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ABSTRACT:
While source localization and seabed classification are often approached separately, the convolutional neural

networks (CNNs) in this paper simultaneously predict seabed type, source depth and speed, and the closest point of

approach. Different CNN architectures are applied to mid-frequency tonal levels from a moving source recorded on

a 16-channel vertical line array (VLA). After training each CNN on synthetic data, a statistical representation of pre-

dictions on test cases is presented. The performance of a single regression-based CNN is compared to a multitask

CNN in which regression is used for the source parameters and classification for the seabed type. The impact of

water sound speed profile and seabed variations on the predictions is evaluated using simulated test cases.

Environmental mismatch between the training and testing data has a negative impact on source depth estimates,

while the remaining labels are estimated tolerably well but with a bias towards shorter ranges. Similar results are

found for data measured on two VLAs during Seabed Characterization Experiment 2017. This work shows the supe-

riority of multitask learning and the potential for using a CNN to localize an acoustic source and detect the surficial

seabed properties from mid-frequency sounds. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Environment variability in the world’s oceans compli-

cates the application of machine and deep learning to prob-

lems in ocean acoustics. The ocean environment is

characterized by the sound speed in the water column, the

water depth, and the seabed properties. Because the variable

ocean environment impacts source localization and tracking

and seabed characterization efforts,1–3 all potential applica-

tions of machine and deep learning in ocean acoustics must

be tested with this variability in mind. Van Komen et al.4

contains evidence that deep learning, via a convolutional

neural network (CNN), can find both a source range and a

seabed type from a one-second pressure time series on a sin-

gle hydrophone from an explosive source. This paper

extends that work to mid-frequency tones emitted from a

moving source received on a vertical line array (VLA) of

hydrophones. The impact of environmental variability on

CNN estimates of the moving source’s location and seabed

type are evaluated first using simulated data and then with

data from two VLAs measured during the 2017 Seabed

Characterization Experiment (SBCEX 2017).5

Acoustic source localization and tracking in the ocean

have been performed using different passive acoustics tech-

niques. Common optimization algorithms include matched-

field processing (MFP),6–9 multipath arrival estimation,10,11

particle filtering,12 and Bayesian approaches.13,14 However,

uncertainty in the ocean environment complicates source

localization efforts.

Matched-field inversions15 have been used in many

cases to estimate environmental parameters with some using

genetic algorithms,16 simulated annealing,17,18 or Bayesian-

based sampling approaches.3 Most studies focus on low-

frequency sound that contains information about geoacous-

tic properties deeper in the seafloor. Recently, however,

several studies in the mid-frequency range have been com-

pleted. Choi and Dahl19 used reflection coefficients in the

2–20 kHz range to estimate sediment parameters using the

Bootstrap method and concluded these frequencies could be

used to obtain properties in the top 2 m for a sandy environ-

ment. Holland and Dosso20 applied Bayesian methods to

long-range reverberation to estimate depth-integrated inten-

sity. Yang et al.21 used bottom loss data in the 2–5 kHz

range to estimate the properties of a half-space bottom

model and found that averaging over source tracks helped

reduce the impact of scattering over topographical changes.

These studies point towards the potential of estimating surfi-

cial seabed properties from mid-frequency sounds.

a)This paper is part of a special issue on Machine Learning in Acoustics.
b)Electronic mail: atbn@byu.edu, ORCID: 0000-0002-9729-373X.
c)ORCID: 0000-0003-0610-0806.
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The intertwined effects of source location and environ-

mental characteristics on sound propagation have encour-

aged efforts to simultaneously obtain estimates for both.

Approaches that have tackled the combined problem include

Tabu optimizations,22 simulated annealing with a rotated

coordinate system,23 and Bayesian inversions.3 As the

number of parameters in the inversions and their interdepen-

dence increases, so do the challenges associated with high-

dimensional search spaces, nonlinear relationships between

the unknowns, and large uncertainties due to varying infor-

mation content about the inferred parameter values.

Recently, machine and deep learning approaches to the

problems of source localization have gained interest. A

review of learning applications in various fields of acoustics

can be found in Bianco et al.,24 including deep learning

techniques based on neural networks. Steinberg et al.25 used

a neural network to localize a point source in a homoge-

neous medium in 1991. In ocean acoustics, neural networks

have been employed for real-time range estimation26 and

source localization in the ocean.27–32 Some studies, such as

those done by Lefort et al.29 and Niu et al.,27,28 have found

that deep learning classifiers outperform MFP, further sug-

gesting the relevance of using deep learning in underwater

environments. This work was extended in Ref. 33 to use a

series of nine ResNet architectures to classify the range and

depth of an air gun.

Machine and deep learning have also been used to

make predictions about ocean seabed parameters, such as

attenuation and sound speed. Early efforts included the use

of neural and statistical classifiers by Michalopoulou

et al.,34 parallel feed-forward networks by Benson et al.,35

and global and hierarchical approaches by Stephan et al.36

Recently, Piccolo et al.37 used generalized additive models

for predicting compressional sound speed and attenuation

from time-domain features from a single sensor. Vertical

line array input was used by Niu et al.38 to extract modal

properties using a block sparse Bayesian learning and by

Frederick et al.39 in machine learning classifiers for a two-

layer sediment model on synthetic data.

Simultaneous prediction of source range and seabed

type using a CNN trained on synthetic data and applied to

measured data were presented in Van Komen et al.4 using

one-second, broadband pressure time series from a single,

bottom-mounted hydrophone. This work is extended in the

current study to show that a CNN can learn both a moving

source’s location and a seabed type from mid-frequency

tonal levels recorded on a VLA. Because of a lack of

labeled field data, the CNN is trained on data simulated for

measured sound speed profiles, four distinct seabed types,

and a variety of source parameters. We present a compari-

son between a CNN based on regression and an implemen-

tation of the multitask deep learning (MTL) technique

described in Kendall et al.40 to perform classification for

the seabed type and regression for the localization parame-

ters simultaneously.

The MTL-CNN is compared to CNNs using regression

for source and seabed labels, along with CNNs that learn

only a single label. For all these networks, the CNN learning

was ensured by high accuracy for randomly drawn valida-

tion data. The trained CNNs are applied to data simulated

with sound speed profiles (SSPs) and seabed types not used

in training to investigate the robustness of the predictions in

cases of SSP and seabed mismatch. The trained CNNs are

also applied to data measured on two VLAs during SBCEX

2017 to test the ability of the CNNs to generalize to ocean

data. These tests show the potential for CNNs to estimate

seabed type and source motion from mid-frequency tones.

II. EXPERIMENT

A. VLA data

The data were collected in the New England Mud Patch

area during SBCEX 2017. The operational area for the

experiment is depicted in Fig. 1. The black symbols repre-

sent acoustic sensors deployed by other research groups. A

complete list of these sensors is found in Ref. 5.

The data used in this paper were collected at two VLAs

deployed by the Marine Physical Laboratory of the Scripps

Institution of Oceanography (MPL). The locations of the

two MPL VLAs are depicted in Fig. 1 with green triangles:

VLA 1 is centrally located, whereas VLA 2 is approxi-

mately 6 km SE. The coordinates of the VLAs are [40.470N,

70.597W] and [40.442N, 70.527W], respectively. The color

bar in the plot represents the depth of the ocean in the region

based on bathymetry data. The average ocean depth at VLA

1 is 71 m and VLA 2 is at 74 m depth.

During a portion of the experiment, an ITC2015 source

was towed along roughly straight tracks in the vicinity of

the VLAs (deviations due to fishing gear in the water). This

source had a 45 m nominal tow depth and transmitted tones

at frequencies of 2.0, 2.5, 3.0, 3.5, and 4.0 kHz. The source

signal was received and recorded by both VLAs with a sam-

pling rate of 25 kHz. Each VLA has 16 hydrophones with a

56.25 m aperture. The lowest one is 3 m from the ocean

floor, and the hydrophone spacing is 3.75 m. The location of

the ship during the time of interest, provided by GPS data, is

shown as a blue line in Fig. 1. The (lower) NW travelling

track (Track 1) began on March 24, 2017 (Julian Day 083)

FIG. 1. (Color online) Bathymetric map of the area. Thin (blue) line shows

the ship track from live GPS, and triangles (green) show the VLA locations.

Thicker (red) lines and numbers 1–6 indicate the portion of the track

assigned to different half-track/VLA data samples. The diamonds (black)

show the locations of other sensor arrays deployed during SBCEX 2017.
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at 0121 UTC, and the (upper) SE travelling track (Track 2)

began at 0435 UTC on the same day. The full length of each

track is nearly 15 km, however, the extracted portions of the

tracks used in this study are approximately 6.5 km. These

extracted portions are annotated with the red lines in Fig. 1.

The corresponding red numbers indicate the sample number

assigned to each half-track/VLA combination, and are used

to identify the measured data samples in Figs. 2 and 10.

The time series data from linear frequency-modulated

pulses on VLA 2 were used by Michalopoulou and

Gerstoft41 to obtain source, array element, and environmen-

tal properties. The received time signals across the 16 chan-

nels were used to obtain arrival times of different

propagation paths via particle filtering and a cross correla-

tion cost function. The resulting arrival times were used to

obtain source range and depth, array element depth, water

column depth, and the sediment sound speed and thickness.

Their results agreed with expected values, and their work

illustrates the richness of the MPL VLA data from SBCEX

2017.

B. Data extraction

During the times shown in Fig. 1 (Julian day 83, 0056 to

0732 Zulu time), the ITC 2015 towed source emitted tones in

the mid-frequency range with a 50% duty cycle. Because of

high signal-to-noise ratios, the five tones selected for this work

were 2, 2.5, 3, 3.5, and 4 kHz. The 50% duty cycle was

required due to marine mammal activity in the area; tones

were on for 10 s and then off for 10 s. Because of the duty

cycle, some preprocessing was required to obtain signals repre-

sentative of a continuous source. A spectrogram was obtained

using a 1 s window and 50% overlap. Because the energy of

each tone was spread over several frequency bins around the

center frequency, a summation of the squared pressure values

over these frequency bins was performed to get the total energy

associated with each tone.

Due to the 50% duty cycle, signal processing was done

to approximate a continuous signal that preserved the infor-

mation content but could be more easily modeled than a

moving source that was on for 10 s then off for 10 s. The

time-varying tonal levels for each of the five frequencies

were smoothed via an envelope function on the peaks over

a sliding 30 step (time sample) window using a spline fit.

The ends of the spline fit were removed to prevent spuri-

ously large values near the end points. The resulting

smoothly varying tonal levels at 0.5 s time intervals are

shown in Fig. 2.

Each resulting data sample contains the power spectral

levels (in decibels) of the five tones on each of the 16 VLA

channels for 8850 time steps covering 4424 s (approximately

74 min). Each data sample contains multichannel tonal lev-

els stored as an 80� 8850 matrix. The data samples (Fig. 2)

correspond to the six half-track/VLA combinations identi-

fied in Fig. 1. The horizontal axis corresponds to the time.

The high amplitude portions starting around sample 3500 is

due to modal interference and contains information about

the modal properties of the ocean environment.

Some of the extracted signals have the closest point of

approach (CPA) to the VLA at the beginning of the track,

while CPA is at the end of the track for others. To provide

consistency in the input data structure, the time axis on these

latter signals was flipped such that CPA occurs at the begin-

ning of the matrix. Similar tonal spectrograms are simulated

for training the neural networks, as described in Sec. IV D.

Selection of the time corresponding to CPA for the

towed source was challenging. Due to the complex interfer-

ence patterns, peak levels and change in Doppler shift

appeared different for the different frequencies. Thus, the

start time for the extracted signals corresponds roughly to

CPA. Because the simulated training data begin with the

source at CPA, this uncertainty in start time for the mea-

sured samples translates into an uncertainty in expected

CPA range of approximately 20 m, with CPA range defined

as the horizontal distance between the source and receiver

array when the source is at the closest point of approach, as

illustrated in Fig. 3.

III. METHODS

CNNs and other supervised deep learning algorithms are

typically trained with a large number of labeled samples. The

lack of labeled field data is one of the primary challenges for

applying deep learning in ocean acoustics. Our approach is to

simulate data using source-receiver configuration similar to the

measured data in representative ocean environments. These

simulated training data are used for training and validating the

CNNs. Additional simulated data from environments not repre-

sented in the training data are then used to test the robustness

of the trained CNNs predictions to environmental mismatch.

Finally, the trained CNNs are applied to measured data

(Fig. 2), as described in Sec. II B. Details for each of these

steps are provided in this section.

A. Simulated data

The data simulation process models the interaction of

the source spectrum with the ocean waveguide for different

FIG. 2. (Color online) Extracted tonal levels from the VLAs during tracks 1

and 2 (Julian day 83, 0056 to 0732 Zulu time). The sample number corre-

sponds to the numbers in Fig. 1 with samples 1 and 6 corresponding to

VLA2 recordings and the remaining samples coming from VLA1.
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ocean environments. The ITC2015 source line levels are

used as the source spectral levels. For these five frequencies,

the ocean response is modeled with ORCA, a range-

independent, elastic, normal-mode model.42 The two

assumptions about the source motion are that the first time

in each data sample corresponds to CPA, and second, that

the source moves along a track perpendicular to the line

between the receiver and CPA, as illustrated in Fig. 3.

Source line levels relative to 1 lPa at 1 m are 142 dB at

2 kHz, 144 dB at 2.5 kHz, 140 dB at 3 kHz, 140 dB at

3.5 kHz, 139 dB at 4 kHz. These levels were obtained exper-

imentally and are included because the relative levels

between tones are presented to the CNN during training.

Data simulation occurs for all 16 channels with the assump-

tion that the VLA is vertical.

Data are simulated for several combinations of SSP and

seabed type. Three SSPs measured during the experiment

are used to generate the training data. These SSPs are shown

as black lines in Fig. 4, with a water depth of 74.4 m. While

there are many ways to parameterize the seabed, this first

mid-frequency study in characterizing the seabed with deep

learning uses four representative seabed types that span a

wide range of seabed characteristics from a soft, deep mud

to a hard sand.

Although the seabed in the New England Mud Patch

where SBCEX 2017 took place has been studied exten-

sively,5 this work is evaluating the ability of a CNN to dis-

tinguish between different types of seabeds when such a
priori information is not available. Thus, the four selected

seabeds are inspired by geoacoustic inversions from differ-

ent areas of the world. The properties of these four seabeds

are displayed in Fig. 5. The deep mud seabed type (#1) was

estimated for the Gulf of Mexico, as reported by Knobles

et al.43 The mud over sand seabed type (#2) was obtained

from maximum entropy statistical inference on data col-

lected during the SUS circle experiments in SBCEX 2017.44

The sandy silt seabed type (#3) resulted from geoacoustic

inversions for data collected in the New England Bight by

Potty et al.45 The sand seabed type (#4) was the conclusion

of a study on several sandy sea bottoms by Zhou et al.46 For

each seabed type, the sediment sound speeds are shown as

thick black lines, while the legend contains the remaining

ORCA input parameters: attenuation, a, and density, q, for

the water (subscript w), and the top (superscript t) and bot-

tom (superscript b) of each layer (subscript i ¼ 1� 3) and

the half-space (subscript hs). For each seabed, the ratio

across the water-sediment interface [rc ¼ ct
1=cðhwÞ, where

cðhwÞ is the sound speed at the bottom of the water column]

is held constant when different SSPs are used in the simula-

tions. A linear gradient gi is assumed for each sediment

layer, i.
These four seabeds are used to generate a synthetic

training dataset as a proof-of-concept that a CNN can learn

some of the basic properties of the ocean seabed, such as

degree of reflectivity. In this work, the seabeds have been

ordered from highest to lowest bottom loss. Seabed number

1 (deep mud) has a water-sediment sound speed ratio, rc,

less than 1, which causes the modal wavenumbers to have a

large imaginary part. Seabed number 2 (mud over sand) has

a similar structure at the top of the sediment but an addi-

tional reflection occurs because of a deeper, more reflective

layer. Seabed number 3 (sandy silt) has rc > 1, mitigating

penetration into the seabed and, thus, enhancing the specular

component of the seabed reflection. Seabed number 4 (sand)

has the largest rc, providing an even larger specular

response. Seabed types 1 and 2 are characterized by an angle

of intromission, whereas seabed types 3 and 4 are character-

ized by a critical angle. Significant work is needed to dis-

cover the best way to extend the number and variety of

seabed types required for in situ applications.

1. Training data

The simulated training data set were designed to share

characteristics with the extracted data. Levels for five tonal

frequencies were simulated using all combinations of three

measured sound speed profiles (black in Fig. 4), the four

seabed types (Fig. 5), and a variety of source parameters.

FIG. 3. (Color online) Geometry assumed for the path of the moving source

relative to the sensor array.

FIG. 4. (Color online) Sound speed profiles (SSPs) used for simulating

training and testing datasets.
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The minimum and maximum source parameters are shown

in Table I. To make sure the entire source parameter space

is sampled, the data were simulated at specified values

(evenly spaced between the minimum and maximum values)

that are constant for each environment; the combination of

specified source parameters for each of the four seabed types

and three SSPs yielded 3600 samples. In addition, data were

simulated using randomly selected sets of source parameters

for each environment resulting in an additional 3000 sam-

ples. Thus, the entire training dataset contained 6600 sam-

ples. The total number of specified and random source

parameters are also listed in the Table I. For comparison, the

last column contains approximate source parameters

expected for the measured samples from the ship GPS and

assumed distance to the towed source.

The synthetic data samples were arranged in the same

manner as the extracted data. Levels at five towed tonal fre-

quencies (2 to 4 kHz) were simulated for the 16 channels of

the VLA and 8850 time steps. Each data sample was

FIG. 5. (Color online) Four seabed models used for simulating the synthetic training data with upper sediment layers of (a) 1: deep mud (Ref. 43), (b) 2:

mud over sand (Ref. 44), (c) 3: sandy silt (Ref. 45), and (d) 4: sand (Ref. 46). Sound speed profiles are shown as thick black lines, while the legend contains

attenuation, a, and density, q, for the water (subscript w), and the top (superscript t) and bottom (superscript b) of each layer (subscript i ¼ 1� 3) and the

half-space (subscript hs).

TABLE I. Span and quantity of source parameters used in generating the

simulated training data along with approximate expected values for the

measured samples. The source parameters are CPA range r, ship speed v,

and source depth zs.

Min Max Number Number Expected

Value Value Specified Random Values

r, m 100 1100 10 10 200–900

v, kts 1 5 5 5 3

zs, m 5 65 6 5 45
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smoothed along the horizontal axis, using a moving median

with window size of eight time samples then downsampled

by a factor of 8 resulting in an input size of 80� 1106.

Examples of the resulting 80� 1106 matrices are shown in

Fig. 6. This preprocessing reduced the computational mem-

ory requirement and better matches the envelope processing

described in Sec. II B.

2. Simulating environmental mismatch

To analyze the performance of the networks in cases of

environmental mismatch, five additional datasets were simu-

lated with environments not used in training. The data for

tests A, B, C, and D were created to analyze the impact of a

mismatch in the SSP in the water column and in the water

depth (test B, þ/ –0.5 m) while using the same seabeds as

the training data (Fig. 5). The data for test E were created

using the same SSPs as the training data but six seabeds

based on different parameterizations of the viscous grain

shearing (VGS) model that represent various types of mud

and sand.47,48

The cases of SSP mismatch simulated different propa-

gation conditions than the slightly upward refracting SSPs

measured during the experiment, as shown in Fig. 4. Test A

had SSPs with the same slope but slightly offset from the

measured SSPs used for the training data. Test B had a sin-

gle isovelocity SSP but random water depths of

74.4 m 6 0.5 m. Test C used three isovelocity SSPs (with a

single water depth) with sound speeds above and below

those used in the training data. Test D contains downward

refracting sound speed profiles, with different slopes and

represent a significantly different sound propagation envi-

ronment. For these test cases, the data samples were gener-

ated with randomly selected source parameters to form 2000

samples for tests A and B, 3000 samples for test C, and

5000 samples for test D. These test cases are used to evalu-

ate the performance of the CNN in cases of SSP mismatch;

results are shown in Sec. IV B.

Test E investigates the issue of seabed mismatch. The

four seabed types used to generate the training data (in

Fig. 5) do not represent every possible type of seabed in the

ocean, which leads to the important question: How will the

CNNs perform when none of the seabeds used in training

match the real one? To investigate this question, six addi-

tional seabeds were created using the VGS model.47,48 The

parameters for four of these seabeds are chosen to represent

different muddy seabed types, potential candidates for the

SBCEX 2017 experimental area (Sec. II A); the other two

represent sandy seabeds. A description of each VGS seabed

is provided in Table II. To evaluate the impact of seabed

mismatch, a simulated test case was generated with these six

VGS seabeds, the same SSPs and a subset of the source

parameters used in the training data yielding a total of 4536

testing samples. Results are shown in Sec. IV C.

B. Convolutional neural networks

A convolutional neural network (CNN) is a standard

deep learning tool designed to operate on gridded data simi-

lar to images49 (e.g., evenly spaced in frequency, depth,

time, etc.). CNNs are particularly useful for data in which

patterns are important and when translations (e.g., time

delays) can be ignored when comparing different data sam-

ples. More information on CNNs can be found in

Goodfellow et al.50

The base architecture used in this study is a five-layer

CNN. Five two-dimensional convolution kernels are

employed, with max-pooling in the first two layers. The

algorithm is written in PyTorch51 and employs the Adam

FIG. 6. (Color online) Examples of the synthetic data for CPA range of 400 m, source depth¼ 45 m, and ship speed¼ 3 knots for each of the four seabeds in

Fig. 5.

TABLE II. Six seabeds defined by VGS parameters.

Description

1 Lossy mud over sand

2 Deep mud over sand based on low-frequency

geoacoustic inversions from the Gulf of Mexico in Ref. 43

3 Medium loss mud over sand

4 Low loss mud over sand

5 Sandy silt based on geoacoustic inversions from Ref. 45

6 Coarse sand based on geoacoustic inversions

of New Jersey sand ridge experiment in Ref. 46
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optimizer,52 ReLU activation functions,53 and batch normal-

ization. As with the procedure detailed in Ref. 4, a cosine

annealing learning rate is used.

A set of preliminary tests to tune the hyperparameters of

the network architectures provided insights into a few things

that improved learning on these long (in time) data samples.

Maximum pooling in the first two layers helped the network

learn but not in the lower layers, as did large (in time) kernel

sizes. In addition, the labels are first divided their maximum

value and then multiplied by 100 (close to the peak value of

the power spectral levels in the data), as this scaling expedites

the learning process by putting the data and the labels on the

same scale.54 This base architecture was designed to fit the

dimensions of the problem and fit the memory requirements.

Future work can explore more complex architectures with

many more parameters, such as ResNet.55

In this paper, a comparison is made between networks

with different output layers. The architecture details are

shown in Fig. 7. The loss function used to train the network

determines if a classification or regression approach is taken.

For networks where regression is done for all desired labels,

a single fully connected layer is used prior to the output and

the mean-squared error over all labels defines the loss func-

tion, as shown in Fig. 7(a). However, to accomplish multi-

task learning (MTL), two independent fully connected

layers are used to add flexibility, as shown in Fig. 7(b).

The MTL approach is implemented to simultaneously

classify the seabed type and do regression for the localiza-

tion parameters. Homoscedastic uncertainty, which does

not depend on the input data but in the network architec-

ture, is taken into account by weighting the losses for each

task.40 Each label is learned separately and then the total

loss function, L, combines the losses from the individual

tasks

L ¼ 1

2r2
1

L1ðwÞ þ
1

2r2
2

L2ðwÞ þ
1

2r2
3

L3ðwÞ

þ 1

r2
4

L4ðwÞ þ logðr1r2r3r4Þ; (1)

where L1ðwÞ; L2ðwÞ; and L3ðwÞ correspond to the mean-

squared error for the CPA range, the ship speed, and

the source depth regression tasks, respectively; L4ðwÞ is the

cross-entropy loss for the seabed classification; and ri is the

noise parameter for each task. When ri increases, the objec-

tive is penalized and, therefore, the weight for that specific

task decreases. The values of ri are learned during the train-

ing process to balance the different learning tasks and relate

to the relative “noise” in the different learning tasks. In prac-

tice, log ðr2
i Þ is used to avoid any division by zero.40

An example of the values of r2
i learned during are dis-

played in Fig. 8. The plot shows the distribution of weights

for all 20 instances; the dark line corresponds to the mean

value and the colored area corresponds to61 standard devia-

tion to show consistency cross-the different networks. CPA

range exhibits a higher noise that is penalized with a lower

weight. The r2
i learned for the seabed type is closer to zero

which indicates that the classification task requires a weight

several orders of magnitude higher than the regression tasks

due to their differences in scale. While the difference in

weights for the three regression parameters may be

FIG. 7. (Color online) Convolutional neural network architectures using (a) regression for four labels (networks #3 and #4) and (b) multitask learning (net-

works #1 and #2).

FIG. 8. (Color online) Values of r2
i in Eq. (1) learned during training. The

dark line corresponds to the mean value across 20 training instances, and

the colored area corresponds to61 standard deviation.

698 J. Acoust. Soc. Am. 149 (1), January 2021 Neilsen et al.

https://doi.org/10.1121/10.0003361

https://doi.org/10.1121/10.0003361


interpreted to correspond to their relative impact on the

error, the difference between the seabed weight and the

others is more related to the fundamental difference between

the regression and classification tasks for this dataset.

To analyze the impact on performance due to how the

labels and cost functions are defined, six different networks

have been investigated: #1: MTL-CNN using regression

tasks for the ship speed, CPA range, and source depth and a

classification task for the seabed type, with seabeds ordered

according to bottom loss as in Fig. 5. #2: MTL-CNN similar

to #1 but with seabed type labels in a different order (i.e.,

with no physical meaning to the order). #3: CNN using

regression tasks for all four labels with seabeds ordered

according to bottom loss. #4: CNN similar to #3 but with

seabed type labels in a different order. #5: Four independent

CNNs that each learned only a single label using regression.

#6: CNN using classification for seabed type only, i.e., with-

out predicting any source localization parameters. Networks

#5 and #6 have seabeds ordered according to bottom loss,

similar to networks #1 and #3.

Each network has been trained 20 times to account for

the uncertainty due to random initialization. For networks

#2 and #4, the labels for the seabed type have been shuffled

in such a way their ordering no longer has physical meaning.

This mixing is done to determine the importance of using

MTL instead of regression for the seabed type and to assess

how network performance is affected when the order of the

seabed types is not tied to a physical quantity.

C. Validation vs generalization

Tests of machine and deep learning algorithms come in

two flavors: validation and generalization. Unfortunately,

many papers on deep learning do not distinguish between

the two. We feel this distinction is important, especially

when developing algorithms for ocean acoustics

applications.

The validation error of a network comes from testing

the CNN on data drawn from the same statistical distribution

as the training dataset. Typically, the data for validation is a

randomly selected portion of the training data withheld for

testing. For example, in an 80/20 train/test split, the CNN

trains on 80% and then tests on the remaining 20%.

The generalization error quantifies the network’s ability

to take what it has learned during training and generalize to

data drawn from a different statistical distribution. In the

case of ocean acoustics, such differences in distribution

could come from naturally occurring random variations in

the SSP, bathymetry, seabed structure, ambient noise, etc.

Additionally, modeling limitations can yield different statis-

tical distributions. In this paper, the generalizability of the

networks is evaluated for both simulated environmental mis-

match and measured VLA data.

Both the validation and generalization errors of net-

works can be influenced by the random initialization of the

weights in the network and the random draw of training data

samples. If the training data set is large enough and the

network performance is optimized, results should be inde-

pendent of the initialization. Because this work is a proof-

of-concept exercise for obtaining both source parameters

and seabed type in face of ocean variability, time was not

spent optimizing every aspect of the network. Instead, the

robustness of each network is evaluated by comparing the

results from multiple initialization (instances) of the CNN.

The reported errors are averaged over 20 instances of each

CNN.

IV. RESULTS

Metrics must be defined to concisely evaluate the per-

formance of the neural networks. The metrics should be

physically meaningful with regard to the different labels

(source depth, speed, CPA range, and seabed type) and pro-

vide an indication of the uncertainty in results due to the

random initialization. The metric used for the source labels

is the mean absolute percentage error (MAPE). For each

CNN instance n,

MAPEn ¼
1

M

X

m

100� jln;m � l̂n;mj
ln;m

;

where m indicates the testing data sample, M is the total

number of testing samples, l is the correct label, and l̂ is the

label predicted by the CNN. Statistics of the MAPE over the

20 training instances are presented for each network.

For seabed type, accuracy is presented. For the MTL

and classification only networks (networks #1, #2, and #6,

respectively), the accuracy was computed by counting the

number of times the network predicted the correct seabed

class. For the remaining three networks, the CNN-predicted

(regressed) value for seabed type is rounded to the nearest

integer and then compared to the correct seabed label; the

seabed type accuracy is the percentage of the testing sam-

ples for which the rounded seabed type is correct.

A. Validation

The six networks were each trained for 200 epochs on

95% of the 6600 training samples and validated on the

remaining 5%. All six networks had a MAPE for the valida-

tion set of less than 2% on the training samples and less than

5% on the validation samples for the source localization

parameters and over 99% accuracy for the seabed type clas-

sification. The trained networks are applied to the simulated

test cases and the measured data.

B. SSP mismatch

Test cases A–D are used to evaluate the impact of SSP

mismatch on the CNN predictions of the source parameters

and seabed type (when using the same seabeds as the train-

ing data). The statistical distribute of the MAPE in predicted

labels, for the six networks over 20 training instances of

each, are shown as box-and-whisker-plots in Fig. 9.
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The MAPE for the source labels exhibit different trends

with SSP mismatch for networks #1–#4. In Fig. 9(a), the

MAPE for CPA range is approximately 10% for tests A–C but

increases to more than 30% for test D. Predictions for ship

speed, in Fig. 9(b), show the most consistency in the face of

SSP mismatch. The MAPE is approximately 10% for tests

A–C and 15% for test D. SSP mismatch had the greatest effect

on estimates of source depth. Even the slight variation in SSP

in test A causes 20% MAPE in the seabed type; the water

depth variation in test B causes 25% MAPE; and the larger

SSP variations in tests C and D cause 40% MAPE. The trend

is for the source depth to be underestimated in all these cases.

Even though the statistics of the MAPE describe the over-

all performance of the CNNs, the effect of the SSP mismatch

on predictions of source labels is strongly correlated with the

seabed type. Data samples generated with the deep mud sea-

bed are most likely to have large errors. The sensitivity of

source depth estimations to environmental mismatch is tied to

the variation in the depth-dependent mode functions that occur

as either the SSP or seabed changes.

For tests A–D, network #5 showed similar results for

source depth as the other networks but had the best results

for CPA range and ship speed. Both of these labels are pre-

dicted more accurately when the network is only trying to

learn the one label even though the same variability exists in

the other parameters in the training data.

The seabed type results for tests A–D lead to several

observations about the ability to predict seabed type in these

FIG. 9. (Color online) Simulated test cases results for the 20 instances of each network. Box and whisker error plots of the MAPE for (a) CPA range, (b)

ship speed, (c) source depth, and (d) accuracy for seabed type. (e) Predicted seabed labels (stacked from 1 on the bottom to 4 on top) for each of the six VGS

seabeds in test E.
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cases. First, the SSP mismatch in tests A, C, and D caused

seabed prediction accuracy to fall below 90%, compared to

the higher accuracy of Test B when only the water depth

was varied by 60.5 m. While this decrease in accuracy is

understandable, the relative behavior of the six networks is a

bit surprising. While seabed classification in the MTL-CNN

(#1 and #2) are expected to function independent of the sea-

bed type ordering, a larger difference is expected between

networks #3 and #4. However, the apparent similarity in the

errors, even though one has seabeds ordered by bottom loss

and the other does not, indicates that the CNN based on

regression apparently learns a transformation that puts those

seabeds 1–4 in a reasonable representation that works when

only these four seabeds are used. Another observation is that

networks #5 and #6 in which only the seabed label is

learned—via regression and classification, respectively—

have higher variability than networks that were trying to

predict the source localization parameters simultaneously.

C. Seabed mismatch

Test E was designed to evaluate the impact of seabed

mismatch. The testing data were created with six seabeds

not used in training. While the source labels predictions are

shown in Figs. 9(a)–9(c), the seabed type predictions for test

E are shown in a separated panel in Fig. 9(e). The MAPE

for source labels for test E are similar to test D, however,

the variation is larger because of the seabed mismatch in

test E. For the seabed predictions, the results have been

divided based on the VGS seabed used in generating the

data samples. For each VGS seabed, the horizontal axis cor-

responds to the six trained networks, and the bars show the

percentage of times each of the representative seabed was

selected by the CNN for all the data samples over the 20

instances of each network.

These seabed results [Fig. 9(e)] show that the networks

can learn patterns that represent the overall impact of the

sediment on the acoustic propagation. The MTL-CNNs and

the CNN using ordered seabed labels (networks #1–#3) clas-

sify the first four VGS seabed types, corresponding to

muddy environments, mainly as (1) deep mud or (2) mud

over sand and the last two VGS environments, which corre-

spond to sandy environments, as (3) sandy silt or (4) sand.

Network #4, in which regression is used and the order of the

seabeds is mixed, has more varied predictions indicating the

inability of the network to interpolate between the four sea-

beds not ordered in a physically meaningful way. As in tests

A–D, networks #5 and #6 also show more variability in the

predicted seabed. The consistent seabed type predictions

from the MTL-CNN provide encouragement that a represen-

tative seabed type can be learned even when the exact sea-

bed parameterization is not included in the training dataset.

D. Experimental data

The trained models are tested on experimental data

measured in two VLAs in the SBCEX 2017. [Details are

given in Sec. II A and for convenience, the measurement

configuration is also shown in Fig. 10(d).] The predictions

for these six samples are shown in Fig. 10, along with the

expected values (dashed lines). As expected from the simu-

lated test cases, the ship speed predictions are most robust;

the ship speeds are consistently predicted close to the

ground truth of �3 kn. CPA range is underestimated, but the

CNNs are able to distinguish between closer and longer

ranges, with the latter predicted more accurately, although

there is more uncertainty in the expected value for this data

sample.

The source depth is underestimated as well but shows

consistent predictions at about 30–40 m for networks #1–#4.

However, the MTL-CNN predictions have a narrower distri-

bution. For network #5, the variance increases. The large

variance and bias in the source depth predictions can be

related to mismatch in either SSP or the seabed, as shown

with the simulated test cases. To further address the reason

for underestimation in source depth, an additional study has

been done to evaluate the data-model mismatch using a

Bayesian approach.

For seabed classification, results from the six data sam-

ples for each of the networks are shown as bar plots in

Fig. 10(e). Focusing on networks #1–#3, which performed

best in the simulated test cases, the mud over sand and sandy

silt seabeds are selected most of the time for data samples

1–5. For data sample 6, with the longest CPA range, the

MTL-CNNs (#1 and #2) select mud over sand, and network

#3 selects deep mud or mud over sand. The remaining net-

works #4–#6 show more variability as in the simulated test

cases.

V. DISCUSSION

The results of these CNNs applied to mid-frequency

towed tones offer insights that can help guide further devel-

opments of deep learning in ocean acoustics.

A. Impact of training data on generalization

While it is commonly thought that more training data

yield better results, recent advances in machine learning

have indicated that variety in the training data is more

important. We also found the diversity of the training data is

more important than the quantity of data. For example, a

training data set with randomly selected source parameters

outperformed one that was trained on a 20% larger dataset

that had gridded (evenly spaced) source parameter values.

This result indicates that inclusion of random parameters is

more efficient than simply reducing the grid spacing and

removes the need for the user to select the grid spacing.

Network performance will be influenced by the diversity of

source parameters and ocean environments included in the

training data set.

B. Impact of loss function

The six networks compared in this paper show several

differences even though the base architecture was the same.

The MTL-CNNs (networks #1 and #2) perform identically
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since the order of the seabed types is irrelevant when doing

classification. When using only regression for predicting

four labels simultaneously in CNNs #3 and #4, if the labels

of the seabed type are sorted at random with no physical

meaning, the performance of the network decreases, particu-

larly in cases of seabed mismatch. On the other hand, if one

parameter at a time is being learned as in CNN #5, the pre-

dictions for ship speed and CPA range show a higher accu-

racy, while accuracy in source depth is significantly

decreased (especially in the case of seabed mismatch). The

approach of learning a single label has also been used in Niu

et al. for independently learning source range and depth via
classification using a series of ResNets.33

In CNNs #5 and #6, when only the seabed type is

learned, higher uncertainty and lower accuracy occur. This

finding implies that for this data type in a CNN, learning all

four labels allows the network to better generalize the sea-

bed type predictions for either regression or classification

tasks. This increased variability pertains to the mid-

frequencies used in this work, as studies on pressure time

series, band-passed filtered (30–2500 Hz), showed seabed

only output worked well.4

The difference in predictions when using different loss

functions highlights an important point: Based on the type

of input data, the design of the network and the loss function

need to optimized. While one might assume that when the

network trains on all the parameters at the same time, it

finds the optimal set of weights that minimizes all of the

errors simultaneously, this is not always the optimal solu-

tion. For example, in this work, the CPA range and ship

speed, shown in Figs. 9(a) and 9(b), have lower MAPE val-

ues when learned independently from the other parameters.

Seabed classification, on the other hand, is more robust

when learned simultaneously with the source parameters, as

shown by the narrower distributions in Fig. 9(d). However,

in other cases, seabed-only CNN predictions were shown to

improve seabed predictions (based on one-second impulse

pressure time series from a single sensor) compared to those

in which range and seabed were found simultaneously

through regression. Similarly, Niu et al.33 report good

results using a series of residual networks that invert for

source range and depth separately (from 100 to 200 Hz

broadband signals on a single sensor). These results empha-

size that different options for the loss function should be

investigated based on the type of input data of interest.

C. Impact of SSP variability

Tests on data simulated for different SSPs (particularly

tests B and D) gives an indication of the impact of SSP vari-

ability on the CNN predictions. Ideally, the training data

should include the SSP variability expected during in situ
application of the CNN. However, tests A–D provide some

insights into the behavior of the CNN on mid-frequency

tones in the case of SSP mismatch between the training data

and the in situ testing data. The estimations of source depth

are most affected by variation in the SSP. In addition, SSP

mismatch has a larger impact on estimates of ship speed and

range when the seabed has higher bottom loss. The variabil-

ity caused by SSP mismatch would be similar to those

caused by a seabed slope.56 These results emphasize the

need to account for SSP variability when training neural net-

works for ocean acoustics.

D. Impact of seabed mismatch

Because of the infinite variety in the ocean, no train-

ing dataset can represent every possible seabed. Thus,

this work has investigated the impact of seabed mismatch

on the mid-frequency CNN results. Test E showed that

testing on data samples simulated with seabed types not

included in the training data showed that the variability

in the source label predictions increased and tended to be

underestimated. The predicted seabed type label, how-

ever, was reasonable using the two MTL-CNNs and the

CNN with seabed types ordered according to bottom loss.

The CNNs chose a seabed type in the training data with a

similar bottom loss to the correct one. These results indi-

cate that perhaps the CNNs learned something about the

porosity of the seabed that was generalizable and high-

lights the potential ability of CNNs to find sensitive sea-

bed parameters.

E. Application to measured data

The CNNs trained on simulated data were applied to

the tonal levels from a towed source measured on 16-

channel VLAs as a proof-of-concept that CNNs can learn

from mid-frequency sounds. The biases and variances of the

network predictions over 20 training instances, shown via

the distributions in Fig. 10, are related to both source and

environmental considerations:

• The largest complication with applying the trained CNNs

to the measured data was the 50% duty cycle required

during the experiment. To approximate a continuous sig-

nal, an enveloping function was used (Sec. II B). This

data extraction process caused the measured samples to

have considerably less detail than the simulated samples,

which is why the training data were smoothed and

downsampled.
• When extracting the data, determining CPA range

(time) was difficult. The GPS data indicated when the

ship was at CPA, but not the towed source. The start

time for each extracted sample (in Fig. 2) was estimated

by looking for the change in Doppler shift and level

near CPA. Due to the complicated modal interference

pattern, however, the different frequencies exhibited

these changes at different times. The uncertainty in the

location of the towed source at the beginning of the

extracted samples may be linked to underestimations of

range and speed due to the geometry assumed in the

simulations. Data augmentation techniques that include

time shifts could be included during training to over-

come the CPA extraction issue.
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• Although the SNR was high for all six data samples, the

data extraction process essentially increased the noise

floor by using the peak windowing method that smoothed

out the naturally occurring dips. This raised noise floor

was approximated by the data preprocessing (smoothing)

done on the synthetic data. In future applications, variable

SNR can be accounted for by adding noise to the simu-

lated training data.
• All 16 channels of each VLA were used but no modifica-

tions were introduced to account for array tilt. This omis-

sion was less significant than in other potential

applications because this work used received levels and

relatively large time blocks over which an enveloping

function was applied when extracting the measured data.

Receiver location variability could be included in future

applications, especially if coherent processing or finer

time resolution are included.

• The behavior of the predictions is similar to the simulated

test cases, where the ship speed predictions are most accu-

rate and the source depth is underestimated, as seen in

cases of environmental mismatch

A limitation of this work was the small number of

ocean environments used to simulate the training data. The

water depth was constant for all samples. While this water

depth was approximately that found at VLA2, it was approx-

imately 3 m deeper than the measured water depth at VLA

1. The simulated training data came from three measured

SSPs and four seabed types, representative of a deep mud,

mud over sand, sandy silt, and sand sediment profiles

obtained from previous geoacoustic inversions.43–46 Even

though four is a limited number of seabeds, the CNNs

appear to distinguish between the mud-related seabeds with

an angle of intromission and the sand-based seabeds. A sig-

nificant amount of work is needed to determine the optimal

FIG. 10. (Color online) Experimental data results for the 20 instances of each network. Box and whisker plots of the predictions for (a) CPA range, (b) ship speed,

and (c) source depth. (d) Source track for measured data samples S1–S6. (e) Predicted seabed labels, similar to those in Fig. 9, when tested on the six samples.
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way to include environmental variability in the training

data.

Environmental mismatch introduce biases and increase

variances in the CNN results and, thus, need to be consid-

ered carefully in future applications of machine and deep

learning.

VI. CONCLUSIONS

Convolutional neural networks (CNNs) were trained on

simulated data and tested on mid-frequency tonal levels

from a moving source in SBCEX 2017. The input data con-

sisted of five tonal levels on a 16-channel VLA over approx-

imately 74 min. Considerations for designing the CNN were

explored using a single base architecture and different out-

put layers and loss functions designed to obtain values for

the source depth, speed, and CPA range, and a seabed type

(1–4 as shown in Fig. 5). The advantages of multitask learn-

ing were shown on both simulated test cases and measured

data.

The performance of the networks with different output

layers and labels were compared in the face of environmen-

tal mismatch. Each network type was trained 20 times to

account for uncertainties due to the random initializations.

Data from five testing cases were then passed through the

trained networks. The statistical distributions of the mean

absolute percentage error in each source label were shown

along with the accuracy of the seabed label.

Test cases with increasing degrees of SSP mismatch

showed increased error in predictions of the source labels,

however, seabed type accuracy was still above 70%. The

impact of SSP mismatch was more significant for data sam-

ples simulated with the deep mud seabed type than the other

(more reflective) seabeds. Thus, appropriate ways to include

SSP variability in the training data must be found to account

for the spatial and temporal changes in the real ocean.

The trained CNNs were also applied to data simulated

for seabed mismatch. The CNNs predicted a seabed type

1–4 that matched the porosity of the different seabeds used

in the test case. This seabed mismatch, however, produced a

general bias towards smaller values of all the source param-

eters and increased the variance in the source label predic-

tions. These results point to the potential for seabed type

characterization using MTL-CNNs and emphasize the

importance of including realistic and representative seabed

variations in the training data.

The trained networks were applied to six data samples

extracted from the SBCEX 2017 measurements.

Downsampling and smoothing the simulated data approxi-

mated the data extraction process (required by the 50% duty

cycle), although biases were still apparent in CPA range and

source depth. The ship speed was the most reliably predicted

label by all the networks. Source depths and ranges were

underestimated, similar to what was seen in the tests with

simulated seabed type mismatch. The seabed type predic-

tions were generally around the expected seabed type using

the MTL-CNN and the CNN based on regression for all four

labels, as long as the seabeds were ordered according to bot-

tom loss.

This work demonstrated the importance of accounting

for environmental variability and network uncertainties

when developing machine and deep learning algorithms for

applications in a dynamic ocean. The variability of the train-

ing data can help avoid overfitting. The homoscedastic

uncertainty associated with the random initializations of

weights and random draws during training must be under-

stood. Questions remain as to the best form of input data for

source localization and tracking and seabed type predictions.

In all cases, however, the variability of the environment

must be accounted for in training machine and deep learning

algorithms for ocean applications.

ACKNOWLEDGMENTS

This work was funded by Office of Naval Research

Contract No. N00014-19-C-2001. The Seabed Characterization

Experiment 2017 was funded by the U.S. Navy Office of Naval

Research. The authors acknowledge and thank the captains and

crews of RV Endeavor. We also thank David Ensberg for

assistance with the measured data and the reviewers for their

helpful comments.

1M. Siderius, P. L. Nielsen, J. Sellschopp, M. Snellen, and D. Simons,

“Experimental study of geo-acoustic inversion uncertainty due to ocean

sound-speed fluctuations,” J. Acoust. Soc. Am. 110(2), 769–781 (2001).
2C.-F. Huang, P. Gerstoft, and W. S. Hodgkiss, “Effect of ocean sound

speed uncertainty on matched-field geoacoustic inversion,” J. Acoust.

Soc. Am. 123(6), EL162–EL168 (2008).
3S. E. Dosso and J. Dettmer, “Bayesian matched-field geoacoustic inver-

sion,” Inv. Probl. 27(5), 055009 (2011).
4D. F. Van Komen, T. B. Neilsen, K. Howarth, D. P. Knobles, and P. H.

Dahl, “Seabed and range estimation of impulsive time series using a con-

volutional neural network,” J. Acoust. Soc. Am. 147(5), EL403–EL408

(2020).
5P. S. Wilson, D. P. Knobles, and T. B. Neilsen, “Guest editorial an over-

view of the seabed characterization experiment,” IEEE J. Oceanic Eng.

45(1), 1–13 (2020).
6A. B. Baggeroer, W. A. Kuperman, and H. Schmidt, “Matched field proc-

essing: Source localization in correlated noise as an optimum parameter

estimation problem,” J. Acoust. Soc. Am. 83(2), 571–587 (1988).
7E. K. Westwood, “Broadband matched–field source localization,”

J. Acoust. Soc. Am. 91(5), 2777–2789 (1992).
8A. Tolstoy, Matched Field Processing for Underwater Acoustics (World

Scientific, Singapore, 1993).
9M. B. Porter and A. Tolstoy, “The matched field processing benchmark

problems,” J. Comput. Acoust. 02(03), 161–185 (1994).
10E. K. Westwood and D. P. Knobles, “Source track localization via multi-

path correlation matching,” J. Acoust. Soc. Am. 102(5), 2645–2654

(1997).
11M. S. Ballard, “Estimation of source range using horizontal multipath in

continental shelf environments,” J. Acoust. Soc. Am. 134(4),

EL340–EL344 (2013).
12I. Zorych and Z.-H. Michalopoulou, “Particle filtering for dispersion

curve tracking in ocean acoustics,” J. Acoust. Soc. Am. 124(2),

EL45–EL50 (2008).
13S. E. Dosso and M. J. Wilmut, “Bayesian focalization: Quantifying source

localization with environmental uncertainty,” J. Acoust. Soc. Am. 121(5),

2567–2574 (2007).
14J. Dettmer, S. E. Dosso, and C. W. Holland, “Trans-dimensional geoa-

coustic inversion,” J. Acoust. Soc. Am. 128(6), 3393–3405 (2010).
15M. D. Collins, W. A. Kuperman, and H. Schmidt, “Nonlinear inversion

for ocean–bottom properties,” J. Acoust. Soc. Am. 92(5), 2770–2783

(1992).

704 J. Acoust. Soc. Am. 149 (1), January 2021 Neilsen et al.

https://doi.org/10.1121/10.0003361

https://doi.org/10.1121/1.1385898
https://doi.org/10.1121/1.2908406
https://doi.org/10.1121/1.2908406
https://doi.org/10.1088/0266-5611/27/5/055009
https://doi.org/10.1121/10.0001216
https://doi.org/10.1109/JOE.2019.2956606
https://doi.org/10.1121/1.396151
https://doi.org/10.1121/1.402958
https://doi.org/10.1142/S0218396X94000129
https://doi.org/10.1121/1.420318
https://doi.org/10.1121/1.4820459
https://doi.org/10.1121/1.2947628
https://doi.org/10.1121/1.2715451
https://doi.org/10.1121/1.3500674
https://doi.org/10.1121/1.404394
https://doi.org/10.1121/10.0003361


16P. Gerstoft, “Inversion of seismoacoustic data using genetic algorithms

and a posteriori probability distributions,” J. Acoust. Soc. Am. 95(2),

770–782 (1994).
17M. R. Fallat, P. L. Nielsen, and S. E. Dosso, “Hybrid geoacoustic inver-

sion of broadband Mediterranean Sea data,” J. Acoust. Soc. Am. 107(4),

1967–1977 (2000).
18T. B. Neilsen and E. K. Westwood, “Extraction of acoustic normal mode

depth functions using vertical line array data,” J. Acoust. Soc. Am.

111(2), 748–756 (2002).
19J. W. Choi and P. H. Dahl, “Mid-to-high-frequency bottom loss in the

East China Sea,” IEEE J. Oceanic Eng. 29(4), 980–987 (2004).
20C. W. Holland and S. E. Dosso, “Mid frequency shallow water fine-

grained sediment attenuation measurements,” J. Acoust. Soc. Am. 134(1),

131–143 (2013).
21J. Yang, D. R. Jackson, and D. Tang, “Mid-frequency geoacoustic inver-

sion using bottom loss data from the Shallow Water 2006 Experiment,”

J. Acoust. Soc. Am. 131(2), 1711–1721 (2012).
22Z.-H. Michalopoulou and U. Ghosh-Dastidar, “Tabu for matched-field

source localization and geoacoustic inversion,” J. Acoust. Soc. Am.

115(1), 135–145 (2004).
23T. B. Neilsen, “An iterative implementation of rotated coordinates for

inverse problems,” J. Acoust. Soc. Am. 113(5), 2574–2586 (2003).
24M. J. Bianco, P. Gerstoft, J. Traer, E. Ozanich, M. A. Roch, S. Gannot,

and C.-A. Deledalle, “Machine learning in acoustics: Theory and

applications,” J. Acoust. Soc. Am. 146(5), 3590–3628 (2019).
25B. Z. Steinberg, M. J. Beran, S. H. Chin, and J. H. Howard, Jr., “A neural

network approach to source localization,” J. Acoust. Soc. Am. 90(4),

2081–2090 (1991).
26L. Hou�egnigan, P. Safari, C. Nadeu, M. van der Schaar, and M. Andr�e,

“A novel approach to real-time range estimation of underwater acoustic

sources using supervised machine learning,” in OCEANS 2017-Aberdeen,

IEEE (2017), pp. 1–5.
27H. Niu, E. Ozanich, and P. Gerstoft, “Ship localization in Santa Barbara

Channel using machine learning classifiers,” J. Acoust. Soc. Am. 142(5),

EL455–EL460 (2017).
28H. Niu, E. Reeves, and P. Gerstoft, “Source localization in an ocean

waveguide using supervised machine learning,” J. Acoust. Soc. Am.

142(3), 1176–1188 (2017).
29R. Lefort, G. Real, and A. Dr�emeau, “Direct regressions for underwater

acoustic source localization in fluctuating oceans,” J. Appl. Acoust. 116,

303–310 (2017).
30Z. Huang, J. Xu, Z. Gong, H. Wang, and Y. Yan, “Source localization

using deep neural networks in a shallow water environment,” J. Acoust.

Soc. Am. 143(5), 2922–2932 (2018).
31Y. Wang and H. Peng, “Underwater acoustic source localization using

generalized regression neural network,” J. Acoust. Soc. Am. 143(4),

2321–2331 (2018).
32E. Ozanich, P. Gerstoft, and H. Niu, “A feedforward neural network for

direction-of-arrival estimation,” J. Acoust. Soc. Am. 147(3), 2035–2048

(2020).
33H. Niu, Z. Gong, E. Ozanich, P. Gerstoft, H. Wang, and Z. Li, “Deep-

learning source localization using multi-frequency magnitude-only data,”

J. Acoust. Soc. Am. 146(1), 211–222 (2019).
34Z.-H. Michalopoulou, D. Alexandrou, and C. de Moustier, “Application

of neural and statistical classifiers to the problem of seafloor character-

ization,” IEEE J. Oceanic Eng. 20(3), 190–197 (1995).
35J. Benson, N. R. Chapman, and A. Antoniou, “Geoacoustic model inver-

sion using artificial neural networks,” Inv. Probl. 16(6), 1627–1639

(2000).
36Y. Stephan, X. Demoulin, and O. Sarzeaud, “Neural direct approaches

for geoacoustic inversion,” J. Comput. Acoust. 06, 151–166 (1998).

37J. Piccolo, G. Haramuniz, and Z.-H. Michalopoulou, “Geoacoustic inver-

sion with generalized additive models,” J. Acoustical Soc. America

145(6), EL463–EL468 (2019).
38H. Niu, P. Gerstoft, E. Ozanich, Z. Li, R. Zhang, Z. Gong, and H. Wang,

“Block sparse Bayesian learning for broadband mode extraction in shallow

water from a vertical array,” J. Acoust. Soc. Am. 147, 3729–3739 (2020).
39C. Frederick, S. Villar, and Z.-H. Michalopoulou, “Seabed classification

using physics-based modeling and machine learning,” J. Acoust. Soc.

Am. 148(6), 859–872 (2020).
40A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty

to weigh losses for scene geometry and semantics,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Salt Lake City, UT, 18–22 June 2018, pp. 7482–7491.

41Z.-H. Michalopoulou and P. Gerstoft, “Multipath broadband localization,

bathymetry, and sediment inversion,” IEEE J. Oceanic Eng. 45(1),

92–102 (2020).
42E. K. Westwood, C. T. Tindle, and N. R. Chapman, “A normal mode

model for acousto–elastic ocean environments,” J. Acoust. Soc. Am.

100(6), 3631–3645 (1996).
43D. P. Knobles, R. A. Koch, L. A. Thompson, K. C. Focke, and P. E.

Eisman, “Broadband sound propagation in shallow water and geoacoustic

inversion,” J. Acoust. Soc. Am. 113(1), 205–222 (2003).
44D. P. Knobles, P. S. Wilson, J. A. Goff, L. Wan, M. J. Buckingham, J. D.

Chaytor, and M. Badiey, “Maximum entropy derived statistics of sound-

speed structure in a fine-grained sediment inferred from sparse broadband

acoustic measurements on the New England continental shelf,” IEEE J.

Oceanic Eng. 45, 161–173 (2020).
45G. R. Potty, J. H. Miller, and J. F. Lynch, “Inversion for sediment geoa-

coustic properties at the New England bight,” J. Acoust. Soc. Am. 114(4),

1874–1887 (2003).
46J.-X. Zhou, X.-Z. Zhang, and D. P. Knobles, “Low-frequency geoacoustic

model for the effective properties of sandy seabottoms,” J. Acoust. Soc.

Am. 125(5), 2847–2866 (2009).
47M. J. Buckingham, “Compressional and shear wave properties of marine

sediments: Comparisons between theory and data,” J. Acoust. Soc. Am.

117(1), 137–152 (2005).
48M. J. Buckingham, “On pore-fluid viscosity and the wave properties of

saturated granular materials including marine sediments,” J. Acoust. Soc.

Am. 122(3), 1486–1501 (2007).
49Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proc. IEEE 86(11), 2278–2323 (1998).
50I. Goodfellow, Y. Bengio, and, and A. Courville, Deep Learning (MIT

Press, Cambridge, 2016).
51A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, and L. Antiga, “PyTorch: An imperative

style, high-performance deep learning library,” in Advances in Neural
Information Processing Systems (2019), pp. 8024–8035.

52D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv:1412.6980 (2014).
53V. Nair and G. E. Hinton, “Rectified Linear Units Improve Restricted

Boltzmann Machines,” in Proceedings of the 27th International
Conference on Machine Learning (ICML-10) (Omnipress, Madison, WI,

2010). pp. 801–814.
54C. M. Bishop, Neural Networks for Pattern Recognition (Clarendon

Press, Oxford, 1995).
55Z. Allen-Zhu and Y. Li, “What can ResNet learn efficiently, going beyond

kernels?,” in 33rd Conference on Neural Information Processing Systems
(2019), pp. 1–12.

56P. Abbot, S. Celuzza, I. Dyer, B. Gomes, J. Fulford, J. Lynch, G.

Gawarkiewicz, and D. Volak, “Acoustic propagation,” IEEE J. Oceanic

Eng. 26(2), 266–284 (2001).

J. Acoust. Soc. Am. 149 (1), January 2021 Neilsen et al. 705

https://doi.org/10.1121/10.0003361

https://doi.org/10.1121/1.408387
https://doi.org/10.1121/1.428480
https://doi.org/10.1121/1.1432982
https://doi.org/10.1109/JOE.2004.834178
https://doi.org/10.1121/1.4757970
https://doi.org/10.1121/1.3666009
https://doi.org/10.1121/1.1635408
https://doi.org/10.1121/1.1562912
https://doi.org/10.1121/1.5133944
https://doi.org/10.1121/1.401635
https://doi.org/10.1121/1.5010064
https://doi.org/10.1121/1.5000165
https://doi.org/10.1016/j.apacoust.2016.10.005
https://doi.org/10.1121/1.5036725
https://doi.org/10.1121/1.5036725
https://doi.org/10.1121/1.5032311
https://doi.org/10.1121/10.0000944
https://doi.org/10.1121/1.5116016
https://doi.org/10.1109/48.393074
https://doi.org/10.1088/0266-5611/16/6/302
https://doi.org/10.1142/S0218396X98000120
https://doi.org/10.1121/1.5110244
https://doi.org/10.1121/10.0001322
https://doi.org/10.1121/10.0001728
https://doi.org/10.1121/10.0001728
https://doi.org/10.1109/JOE.2019.2896681
https://doi.org/10.1121/1.417226
https://doi.org/10.1121/1.1521930
https://doi.org/10.1109/JOE.2019.2922717
https://doi.org/10.1109/JOE.2019.2922717
https://doi.org/10.1121/1.1605391
https://doi.org/10.1121/1.3089218
https://doi.org/10.1121/1.3089218
https://doi.org/10.1121/1.1810231
https://doi.org/10.1121/1.2759167
https://doi.org/10.1121/1.2759167
https://doi.org/10.1109/5.726791
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.1109/48.922793
https://doi.org/10.1109/48.922793
https://doi.org/10.1121/10.0003361

	s1
	tr1
	l
	n1
	n2
	s2
	s2A
	f1
	s2B
	s3
	s3A
	f2
	s3A1
	f3
	f4
	f5
	t1
	s3A2
	s3B
	f6
	t2
	d1
	f7
	f8
	s3C
	s4
	s4A
	s4B
	f9
	s4C
	s4D
	s5
	s5A
	s5B
	s5C
	s5D
	s5E
	f10
	s6
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56

