25 BBC TENNESSEE 1 42 7.4−∗ 8.3 46 PAGANELLA 3 85 4.8+∗ 14.9
25 BBC TENNESSEE 2 85 4.2+∗ 8.3 47 MSC KOLKATA 3 102 4.7+∗ 9.6
26 CHEM VENUS 1 102 9.3− 12.9 48 ALICE OLDENDORFF 3 6 10.3+ 10.7
27 MSC GISELLE 3 102 6.5+ 18.3 49 MSC AMERICA 3 102 6.6+∗ 16.0
28 FEDOR 1 27 8.6− 11.6 50 CSCL AMERICA 3 102 10+∗ 21.2
29 BRITISH TRANQUILLITY 1 27 8.5− 13.5 51 STEALTH BERANA 3 85 5.2+∗ 13.7
29 BRITISH TRANQUILLITY 2 27 12.0− 13.5
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