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Abstract—Acoustic recordings of signals in the 1.5–4.0-kHz band
were analyzed for information about the sound speed and attenu-
ation frequency dispersion of a fine-grained sediment found in the
New England Mudpatch. Analysis of piston cores established prior
bounds for a geophysical parameterization of a seabed model that
predicts Kramers–Kronig dispersion relations. Sediment layers are
described by the Buckingham viscous grain shearing (VGS) model
that accounts for the effects of overburden pressure of compres-
sional and shear speeds and attenuations. A statistical inverse prob-
lem was solved by using multiple samples of received levels recorded
on two vertical line arrays as a function time and hydrophone depth
for six frequencies in the 1.5–4.0-kHz band. A statistical inference
model that assumed both model parameters and data samples are
random variables quantified information content from marginal-
ization of a conditional posterior probability distribution for the
geophysical parameters that characterize the mud layer. From
the inferred geophysical parameter point estimates the sediment
sound speed and attenuation frequency dispersion are predicted
and compared to previously reported direct measurements. Also,
the predicted sound-speed gradient in the mud sediment from
the VGS model is compared to a previous inference that utilized
explosive sources.

Index Terms—Data ensemble maximum entropy (DEME),
frequency dispersion, seabed geophysical parameters.

I. INTRODUCTION

AN IMPORTANT acoustic characteristic of a marine sed-
iment is its frequency dependence or dispersion of the
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sound speed and attenuation. A goal for the Seabed Characteri-
zation Experiment 2017 was to use a combination of direct and
acoustic measurements to infer the dispersion characteristics of
a fine-grained sediment in the New England Mudpatch [1].

A fundamental question in remote sensing for ocean seabed
characterization, such as frequency dispersion of sound speed
and attenuation, is what additional information about the phys-
ical properties of the seabed not previously known or assumed
known is gained from new measurments on an array of hy-
drophones or vector sensors. How does model complexity affect
information content quantified by a conditional posterior prob-
ability distribution? Such information content can be degraded
with increasing model complexity due to parameter correlations
that leads to increased uncertainty [2].

This article focuses on the remote sensing of the geophysical
properties of the upper portions (5 m) of a sediment com-
posed of fine-grained materials generally possessing rigidity
on the New England shelf studied by Twichell [3], Goff [4],
and Chaytor [5]. Statistical inference techniques are applied to
midfrequency acoustic data taken during the Seabed Character-
ization Experiment in 2017 to extract statistical properties of
geophysical characteristics of the mud sediment from which the
frequency dispersion of the sound speed and attenuation can
be predicted [6]–[8]. From a Bayesian perspective, the piston
core (PC) measurements made by Chaytor [5] act as prior
information.

A complicating feature of this work is that a sediment gener-
ally has frequency dependent depth gradients of compressional
and shear sound speeds and attenuations. Neglecting such gradi-
ents can bias estimates of the porosity and other parameters that
are correlated with parameters such as sound speed and attenua-
tion. The current analysis attempts to address this issue by using
a new version of the viscous grain shearing (VGS) model [6]–[8]
that accounts for the effects of overburden pressure through the
depth effects of the compressional and shear modulus [9]. In
this way, the gradients in the sound speed and attenuation are
included implicitly as part of the model physics.

The rest of this article is organized as follows. Section II dis-
cusses the experimental measurements made during SBCEXP
2017. Section III discusses the geophysical model space. Sec-
tion IV describes the analysis methodology that includes both
a frequentist inference and a data ensemble maximum entropy
(DEME) method. Section V presents the computational results
and a discussion. Finally, Section VI concludes this article.
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Fig. 1. RV Endeavor tow tracks for ITC 2015 source and VLA locations. Data samples D1, D2, and D3 were recorded as the towed source was moving along
on Track 1, and D4 and D5 were recorded as the source was towed on Track 2.

II. EXPERIMENTAL DESIGN AND MEASUREMENTS

The acoustic measurements of interest in this article were
made on March 24 (Day 083) 2017. Fig. 1 shows the experi-
mental configuration where the RV Endeavor towed a ITC 2015
transducer emitting continuous wave sound radiation at discrete
frequencies at approximately 1500, 2000, 2500, 3000, 3500, and
4000 Hz. Due to the Doppler effect the center frequencies for
the six tonals differ by about 5–7 Hz depending on whether
the source was moving toward or away from a receiver. The
source tow experiment was made along a rectangular path with
the two VLA arrays placed within the rectangle. The source
tracks were positioned such that they were aligned with an NW
to SE orientation of the central channel of mud that defines the
Mudpatch [4]. The nominal tow depth and speed were about
45 m and 3 kn, respectively. The geographical position of the
Scripps Marine Physics Laboratory VLA 1 and VLA 2 were
about 40 28.207◦ N 70 35.8266◦ W and 40 26.5073◦ N 70
31.6299◦ W, respectively. The two VLAs were approximately
identical in that the bottom phone of each array was located
at about 5 m above the water-seabed interface with a constant
hydrophone spacing of 3.75 m, giving a total vertical aperture
of 60 m. The water depth at both arrays was about 74.5 m.

The notation D1 in Fig. 1 corresponds to a data sample
recorded on VLA 2 over a time interval when the source was on
Track 1 and moved in an NW direction away from VLA 2. Also,
D1 is a rectangular matrix of received levels, in dB rel 1μPa,
where the rows refer to a relative time with spacing of 0.5 s
and the columns refer to hydrophone channel and frequency.
There are 16 hydrophones that span 60 m of the water column.
The data samples are all processed such that the first time
sample corresponds to the source being at the closest point
of approach (CPA) on the track. For sources approaching an
array, this means that the data component in time was flipped.
For each hydrophone/channel, the levels are included at six
frequencies with channel 1 in the first column, followed by
channel 2, etc., for a total number of 16 × 6 = 96 columns.
The number of row elements is 8850. At 3 kn (1.543 m/s) each
data sample corresponds to the source moving a total distance
of about 6800 m. D2 and D3 refer to data samples recorded
on VLA 1 where the source moved toward and away from the
array on Track 1, respectively. D4 and D5 refer to data samples
recorded on VLA 1 where the source moved toward and away

Fig. 2. SSP derived from CTD cast 03 from RV Endeavor on Julian day 82
hour 19, minute 12.

from the array on Track 2, respectively.D6 refers to data samples
recorded on VLA 2 where the source moved toward the array on
Track 2. Analysis of the D6 data sample, however, is beyond the
scope of this article due to an inability reconcile certain signal
processing criteria that apparently were a result of nonuniform
motion of the source near the array. Such time periods occurred
during the experiments due to the need to avoid fishing gear that
was present in the area in large quantities.

Fig. 2 shows a sound-speed profile (SSP) derived from CTD
measurements made on RV Endeavor on the day that the mid-
frequency acoustic data were collected. Over the course of this
five-day period, warmer water slowly entered into the experi-
mental area over the full volume of the water column causing the
sound speed to slowly increase uniformly with depth. However,
the sound-speed gradient was stable, about +0.016 1/s. In all
the computations presented in this study, the SSP was assumed
fixed and was the profile that was measured closest in time to the
acoustic measurements. In general, the benign properties of the
water column offered a rare opportunity to apply a matched-field
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inversion method where the errors were dominated by seabed
model mismatch as opposed to mismatch with the SSP.

A challenging aspect of the analysis was that because of
marine mammal environmental regulations the duty cycle of the
source was 50%, specifically 10 s on and 10 s off. To mitigate
the effects of the duty cycle on the inference of information
content, the data underwent a signal processing method where
the peak envelopes of the received levels were extracted followed
by a spline fit to the peak values. Specifically, the MATLAB
function [yupper, ylower] = envelope (x, np,“peak”) was uti-
lized where yupper was chosen to return the upper envelopes of
data x determined using spline interpolation over local maxima
separated by at least np samples. By trial and error an optimal
value of np was estimated to be about 30 for the VLA data
set. The idea was to prevent a matched-field-based inversion
approach from mistaking off-times of the source with nulls in
the acoustic field that result from modal destructive interference.
To be consistent, each modeled acoustic field hypothesis also
underwent the same envelope processing in the evaluation of
the error function [see (18)]. It was necessary to eliminate points
near the start and end data and model time samples to account
for the fact that spline fitting can give spuriously large values
near the end points. Instead of fitting the finer details of modal
interference patterns, the emphasis is the envelope structure of
the field. The price to pay for stability and consistency for both
model and data are a certain loss of information. It will be
seen that important information gain about critical geophysical
parameters can still be obtained if the sediment model chosen
has an adequate balance of simplicity and physical constraints.

III. PROPOSED GEOPHYSICAL, SOURCE MOTION, AND

PROPAGATION MODELS

This work considers a seabed model based on the VGS theory
where each layer is characterized by N , ρ0, ρg , K0, kg , μg , n, τ ,
and c0, which symbolize the porosity, the wet bulk density, the
grain density, the wet bulk modulus, the grain bulk modulus, the
grain size, the shear hardening index, the viscous time constant,
and the Wood–Mallock sound speed, respectively. The viscous
time constant τ , and the strain hardening index n provide an
empirical description of an effective grain-to-grain contact in
the acoustic response of the sediment. Each sediment layer has
its own dispersion characteristics of compressional and shear
sound speed and attenuation. In addition, each layer has a depth
dependence of compressional and shear speeds and attenuations
and is described in [9]. The low-frequency limit of the VGS
model is the sediment suspension theory described by the Wood–
Mallock equations [10] and [11], with Kw and ρw as the bulk
modulus and density of the water

c0 =

√
K0

ρ0
(1)

where

1

(K0)
=

N

(Kw)
+

(1−N)

(Kg)
(2)

and

ρ0(N) = ρg +N(ρw − ρg). (3)

Chaytor [5] reports that for the New England Mudpatch, the
grain density of the mud is < ρg > = 2500 kg/m3, which is
consistent with the value of 2499 kg/m3 inferred in [12] that
employed SUS explosive charges to estimate a low-frequency
geoacoustic profile for the Mudpatch. Assuming a value for ρw
of 1030 kg/m3, (3) provides a linear relationship for ρ0(N).
Following Buckingham [8], an expression for grain size is

μg(N) =
2Δ(2B − 1)

1−B
(4)

where

B =

(
1−N

1−Nmin

)1/3

(5)

with Nmin = 0.37. The roughness parameter is defined as Δ =
1 μm [13]. In units of Krumbein φ scale [14], the grain size
can be expressed as

φ = −log2(μg/μ0) (6)

where μ0 = 1000 μm.
The basic geophysical parameters for the mud sediment and

the deeper layers are shown in Table I. Parameter values are
either fixed or have upper and lower bounds that define a search
space. Between the upper and lower bounds, it is assumed that
the prior probability distribution is uniform. Chaytor’s analy-
sis [5] suggests that the upper portion of the mud is a mixture
of about 30% sand, 50% silt, and 20% clay. The sediment
composition changes to 10%–20% sand, 60% silt, and 10%
clay below about 2 m. Additional parameters include the com-
pressional modulus, the shear modulus, the shear coefficient,
and the grain shearing coefficient, all of which are held fixed
based on the work by Buckingham [8] and Richardson [13]. The
remainder of the layers are assumed fixed from previous results.
Each layer has a depth dependence due to overburden pressure;
this dependence is specified by the depth dependence of the
compressional and shear modulus and is described in [9]. The
resulting depth dependence for both the compressional and shear
sound speeds and attenuations generally vary with frequency
and nonlinearly with depth. At every depth, the compressional
speed and attenuation satisfy a Kramers–Kronig dispersion
relationship [15]–[17].

The VGS theory was originally derived in connection with
coarser sediments, the sands and silts, in which the grains are
roughly spherical in shape. It has been found, however that the
VGS dispersion relations provide a reasonable representation of
the wave speeds and attenuations, not only in sands but also in the
finer-grained materials, such as the clays and muds. Many of the
mineral particles found in mud are far from spherical, taking the
form of high-aspect-ratio needles or platelets, which raises the
question as to why VGS matches the fine-grain dispersion data so
well? It has been argued in [9] that the geometrical shapes of the
particles are immaterial, the important factor in VGS being the
detailed nature of the contact between one particle and another.
In the context of such a contact, the point of a needle is much the
same as a sphere with the same radius of curvature. More details
are given in [9], but the essential conclusion, which is supported
by experimental evidence, is that the VGS theory has application
to compressional waves and shear waves in a wide range of
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TABLE I
GEOPHYSICAL PARAMETERS FOR MULTILAYERED REPRESENTATION OF SEABED

The parameters in bold face for the mud layer along with the speed of the source are those that form the hypothesis space.

sediments, from coarse sands to fine grained muds and clays,
making it an appropriate choice for representing the stratified
sediment at the New England Mudpatch.

Three parameters in the mud layer are viewed as unknown or
random, and in Table I, the lower and upper parameter bounds
are presented in brackets. The upper and lower bounds for N
were provided by Chaytor [5]. The upper and lower bounds forn
are based on values reported by Buckingham [8]. Buckhingham
has noted that a significant amount of data can be explained
by setting n to be 0.0866. Generally, smaller values of n are
indicative of a softer sediment. Since the mud sediment is
reportedly a mixture of clays, silts, and sands, n is allowed to
vary between 0.01 and 0.10. The upper and lower bounds for the
grain bulk modulus for the mud were reported by Chaytor [5].
The remainder parameters in the mud layer are assumed known.
For example, it was decided to fix the value of τ to infinity
because [1] suggested that to first order there was only a small
degree of frequency dispersion of the sound-speed ratio (SSR)
in the 100–100 000-Hz band. Most specifically, there does not
appear strong evidence of a transition frequency that would be
proportional to the inverse of τ . It is of interest to note that in
the limit that τ goes to infinity, the VGS theory reduces to the
original grain shearing model.

The sediment characterization of layers beneath the fixed mud
layer are based on previous results. For example, Twichell [3],
Goff [4], and Chaytor [5] report on the existence of a transition
layer from the mud to the sand layer. The transition layer has
been reported to have a thickness of 2–3 m. In this work, we
fixed this layer thickness at 3 m, but made the layer have a more
continuous transition by dividing it into three 1 m layers with
decreasing porosity. Namely, a depth gradient of the physical
parameters was introduced for the sediment to vary from mud
to sand. The transition layer has also been inferred from the
analyses of acoustic data (see, for example, [18] and [19]) using
trans-dimensional Bayesian inversion processing. The assumed

properties of the sand layer are based mostly on finding porosity
values that, when used in the VGS model would predict the
reported sound speeds by Yang [20]. No attempt at inverting for
parameters in these deeper layers was made because due to the
lack of information content in the 1.5–4.0-kHz band and at the
long ranges. In other words, the acoustic field that penetrated
into the seabed in the 1.5–4.0-kHz band was for the most part
confined to the first 5 m or so of the mud.

In the simple case of uniform source motion (assumed in this
article), Xs(t) is represented by a straight line or track that has
a closest position of approach (CPA) range (rcpa) to a VLA. At
any point on this track, the distance or range from the source to
the receiver r is

r(t) =
√
(rcpa)2 + (Xs(t))2 (7)

where

Xs(t) = Xs(t = 0) + St (8)

and S is the speed of RV Endeavor. The reported source depth
was 45 m and is held fixed. In this study, the CPA range is
assumed fixed, but the speed is viewed as a random parameter
with upper and lower bounds of 2.8 and 3.3 kn, respectively.

For each sampling of the hypothesis space, the frequency
and depth-dependent sound speeds and attenuations computed
with the VGS model along with source parameters are then
input into a broadband elastic normal mode algorithm [21]. The
resulting received pressure field P in cylindrical coordinates is
then computed as

P(f, z, r) = 10SL/20 ∗ G (9)

where G is the complex Green’s function solution to the
Helmholtz equation for a unit point source

G(f, zs, z, r) = i

4ρ(zs)

∑
m

φm(zs)φm(z)H1
0 (kmr) (10)
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where km and φm are the horizontal wave number eigenvalues
and depth dependent eigenfunctions, respectively. SL(f) are
the source levels and are assumed fixed from measurement
(deterministic).

IV. STATISTICAL INFERENCE METHODS

The following two procedures of analyses are considered: a
frequentist methodology and a DEME approach.

A. Frequentist Statistics

Frequentist statistics [22] are based on an estimate Θest of
a vector of parameter values from multiple measurements, and
then using this estimate when making all predictions of, for
example, the received acoustic level RL(Θest). The notation
used in this discussion is that Θ is a vector with compo-
nents (Θ1,Θ2, . . .ΘK−1,ΘK). Frequentists assume that the
true value Θtrue is fixed (deterministic) but unknown, and that
Θest is a reasonable approximation to Θtrue. However, it is
assumed that the data (D1,D2, . . .DM−1,DM ) are not fixed,
but are random. In the frequentist method, a point estimate
is the single best parameter value estimate of Θ̂true found by
minimizing an error function, E(Θ,Dm). Mathematically this
idea is expressed as

Θ̂m = ArgminΘ E(Θm,Dm), m = 1, 2, . . . ,M. (11)

This point estimate is a random variable because the data sample
is a random selection from a probability distribution of samples.
The main problem with such a point estimate based on a single
data sample is that there is no uncertainty. However, multiple
data sets do allow one to find an average and a standard deviation
for each parameter, even though an individual result has no
uncertainty. This is fully analogous to rolling dice.

B. Data and Environmental Ensemble Maximum
Entropy Statistics

The DEME method as implemented by Knobles et al. [12],
[23], [24] in remote sensing applications in ocean acoustics
has its origins with the early works of Cox [2], Kullback [25],
Jaynes [26]–[27], and Bilbro [28] that demonstrated the connec-
tivity of machine learning and maximum entropy. A question that
arises for DEME is how many data samples can be in the data
resemble before the addition of a new sample gives no additional
information other than the statistic. When the size of the data
ensemble space reaches this size, one can say that statistical
sufficiency has been reached. For a reference on information and
sufficiency the reader is also referred to Jayne’s classic book on
probability theory [29].

Before making a comment on DEME, it is useful to point out
the differences between frequentist and Bayesian concepts in
probability theory. Instead of using only Θ̂ to make predictions,
a Bayesian approach considers all possible values of Θ to
compute a probability distribution to ascertain the degree of
certainty for various Θ values. Also, in contrast to a frequentist
approach the parameters in Θ are nondeterministic and, thus,
represented as random variables. Furthermore, in a Bayesian

method, the data are fixed, namely, the data are deterministic.
The goal of the Bayesian model is to quantify questions about
information content and sufficiency. For example, the Bayesian
concept quantifies the information that the data contain that
the prior information did not? It also addresses how much
parameter correlations [2] contribute to the uncertainty for a
given parameter.

To be consistent in the analysis of remote sensing data,
both the data and the model parameters should be treated as
nondeterministic. This is the essence of DEME [12], [23],
[24] whose goal, such as a Bayesian method, is to construct
a conditional posterior probability distribution P (Θm|Dm) for
m = 1, 2, . . .M from which marginal probability distributions
can be computed. One can then average the marginal distribu-
tions over the data samples to obtain a more realistic assessment
of the uncertainty of the parameter inference. The conditional
marginal distribution for the parameter θk and data sample Dm

is

Pm(θk|Dm) =

∫
dθ1dθ2 · · · dθk−1dθk+1 · · · dθMP (Θ|Dm)

(12)
with

P (θk|Dm) = P (θk)
exp[−βmEm(θk,Dm)]

Zm
(13)

where Em is an error function. Zm and βm are analogous to the
partition function and the Boltzmann factor, respectively, with

Z(βm) =

∫
dHP (H)exp[−βmEm(θk,Dm)] (14)

and where βm is determined by solving a constraint integral
equation.

From the marginals, we can, for example, find the expectation
of θ from the distributions

Em(θk) =

∫
dθk θkPm(θk|Dm). (15)

One can also define an average marginal distribution

< P (θk) >=
1

M

∑
m

Pm(θk|Dm) (16)

from which

E(θk) =

∫
dθk θk < P (θk) > . (17)

Finally, the error function utilized in the construction of the
posterior distribution is a squared error

E(Θ,D) =
∑
i

∑
j

∑
k

(D(fi, zj, rk)−Ds(fi, zj, rk))
2 (18)

where

Ds = 20 log10|P(f, z, r)| (19)

where P(f, z, r) is given in (9) and (10) and fi, zj , rk represent
frequency, receiver depth, and source–receiver range (7).
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TABLE II
θ̂j FOUND VIA MONTE CARLO METHOD WITH 200 000 SAMPLES OF Θ

TABLE III
Em(θk) FOR m = 1, 2, . . . ,M AND E(θk) AND STANDARD DEVIATIONS

V. SCIENTIFIC FINDINGS

The five data samples from the midfrequency towed source
recorded on the VLAs are used to estimate four parameters. The
full parameter space consists of

Θ = (N,n, kg, S) (20)

where S is the speed of the source. The CPA ranges are held
fixed at the measured value provided by global positioning
measurements and are 364, 378, 378, 324, and 324 m for the
collection of samples D1, D2, D3, D4, and D5, respectively.

The following four point estimates are computed to generate
modeled transmission loss that can be compared to measured
TL.

1) Optimal inversion solution Θ̂m, m = 1, 2, . . . ,M .
2) Frequentist average of Θ̂m over data samples, via Monte

Carlo sampling shown in Table II

< Θ >=
1

M

∑
m

Θ̂m. (21)

3) Expectation of parameters from marginalsPm(θk|Dm) for
m = 1, 2, . . . ,M (15) shown in Table III

Em(θk) =

∫
dθk θkPm(θk|Dm). (22)

4) Expectation from ensemble averaged marginals (17) shown
in Table III

E(θk) =

∫
dθk θk < P (θk) > . (23)

Table II shows the frequentist results for the point estimates
that correspond to the optimized results for Dm; m = 1, . . . , 5.
The optimal solutions Θ̂m were found with Monte Carlo sam-
pling of the hypothesis space. It was generally found that 200 000
random samples of Θ̂m was sufficient in finding Θ̂m. A problem
with a frequentist prediction is that it cannot address the question
of whether the number of data samples provided additional
information mentioned above that provided by the priors.

Fig. 3 shows the marginal probability distributions
Pm(θk|Dm) m = 1, 2, . . . , 5 using the DEME method.
With the exception of P4(θk|D4), the distributions for N , n,
and S are single-peaked with a modicum degree of symmetry,
while the distributions for kg are essentially flat. Relative to
the uniform prior distributions information was clearly gained
for N , n, and S while essentially no information was gained
for kg . P4(θk|D4) has distributions for N and n that have a
non-Gaussian form. Fig. 3 also shows the distributions for the
average distributions < P (θk) >. The fact that the average
marginal distributions are also generally peaked demonstrates
that the standard deviations of the marginals are small and do
not have a large off-set for different data sample m values.
This is suggestive that for at least Pm; j = 1, 2, 3, 5 the data
samples belong to the same statistical distribution, which in
turn suggests that the mud variability in the area of the tow
track rectangle in Fig. 1 is generally small.

Table III shows the statistic results for the point estimates that
correspond to the average values from the marginal distribu-
tions. There is good agreement between the optimized results in
Table II and the average results in Table III. However, an impor-
tant point is that one would not have known if the point estimates
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Fig. 3. Marginal distributions Pm(θk|Dm) for (a) N , (b) n, (c) kg , and (d) S for j = 1, 2, 3, 4, and 5 and average distributions.

Fig. 4. Comparison of and measured TL for D2 on hydrophone 16 with modeled TL using parameter expectation values E2[(θk)] and E[θk)].

that used the optimal results (see Table II) made sense unless the
DEME computations that provided the estimates based on the
marginal distributions in Fig. 3 had been made.

Fig. 4 shows the data-model comparisons for the transmission
loss (TL = RL − SL) as a function of time for the six tonal
frequencies using the D2 on hydrophone 16 with modeled TL
using parameter expectation values E2[(θk)] and E[(θk)]. The
difference in the two modeled solutions is small, and overall
there is qualitative agreement between the modeled solutions
and the measured TL.

Fig. 5 is the same as Fig. 4 except that the two modeled
solutions are E4[(θk)] and E[(θk)]. There are larger difference
between the modeled solutionsE4[(θk)] andE[(θk)]. The larger
differences may be ascribed to the previous observation in
Fig. 3 that of the five data samples, the marginals produced had
non-Gaussian attributes, and thus, E4[(θk)] and E[(θk)] have
larger differences.

Fig. 6 shows the predicted sediment depth-dependent com-
pressional and shear sound speed and attenuation for the E(θk)
VGS parameter values in Table III. For the compressional sound
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Fig. 5. Comparison of and measured TL for D4 on hydrophone 16 with modeled TL using parameter expectation values E4[(θk)] and E[θk)].

Fig. 6. Predicted depth dependence of mud sediment parameters with VGS theory. (a) Compressional sound speed, compressional attenuation, shear sound speed,
and shear attenuation. (b) High resolution of compressional sound speed.
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Fig. 7. Predicted depth dependence of mud sediment compressional sound speed versus depth in the 25–4000-Hz band.

speed, there is little frequency dispersion in the 1500–4000-Hz
band. However, the sound-speed gradient has a strong nonlinear
depth dependence. For example, in the depth interval 0–2 m, the
sound speed changes from about 1456 m/s to about 1498 m/s.
This gives an average gradient of about 21 (1/s). From 2 to 9.3 m,
the sound speed changes from 1498 m/s to about 1535 m/s, for
an average gradient of about 5.1 (1/s). The average gradient over
the 9.3 m layer of the mud is about 8.5 (1/s).

Fig. 7 shows an extension of the bandwidth to the 25–4000-
Hz band for the compressional sound speed versus depth using
the VGS model. One observes that the predicted sound-speed
gradient decreases as the frequency decreases. In the 25–300-Hz
band, the average gradient is about 7.1 1/s. In [12], an effective
linear gradient for the mud was found to be about 9.5 1/s from
SUS data processed in the 25–275-Hz band. Thus, the VGS
model with the inclusion of the overburden pressure terms in the
compressional and shear modulus provides a possible effective
linear gradient.

Fig. 8 shows the predicted SSR and attenuation dispersion
predictions based on the mean of < P (θk) > and standard
deviations of the porosity N , the strain hardening index n,
and the grain bulk density kg presented in Table III. For these
three parameters, we considered the mean of the cumulative
distribution, the mean plus the standard deviation, and the mean
minus the standard deviation for a total of 27 VGS parameteri-
zations. Then, using these 27 parameterizations the VGS model
was utilized to compute the dispersion of the compressional
SSR and the attenuation. SSR is the ratio of the compressional
sound speed at the surface of the sediment to the sound speed
at the bottom of the water column. The span of these curves
provides an estimate of the uncertainty for both the SSR and the
attenuation. Direct measurements of the sound speed reported by
Yang and Jackson [20] in the 2–10-kHz band and by Ballard [30]
in the 25–200-kHz band are included in Fig. 8, along with a

included is a low-frequency estimate inferred from an analysis
of SUS explosive charges in the 25–275-Hz band [12]. The
black box represents direct sound speed measurements made
at five locations that span the area around VLA 1 and VLA 2
[20]. The box attempts to show the range of values reported
at the different locations where the sediment acoustics speed
measurement system (SAMS) was deployed in Mudpatch. The
relevant measurements reported in [20] were approximately
between VLA 1 and VLA 2, which are close to PC 16 and
PC 18 that were collected by Chaytor [5], respectively. Yang
and Jackson [20] measured near PC 16 a ratio of about 0.996
and to the SE at PC 18 measured a value of 0.999 in the 2–10-kHz
band. The prediction in Fig. 8 is 0.996 at 4 kHz and, thus, is in
agreement with [20]. With the exception of the acoustic core
measurement at 25 kHz, the measurements of the SSR reported
by Ballard [30] lie within the statistical predictions of the VGS
model.

The VGS dispersion curve for the SSR is aligned with the
coring estimates above 1.5 kHz but shows greater SSR than
previously estimated at the lower frequecies. The SSR reported
in [12] in the 25–275-Hz band was 0.9775, which falls below
the dispersion curves that were inferred in the 1.5–4.0-kHz
band. This low-frequency inference did not use a seabed physics
model and instead inverted directly for the SSR and a linear
gradient. The attenuation was assumed to be about 0.01 dB/m
at 1 kHz with an exponent of unity. It is difficult to under-
stand the difference. Whether the VGS model has difficulties
at the low frequencies or setting τ = ∞ is not completely
correct for the lower frequencies for a mud sediment is an open
question.

Finally, Fig. 8 shows the predicted attenuation dispersion
curves for the 27 parameterizations, which shows that the mean
attenuation is about 0.045 dB/m at 1 kHz using the ensemble
average parameter values.
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Fig. 8. Predicted SSR and attenuation derived from ITC2015 source data with VGS model compared to direct measurements and the low-frequency estimate in
[12]. The 27 smooth curves are those predicted by the VGS model using the average value and standard deviations of N , n, and kg , which allows for an inference
of the uncertainty of the SSR and attenuation.

VI. CONCLUSION

The predicted dispersion of the SSR in Fig. 8 using two
statistical measures and the VGS model are consistent with the
direct measurements made by Yang and Jackson with the seabed
acoustics measurements system (SAMS). The unique feature of
this sediment is that its SSR is generally less than unity with
a very weak frequency dependence of the sound speed over a
large bandwidth. An important point is that the VGS predictions
for the SSR and the attenuation obey a Kramers–Kronig dis-
persion relationship. The inclusion of this important principle
of physics removes nonphysical parameter estimates for sound
speed and attenuation that in turn can lead to erroneous sonar
predictions.

The analysis suggests that the five data samples analyzed
belong to the same statistical distribution, which in turn sug-
gests that the mud variability in the area of the tow track
rectangle around the two VLAs is generally small. From the
TL data-model comparisons, both the average frequentist and
the ensemble-averaged E(θk) solutions generally produce TL
predictions that qualitatively match the measured data. The
marginal distributions for the porosity N and strain hardening
indexn are single peaked functions and have only a small degree
of skewness. While the distributions for kg are generally flat in
the assumed prior bounds, they do not appear to cause significant
uncertainty in N and n. These observations are consistent with
the small difference in the predicted sound speed and attenuation
dispersion using these two statistical measures.

While the frequentist predictions compare well with those
provided by the DEME, one cannot know a priori how many data
samples are required to produce results that are in agreement.

For the Mudpatch experiment, the measurements were made
when the water column was near isospeed. During the warmer
months when the water column is stratified and has a larger
random component, one can expect the number of data samples
required to achieve a similar parameter uncertainty will increase.

Challenges in this work included the fact that the moving
source had a 50% duty cycle which, left unaddressed, would
allow the inversion model to mistake a time period when the
source is off with a modal interference null. To be consistent
with the signal processing of the data, the modeled acoustic
field underwent the same signal processing before computing
the error function on each sampling of the geophysical space.
This necessitated the selection of a simple seabed model, a
single layer, but with the physics of overburden pressure and
sound speed and attenuation frequency dispersion constrained
by causality.

A source of uncertainty in this work is that the mud layer
may have a thin surface layer, and this layer was not considered
in this study. It was found that the five data samples in the
1.5–4.0-kHz band did not appear to support inferring for the
geophysical parameters for a two-layer mud model. Thus, the
one-layer model should be viewed as an effective model for the
mud sediment.

The VGS model with the depth dependence modification
predicts a large nonlinear sound speed gradient in the mud
sediment in the 1.5–4.0-kHz band. Over the larger 25–4000-Hz
band while the size of the gradient decreases with decreasing
frequency, the frequency dispersion of the sound speed increases
with increasing depth into the sediment. Finally, future work is
needed to understand the dispersion at the very low frequencies.
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