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ABSTRACT:
Bearded seals vocalizations are often analyzed manually or by using automatic detections that are manually

validated. In this work, an automatic detection and classification system (DCS) based on convolutional neural

networks (CNNs) is proposed. Bearded seal sounds were year-round recorded by four spatially separated receivers

on the Chukchi Continental Slope in Alaska in 2016–2017. The DCS is divided in two sections. First, regions of

interest (ROI) containing possible bearded seal vocalizations are found by using the two-dimensional normalized

cross correlation of the measured spectrogram and a representative template of two main calls of interest. Second,

CNNs are used to validate and classify the ROIs among several possible classes. The CNNs are trained on 80% of

the ROIs manually labeled from one of the four spatially separated recorders. When validating on the remaining

20%, the CNNs show an accuracy above 95.5%. To assess the generalization performance of the networks, the

CNNs are tested on the remaining recorders, located at different positions, with a precision above 89.2% for the

main class of the two types of calls. The proposed technique reduces the laborious task of manual inspection prone

to inconstant bias and possible errors in detections. https://doi.org/10.1121/10.0009256

(Received 28 July 2021; revised 14 November 2021; accepted 13 December 2021; published online 19 January 2022)

[Editor: James F. Lynch] Pages: 299–309

I. INTRODUCTION

Passive acoustic monitoring (PAM) has become a feasi-

ble method for investigating marine mammal activity over

large spatial and temporal scales.1 The large amount of

acoustic data collected in PAM recorders allows researchers

to analyze the seasonal and geographical variability of the

vocal behavior of certain marine mammals, which can be

used to measure their presence, density, and distribution

across large areas. Bearded seals, in particular, are highly

vocally active mammals and are one of the main contribu-

tors to the marine soundscape in the Arctic, especially dur-

ing the mating season.2 In the last decades, extensive studies

of bearded seal vocalizations have been possible thanks

to the large acoustic datasets collected via PAM.1–11

Commonly, bearded seal calls are manually identified by

trained analysts by visualizing the spectrogram representa-

tion of the audio recordings.1,3–9 However, as the acoustic

datasets grow larger, this manual inspection becomes a long

and laborious task that might lead to an inconstant bias

dependent on the degree of fatigue of the analyst.12,13

Therefore, automatic detection systems become necessary.

Recently, some techniques for automatically detecting

bearded seal vocalizations have been implemented.

Hannay et al.9 used time-frequency contours of normalized

spectrograms for classifying the presence of a bearded seal

call based on several extracted representative features.

Halliday et al.10,11 and Heimrich et al.2 used the algorithm

proposed in Ref. 14 for detecting acoustic events and clas-

sifying them among bearded seals and other mammals such

as beluga whales, bowhead whales, and walruses using a

random forest; then, all files with at least one automatic

detection along with 5%–10% of files with no detections

were manually analyzed.

Other detection and classification systems (DCSs) are

commonly based on spectrogram correlation13,15,16 and con-

tour detectors,9,12,15,17 and have been implemented for iden-

tifying other marine mammals such as ringed seals,16 and a

wide variety of whale species.9,12,13,15,17 However, one com-

mon issue often present in detection systems is the need for

setting an adequate threshold to balance the rates of false

positives and true positives. When a system is too sensitive

then it is more likely to not miss a signal of interest (true

positives), however, undesired signals corresponding to

noise generated by other sound sources are also detected

(false positives).

To alleviate this trade-off and improve the performance

of the detectors, recently, machine and deep learning

approaches have been adopted for DCS, especially for

identifying whale calls. Some efforts in the implementation

of machine learning (ML) include the use of artificial neural

networks,13,18 logistic regression classifiers,19 and a

a)This paper is part of a special issue on Ocean Acoustics in the Changing

Arctic.
b)Electronic mail: escobarc@udel.edu, ORCID: 0000-0003-2907-7311.
c)ORCID: 0000-0002-5869-336X.
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Boltzmann machine combined with a sparse auto-encoder.20

Most recently, deep learning (DL) techniques have gained

special interest for whale call detection and classification.

Some DL approaches include convolutional,21–25 residual,26

recurrent,24,27 and long short-term memory27 neural

networks.

In this work, we present an approach based on deep

learning techniques for automatically detecting and classify-

ing two main types of vocalizations of bearded seals year-

round recorded at several positions in the northeastern edge

of the Chukchi Continental Slope in 2016–2017. The center

of the receivers was located at approximately 175 km north-

west of point Barrow, Alaska, in between the 100 and 400 m

isobath. The vocalizations are first detected using a two-

dimensional (2D) spectrogram correlation method. To

increase the number of true positive detections, a low

threshold is selected; however, the false positives increase

as well. To deal with this trade-off, these first detections are

considered candidate regions containing potential bearded

seal vocalizations. Then, convolutional neural networks

(CNNs) are used for validating and classifying the signals

detected by the 2D spectrogram correlation method. This

study demonstrates the potential for convolutional neural

networks to improve the performance of fast automated

detectors applied to large PAM databases for analyzing the

presence and abundance of bearded seal vocalizations.

This paper is structured as follows: Sec. II introduces

the measured data used for this work. Section III presents

the methodology of the DCS. Sections IV and V show the

results and discussion, respectively, followed by the conclu-

sions in Sec. VI.

II. MEASURED DATA

The data used in this paper were collected by several

receivers deployed in the northeastern edge of the Chukchi

Shelf, in the dynamic shelf break region during the Shallow

Water Canada Basin Acoustic Propagation Experiment

(SW-CANAPE) in 2016–2017.28–30 Four autonomous

multichannel acoustic recorder arrays were deployed by the

Defense Research and Development Canada agency during

the SW-CANAPE and are referred hereafter as A1, A2, A3,

and A4. Figure 1 shows the location of the recorders over-

laid on IBCAO v3.0 bathymetric data.31

Details about position and recording times for each

receiver are listed in Table I. The receivers recorded from

late October 2016 until mid October 2017. The dataset is

composed of 32-min recordings starting at 00 h (for anthro-

pogenic noise reception) and 3.5-min recordings starting at

02 h (for ambient noise measurement) every four hours for

the duration of the experiment.

One challenge for the marine mammal detections in the

SW CANAPE experiment is the fact that anthropogenic

noise was present most of the time in the four recordings.

As shown in Fig. 1(b), the Naval Research Laboratory

deployed two sound sources, S1 and S2, close to A3 and A1,

respectively. These sound sources transmitted Linear

Frequency Modulated (LFM) signals as upsweep from S1

and down-sweep from S2 at the frequency bands of

700–1100 Hz and 1.5–4 KHz. Also, M-Sequences were

transmitted at the same frequency bands of the LFM signals,

as well as Continuous Wave (CW) signals at 890 Hz from

S1 and 910 Hz from S2. Each source broadcast a 30-min

sequence of transmissions approximately every four hours

every day starting from October 24, 2016, for both sources

and ending on June 26, 2017, for S1 and September 1, 2017,

for S2.

III. METHODOLOGY

The detection and classification system (DCS) proposed

in this work for detecting several bearded seals vocalizations

is divided into two main sections, as shown in Fig. 2. The

first step is the detection, where several candidate regions in

the spectrograms of the audio recordings are selected based

on a representative template of the vocalization. When the

fast two-dimensional normalized cross correlation32 (2D-

NCC) between the template and the spectrogram is greater

FIG. 1. (Color online) (a) Wide area map showing the locations of A1, A2, A3 and, A4 deployed in the Chukchi continental slope. (b) Close-up of the loca-

tions of the receivers relative to the sound sources. Maps are overlaid on IBCAO v3.0 bathymetric data.

300 J. Acoust. Soc. Am. 151 (1), January 2022 Escobar-Amado et al.

https://doi.org/10.1121/10.0009256

https://doi.org/10.1121/10.0009256


or equal than the threshold, then that position represents a

candidate region, also known as region of interest (ROI).

Second, for the classification task, the portion of the

spectrogram—selected in the first step—is input to a CNN

that classifies the ROI as either noise or one type of bearded

seal vocalization. These deep learning models are trained

and validated using data collected and labeled from A4 and

tested on the remaining three receivers (see Fig. 1).

A. Fast 2D normalized cross correlation

Studies of vocal repertoire of bearded seals from Alaska

(AL) have categorized their calls into trills (T), moans (M),

and ascents (A).1,3,4 Some examples of these vocalizations

are shown in Fig. 3, where the trills are labeled as AL1(T),

AL1i(T), AL2(T), AL4(T), AL5(T), and AL6(T). Moans

and ascents are labeled as AL3(M) and AL7(A), respec-

tively. More details about the labeling and characteristics of

the different types of calls can be found in Risch et al.3 The

scope of this work is to identify two representative vocaliza-

tions of the bearded seal repertoire that fall into several

types of trills.

The first step of this DCS is to obtain the ROIs from the

spectrograms that are extracted with a 40 ms time interval

and a frequency step of 3.9 Hz. For this detection part of the

system, two templates, also known as masks, are extracted

from the recordings and represent the two vocalizations of

interest. The first vocalization, denoted as Mask 1, is a trill

with both ascending and descending components as shown

in Fig. 4(a), and corresponds to AL1i(T) (see Fig. 3). Mask

1 is 12.28 s long with a bandwidth of 1840 Hz

(328–2172 Hz). Mask 2 is the long downsweep call shown

in Fig. 4(b), which is 26.44 s long and has a bandwidth of

1199 Hz (324–1523 Hz). These two templates in Figs. 4(a)

and 4(b) are used for detecting the ROIs in the recordings

using a spectrogram correlation technique based on the fast

normalized 2D cross correlation method described in Ref.

32, where each template is slid in frequency and time across

the spectrogram. The correlation value at each point

between the template and the portion of the spectrogram

under the template is computed as,

cðu;vÞ¼

X
t;f

Sðt; f Þ� �StT ; fT

� �
Tðt�tT ;f�fTÞ� �T
� �

X
t;f

Sðt;f Þ� �StT ; fT

� �2X
t; f

Tðt�tT ;f�fTÞ� �T
� �2( )0:5

;

(1)

where S is the input spectrogram and the sums are over

time t and frequency f under the window containing the

template T positioned at tT, fT. And, �T is the mean of the

template while �StT ;fT is the mean of S in the region under

the template.

The output of the 2D-NCC for Mask 1 and Mask 2

applied to the spectrogram in Fig. 4(e) is shown in Figs. 4(c)

and 4(d) where Eq. (1) is computed by sliding a window

across the spectrogram using a stride of one in both axes

with no padding. The blank part of Figs. 4(c) and 4(d) repre-

sent areas where the mask overlap with the underline data

does not have a value. To detect the regions, the spectro-

grams are divided into a grid where each portion has the

same size of the template as shown by the white dashed

lines in Figs. 4(c) and 4(d). When the maximum correlation

value inside each region of the grid exceeds a threshold,

then that point indicates the starting time and frequency (tT,

fT) of a ROI as shown by the white circle markers.

Some examples of bearded seal vocalizations detected

using this method are shown in Fig. 4(e). Detections using

Masks 1 and 2 are shown in black and white rectangles,

respectively. These rectangles encompass the ROIs where

the white circle markers indicate the starting frequency and

time, and are located at the same position as the white

markers shown in Figs. 4(c) and 4(d).

The detections in Fig. 4(e) lead to several observations

about the behavior of the 2D-NCC. First, when the threshold

for Mask 1 is low, the system starts detecting AL1(T) calls,

which are found at higher frequencies and have a behavior

similar to AL1i(T) in the first 12 s but with a longer down-

sweep component. With a lower correlation value, Mask 1

also detects downsweep calls that have a slope similar to

that of the template. Mask 2, on the other hand, is used for

detecting long downsweep calls corresponding to signals

such as AL2(T), AL2i(T), and the long descent portion of

AL1(T). With a lower correlation threshold, Mask 2 starts

detecting short downsweep calls such as AL5(T) and the

descent portion of Mask 1, i.e., AL1i(T). However, one

challenge in this dataset is that with a low threshold, the

detection system is triggered by anthropogenic signals such

as the M-sequences when using both masks as shown in

Fig. 4(f), which increases the rate of false positives.

TABLE I. Details of position, recording times, and water depths of the

receivers.

Recorder Lat(N) Lon(W) Water depth (m) Recorded dates

A1 72.566 158.223 149 10/21/2016–10/12/2017

A2 72.669 159.122 106 10/21/2016–10/12/2017

A3 72.779 158.817 224 10/19/2016–10/10/2017

A4 72.788 159.524 123 10/24/2016–10/12/2017

FIG. 2. (Color online) Detection and classification system diagram.
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B. Data labeling

The selection of an adequate threshold to determine the

system sensitivity and balance the rate of false positives and

true positives is always a challenge in detection systems. To

analyze the impact of the threshold selection, all the ROIs

identified in one of the receivers have been manually labeled

for both templates using a low detection threshold. Here, A4

is chosen for this task given that it is the most benign case

since it is the recorder that is farthest from the sound sources

S1 and S2.

For each mask, the data have been labeled among four

classes as shown in Table II. Class 0 corresponds to anthro-

pogenic noise (M-Sequences), Class 1 corresponds to the

main sound the mask is intended for; Class 2 is background

noise; and Class 3 is a bearded seal sound similar to that of

the main Class 1.

For Mask 1, Fig. 5(a) shows the detected ROIs as a

function of geotime versus starting frequency where Class
1, i.e., AL1i(T) trills, are found at three distinguishable start-

ing frequency bands as depicted by the green dots. On the

other hand, AL1(T) trills are found at higher frequencies

above 1.5 kHz. Class 2 is spread over the entire frequency

band and mostly happens in the same time frame as AL1i(T)

and AL1(T) trills, mainly because the threshold is com-

monly triggered by other downsweep signals from the same

species. In Fig. 5(b) it is observed that as the 2D-NCC

threshold decreases, the rate of true positives increases

exponentially; however, the rate of false positives increases

with a steeper exponential behavior. The accuracy of the

detection system [dashed magenta line in Fig. 5(b)] is above

80% with thresholds higher than 0.41 but decreases rapidly

as the threshold is lowered.

Similarly, for Mask 2, the ROIs have been divided into

the four classes shown in Table II. The long downsweep

trills are commonly found at starting frequencies below

1.5 kHz as shown in Fig. 5(c). Furthermore, Mask 2 has a

lower ratio of false positives than Mask 1 when decreasing

the correlation threshold as observed in Fig. 5(d). This is

due to the fact that Mask 2 has a longer duration and spans a

broader number of vocalizations, i.e., any trill that has a

long downsweep component falls into class 1. However, the

false and true positive rates trade-off is still present with a

detection accuracy of 50% with a 0.2 threshold.

When labeling the data, if two or more classes are pre-

sent in the same ROI, then the priority order for both masks

is class 1, class 3, class 0, and class 2. For instance, for

Mask 1, if an M-Sequence and an AL1i(T) sound are present

in the same detected region then that ROI is labeled as

class 1.

C. CNN architecture

To deal with the trade-off between false and true posi-

tive rates due to the correlation threshold, convolutional

neural networks are implemented for classifying the ROIs

FIG. 3. (Color online) Representative examples of bearded seal vocalization repertoire. Data measured on A4 on April 25, 2017 from 20:08 until 20:15.
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detected during the spectrogram correlation step. CNNs are

a deep learning tool used for learning representative features

in the convolutional layers by sliding kernels across the

data.33

The CNN topology used in this work is inspired by pre-

vious CNNs developed for classification tasks using acoustic

signals.34,35 The network architecture is shown in Table III

where the parameters for each convolutional layer are pre-

sented as (kernel size), (stride), (padding), and (Number of

channel outputs). The number of channels represents the

number of feature maps learned at each layer when sliding

the kernel or filter across the input. Using large kernels in

the first layers but not in the deeper ones helped the net-

works to learn, similar to what was found in previous

works.34,35

The deep learning algorithms used in this study were

written in Python using the PyTorch framework.36 The

CNN is composed of five convolutional layers and one fully

FIG. 4. (Color online) (a) Mask 1 for AL1i(T) sound. (b) Mask 2 for long down-sweep vocalization. (c), (d) Output from the 2D Normalized cross correla-

tion of Mask 1 and Mask2. (e) ROI encompassing bearded seal vocalizations detected by the spectrogram correlation method. (f) ROI encompassing M-

Sequences which correspond to false positive detections using the 2D-NCC.

TABLE II. Classes for Masks 1 and 2.

Mask 1 Mask 2

Class Description Class Description

0 M-Sequence 0 M-Sequence

1 AL1i(T) 1 Long downsweep vocalizations such as AL2(T), AL2i(T), and the long descent part of AL1(T)

2 Any sound different to classes 0, 1 or 3 2 Any sound different to classes 0, 1 or 3

3 AL1(T) 3 Short downsweep calls such as AL4(T), AL5(T), and the descent part of AL1i(T)
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connected (FC) layer with 2000 neurons followed by an out-

put layer that assigns a score to each of the 4 classes—one

associated with each class defined in Table II. Each layer is

followed by a ReLu activation function37 that is a computa-

tionally efficient way to include a sparse activation into the

problem. Batch normalization is employed after ReLu for

each convolutional layer to add a level of regularization and

reduce the generalization error.38 Max pooling is applied

after the first two convolutional layers to decrease the

dimensionality of the network. A 50% dropout is used

before the FC layer for avoiding overfitting. The networks

are trained on 60 epochs with a batch size of 32 using the

Adam optimizer39 with a learning rate scheduler.

Using the data previously labeled for A4, two indepen-

dent networks, named CNN1 and CNN2, are trained to rein-

force the detections found with the 2D-NCC using Mask 1

and Mask 2, respectively. The two networks share the same

CNN architecture presented in Table III for classifying the

ROIs among the four possible classes described in Sec. III B

for the two types of vocalizations of interest.

IV. RESULTS

Results of the DCS for the two types of bearded seal

vocalizations of interest are presented in this section. The

2D-NCC technique described in Sec. III A has been applied

to the four receivers detecting ROIs across the entire dataset.

The networks have been trained and validated using the

labeled data on A4. However, due to the close proximity of

A1 with respect to the sound source S2, several downsweep

LFM signals were being falsely classified (for A1 only) as

long and short downsweep bearded seal vocalizations, i.e.,

as class 1 and class 3 for Mask 2 when using CNN2. Since

A4 is far from S2, LFM signals were not detected as ROIs

in the spectrogram correlation step and therefore they were

not included originally in the training. To address this issue,

a small portion of labeled ROIs from A1 containing LFM

signals were included in the training of CNN2.

The metrics used for evaluating the performance of the

networks during the training/validation stage are accuracy,

precision, and recall. Accuracy is calculated by counting the

number of times the CNN predicted the correct class.

FIG. 5. (Color online) (a), (c) ROIs detected and labeled on A4 for (a) Mask 1 and (c) Mask 2 as a function of starting frequency vs geo-time. (b), (d)

Number of detections as a function of the correlation threshold for (b) Mask 1 and (d) Mask 2.

TABLE III. CNN architecture. The convolutional layer parameters are pre-

sented as (kernel size), (stride), (padding), and (Number of channel out-

puts). The value next to FC corresponds to the number of neurons in that

FC layer.

Layer CNN Parameters

conv (11� 7)(3� 2)(5� 3) (32)

max pool (5� 5)(2� 2)(2� 2)

conv (5� 5)(1� 1)(2� 2) (64)

max pool (5� 5)(1� 2)(2� 2)

conv (5� 3)(2� 1)(2� 1) (128)

conv (3� 3)(1� 2)(1� 1) (64)

conv (5� 3)(2� 1)(1� 1) (32)

Vectorization and dropout

FC-2000

Output (4 classes)
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Precision is the ratio between correctly predicted observa-

tions for a given class and the total of predicted observations

for that class, and it is defined as

Precision ¼ #True positives

#True positivesþ #False positives
: (2)

Recall is the ratio between correctly predicted observations

and the total number of observations of a given class and it

is defined as

Recall ¼ #True positives

#True positivesþ #False negatives
; (3)

where a high precision index signifies a low false alarm rate

and a high recall index indicates a high detection efficiency.17

Furthermore, for assessing the generalizability perfor-

mance of the DCS, the trained networks are applied to the

non-labeled ROIs detected on the three remaining receivers

located at different positions.

A. Detection results

The detection system described in Sec. III A has been

applied to the four receivers. The number of ROIs detected

per receiver is shown in Table IV where A1 and A3 have

the larger counts of candidate regions. The reason behind

this is the proximity of A1 and A3 to the sound sources S2

and S1, respectively, where the anthropogenic signals are

present with high SNR for most of the recording time, espe-

cially for A1.

TABLE IV. Number of ROIs detected on the six receivers using the 2D-NCC on the spectrograms.

Recorder # ROIs MASK 1 # ROIs MASK 2 Daily recorded hours Total Recorded hours

A1 79 920 1 27 441 3.58 1273.9

A2 35 064 29 495 3.58 1274.5

A3 56 637 61 076 3.58 1274.5

A4 22 056 22 683 3.58 1273.9

Total 5096.8

FIG. 6. (Color online) Confusion matrices for (a) training and (b) validation

of ROIs detected with Mask 1. Precision for each class is presented by the

two rows at the bottom. Recall is presented by the two columns at the right-

hand side.

FIG. 7. (Color online) Confusion matrices for (a) training and (b) validation

of ROIs detected with Mask 2. Precision for each class is presented by the

two rows at the bottom. Recall is presented by the two columns at the right-

hand side.
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B. Training and validation results

CNN1 was trained and validated with an 80/20% ran-

dom split using the 22 056 ROIs identified and labeled on

A4 when correlating the spectrograms with Mask 1. The

confusion matrix in Fig. 6(a) shows that the network had an

accuracy of 100% in the training stage. For the validation

stage, the overall accuracy was 97.6% with precision and

recall values for class 1 of 96.8% and 98.3%, respectively,

as shown in the confusion matrix in Fig. 6(b).

CNN2, with an 80/20% random split, was trained and

validated using 22 683 ROIs labeled on A4 plus 616 ROIs

containing LFM signals from A1 labeled as class 2.

Training and validation accuracies were 100% and 95.52%,

respectively, as shown in Figs. 7(a) and 7(b). Precision and

recall for class 1 were 97.1% and 98.2% respectively. Class
2 and class 3 had lower recall and precision performance

but still above 87%.

These validation results show that both CNNs have

learned representative patterns from the labeled ROIs previ-

ously identified with the spectrogram correlation technique.

C. Generalization results

The ROIs classified by CNN1 for A1, A2, A3, and the

validation portion of A4 are shown in Fig. 8 as a function of

geotime vs starting frequency (for Mask 1) where the colors

represent the predicted class. The behavior of the classifica-

tions is similar to the labeled signals shown in Fig. 5(a),

where AL1i(T) sounds, i.e., class 1, are found at the same

three starting frequency bands and AL1(T) sounds are found

above 1.5 kHz. Furthermore, the frequency band of the clas-

sified M-Sequences (class 0), represented by the dark gray

dot markers, match their actual transmitted frequency. This

agreement in frequency and time of occurrence between the

predicted classes and the labeled data provides evidence that

the ROIs are correctly classified. To further prove this state-

ment, the ROIs predicted as class 1 and class 3 are manually

labeled to compute the precision performance for this gener-

alizability assessment. Manual labeling of ROIs predicted as

class 0 and class 2 is out of the scope of this work since it

would take a considerable amount of time.

The precision results for the three recorders are pre-

sented in Table V. It is observed that A1 and A3 have the

lowest precision for both, class 1 and class 3, while A2,

with lower anthropogenic noise activity, have precision

above 99.6%.

Similarly, the predictions obtained using CNN2 for

classifying the ROIs corresponding to the downsweep vocal-

izations are shown in Fig. 9. Results on the non-labeled data

show that the starting frequency versus geotime behavior is

similar to the labeled data shown in Fig. 5(c) where the long

downsweep vocalizations are most commonly found below

1.5 kHz. Several occurrences happen above 1.5 kHz and cor-

respond to AL2i(T) type of sounds which are less common

to find in this particular area of the Chukchi shelf break.4

ROIs predicted as class 1 and class 3 types of sounds have

FIG. 8. (Color online) ROIs classified by CNN1 as a function of starting frequency and geo-time for (a) A1, (b) A2, (c) A3, and (d) the validation portion of

A4 using Mask 1.
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been manually labeled to compute the precision perfor-

mance of the network. The results are shown in Table VI,

where the long downsweep vocalizations corresponding to

class 1 exhibit a precision above 98.8% for all the receivers.

However, receivers with high anthropogenic noise activity

(A1 and A3) had more difficulties for correctly classifying

the short downsweep signals, i.e., class 3.

V. DISCUSSION

The 2D normalized cross correlation method imple-

mented in Sec. III A provides a fast and functional detection

system able to find the bearded seal vocalizations using the

spectrogram representation of the acoustic signals of inter-

est. However, an adequate threshold needs to be established

to balance the false positive and true positive rates. While in

detection systems it is common to heuristically set a thresh-

old that balances this trade-off, in this paper, we have pro-

posed an approach that allows the system to have a low

threshold by reinforcing the detections using deep learning

techniques.

A low threshold allows the detection system to identify

several vocalizations that have a low SNR or that are

masked by other noise events. However, this also makes the

system identify other signals such as anthropogenic noise or

other marine mammals vocalizations, which increases the

false positive rate. In this work, these first detections are

considered as ROIs and are 2D matrices found at a given

frequency and geotime. To address the trade-off between

false positive and true positive rates, CNNs are used for

reinforcing the detections by classifying each ROI into sev-

eral predetermined classes as described in Sec. III B.

TABLE V. Precision for class 1 and class 3 using Mask 1.

Predicted class

True Class Recorder 0 1 2 3 Precision (%)

A1 20 1259 97 1 91.4

1 A2 5 6672 14 5 99.6

A3 4 978 115 0 89.2

A1 2 0 11 407 96.9

3 A2 0 0 0 1473 100.0

A3 1 0 0 67 98.52

FIG. 9. (Color online) ROIs classified by CNN2 as a function of starting frequency and geo-time for (a) A1, (b) A2, (c) A3, and (d) validation portion of A4,

using Mask 2.

TABLE VI. Precision for class 1 and class 3 using Mask 2.

Predicted class

True Class Recorder 0 1 2 3 Precision (%)

A1 10 3692 33 0 98.8

1 A2 0 16047 3 0 99.9

A3 1 2408 4 0 99.8

A1 856 14 499 1399 50.5

3 A2 0 0 1 4484 99.9

A3 87 0 11 769 88.7
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To properly train a supervised machine learning model,

a large labeled dataset is necessary. This database needs to

have sufficient information that captures the variety found in

the testing scenarios. For the ROIs found with Mask 1

[AL1i(T)], the CNN showed high performance when trained

on data labeled for one single receiver and tested on the

remaining three receivers at different locations. For Mask 2,

corresponding to downsweep vocalizations, using data

labeled for one single receiver (A4) was sufficient for most

of the remaining recorders. However, since A1 was close to

the sound source S2 which transmitted downsweep LFM

signals, it was necessary to include a small portion of these

ROIs found on A1 for the training of CNN2. This way, the

network learns how to classify these type of signals that

were not originally included when using only the data

labeled for A4 which was the farthest from S2.

Figure 10 shows several examples of the DCS applied to

noisy recordings in A3, where the correlation value is close

to the threshold of both Masks. Figures 10(a) and 10(b) show

the cases when the CNNs falsely classified background noise

as Class 1 for Mask 1 and Mask 2, respectively. These errors

occurred when the noise had patterns similar to the vocaliza-

tions of interest. These few false positive classifications can

be further alleviated by including more background noise

signals in the training data set or by applying data augmenta-

tion techniques.40 On the other hand, Figs. 10(c) and 10(d)

show examples of the CNNs correctly classifying ROIs con-

taining bearded seals vocalizations with low SNR and

masked by anthropogenic signals.

VI. CONCLUSIONS

This study provides evidence that convolutional neural

networks are suitable for classifying bearded seal vocaliza-

tions from candidate regions found by the spectrogram cor-

relation technique. With this DCS, given that the ROIs will

be classified by the CNNs, the sensitivity of the detection

step can be increased to find more possible vocalizations

even though many false positive events are triggered. For

the CNNs, the training data must have enough information

content for the networks to learn how to distinguish the sig-

nals of interest from other possible signals that might be pre-

sent in the testing scenarios.

ACKNOWLEDGMENTS

This research was supported by the Office of Naval

Research Ocean Acoustics Program (ONR OA322) under

Grant Nos. N00014-15-1-2110, N00014-18-1-2140, and

N00014-21-1-2760.

1H. Frouin-Mouy, X. Mouy, B. Martin, and D. Hannay, “Underwater

acoustic behavior of bearded seals (Erignathus barbatus) in the northeast-

ern Chukchi Sea, 2007–2010,” Mar. Mammal Sci. 32(1), 141–160 (2016).
2A. F. Heimrich, W. D. Halliday, H. Frouin-Mouy, M. K. Pine, F. Juanes,

and S. J. Insley, “Vocalizations of bearded seals (Erignathus barbatus)

and their influence on the soundscape of the western Canadian Arctic,”

Mar. Mammal Sci. 37(1), 173–192 (2021).
3D. Risch, C. W. Clark, P. J. Corkeron, A. Elepfandt, K. M. Kovacs, C.

Lydersen, I. Stirling, and S. M. Van Parijs, “Vocalizations of male

bearded seals, Erignathus barbatus: Classification and geographical var-

iation,” Animal Behav. 73(5), 747–762 (2007).

FIG. 10. (Color online) examples of the DCS for sounds measured on the receiver A3. (a), (b) ROIs falsely detected and classified as Class 1 for (a) Mask 1

and (b) Mask 2. (c), (d) ROIs successfully detected and classified as Class 1 for (a) Mask 1 and (b) Mask 2 under environmental noise.

308 J. Acoust. Soc. Am. 151 (1), January 2022 Escobar-Amado et al.

https://doi.org/10.1121/10.0009256

https://doi.org/10.1111/mms.12246
https://doi.org/10.1111/mms.12732
https://doi.org/10.1016/j.anbehav.2006.06.012
https://doi.org/10.1121/10.0009256


4J. M. Jones, B. J. Thayre, E. H. Roth, M. Mahoney, I. Sia, K. Merculief,

C. Jackson, C. Zeller, M. Clare, A. Bacon, S. Weaver, Z. Gentes, R. J.

Small, I. Stirling, S. M. Wiggins, and J. A. Hildebrand, “Ringed, bearded,

and ribbon seal vocalizations north of Barrow, Alaska: Seasonal presence

and relationship with sea ice,” Arctic 67(2), 203–222 (2014).
5I. Parisi, G. de Vincenzi, M. Torri, E. Papale, S. Mazzola, A. Bonanno,

and G. Buscaino, “Underwater vocal complexity of Arctic seal Erignathus

barbatus in Kongsfjorden (Svalbard),” J. Acoust. Soc. Am. 142(5),

3104–3115 (2017).
6H. J. Cleator, I. Stirling, and T. G. Smith, “Underwater vocalizations of

the bearded seal (Erignathus barbatus),” Can. J. Zool. 67(8), 1900–1910

(1989).
7K. Q. MacIntyre, K. M. Stafford, C. L. Berchok, and P. L. Boveng,

“Year-round acoustic detection of bearded seals (Erignathus barbatus) in

the Beaufort Sea relative to changing environmental conditions,

2008–2010,” Polar Biol. 36(8), 1161–1173 (2013).
8T. K. Boye, M. J. Simon, K. L. Laidre, F. Rig�et, and K. M. Stafford,

“Seasonal detections of bearded seal (Erignathus barbatus) vocalizations

in Baffin Bay and Davis Strait in relation to sea ice concentration,” Polar

Biol. 43(10), 1493–1502 (2020).
9D. E. Hannay, J. Delarue, X. Mouy, B. S. Martin, D. Leary, J. N. Oswald,

and J. Vallarta, “Marine mammal acoustic detections in the northeastern

Chukchi Sea, September 2007–July 2011,” Continental Shelf Res. 67,

127–146 (2013).
10W. D. Halliday, S. J. Insley, T. de Jong, and X. Mouy, “Seasonal patterns

in acoustic detections of marine mammals near Sachs Harbour, Northwest

Territories,” Arct. Sci. 4, 259–278 (2017).
11W. D. Halliday, M. K. Pine, S. J. Insley, R. N. Soares, P. Kortsalo, and X.

Mouy, “Acoustic detections of arctic marine mammals near ulukhaktok,

northwest territories, Canada,” Can. J. Zool. 97(1), 72–80 (2019).
12X. Mouy, M. Bahoura, and Y. Simard, “Automatic recognition of fin and

blue whale calls for real-time monitoring in the St. Lawrence,” J. Acoust.

Soc. Am. 126(6), 2918–2928 (2009).
13D. K. Mellinger, “A comparison of methods for detecting right whale

calls,” Can. Acoust. 32(2), 55–65 (2004).
14X. Mouy, J. Oswald, D. Leary, J. Delarue, J. Vallarta, b Rideout, D.

Mellinger, C. Erbe, D. Hannay, and B. Martin, “Passive acoustic monitor-

ing of marine mammals in the Arctic,” in Detection, Classification,
Localization of Marine Mammals Using Passive Acoustics (DIRAC

NGO, Paris, France, 2013), pp. 185–224.
15B. Martin, K. Kowarski, X. Mouy, and H. Moors-Murphy, “Recording

and identification of marine mammal vocalizations on the scotian shelf

and slope,” in Proceedings of 2014 Oceans, St. John’s, Newfoundland,

Canada (June 16–17, 2014).
16H. Frouin-Mouy, X. Mouy, C. L. Berchok, S. B. Blackwell, and K. M.

Stafford, “Acoustic occurrence and behavior of ribbon seals

(Histriophoca fasciata) in the Bering, Chukchi, and Beaufort seas,” Polar

Biol. 42(4), 657–674 (2019).
17D. Gillespie, M. Caillat, J. Gordon, and P. White, “Automatic detection

and classification of odontocete whistles,” J. Acoust. Soc. Am. 134(3),

2427–2437 (2013).
18J. R. Potter, D. K. Mellinger, and C. W. Clark, “Marine mammal call dis-

crimination using artificial neural networks,” J. Acoust. Soc. Am. 96(3),

1255–1262 (1994).
19C. H. Ho, J. Joseph, H. Ming Jer, and T. Margolina, “Automated detection

and identification of blue and fin whale foraging calls by combining pat-

tern recognition and machine learning techniques,” in Proceedings of
Oceans 2016 MTS/IEEE, Monterey, CA (September 19–23, 2016). pp.

1–7.
20X. C. Halkias, S. Paris, and H. Glotin, “Classification of mysticete sounds

using machine learning techniques,” J. Acoust. Soc. Am. 134(5),

3496–3505 (2013).
21S. Liu, M. Liu, M. Wang, T. Ma, and X. Qing, “Classification of Cetacean

Whistles Based on Convolutional Neural Network,” in Proceedings of the
2018 10th International Conference on Wireless Communications and
Signal Processing, Hangzhou, China (October 18–20, 2018).

22W. Luo, W. Yang, and Y. Zhang, “Convolutional neural network for

detecting odontocete echolocation clicks,” J. Acoust. Soc. Am. 145(1),

EL7–EL12 (2019).
23M. Zhong, M. Castellote, R. Dodhia, J. Lavista Ferres, M. Keogh, and A.

Brewer, “Beluga whale acoustic signal classification using deep

learning neural network models,” J. Acoust. Soc. Am. 147(3), 1834–1841

(2020).
24Y. Shiu, K. J. Palmer, M. A. Roch, E. Fleishman, X. Liu, E. M. Nosal, T.

Helble, D. Cholewiak, D. Gillespie, and H. Klinck, “Deep neural net-

works for automated detection of marine mammal species,” Sci. Rep.

10(1), 1–12 (2020).
25M. Thomas, B. Martin, K. Kowarski, B. Gaudet, and S. Matwin, “Marine

mammal species classification using convolutional neural networks and a

novel acoustic representation,” in Machine Learning and Knowledge
Discovery in Databases, edited by U. Brefeld, E. Fromont, A. Hotho, A.

Knobbe, M. Maathuis, and C. Robardet (Springer International

Publishing, Cham, 2020), pp. 290–305.
26O. S. Kirsebom, F. Frazao, Y. Simard, N. Roy, S. Matwin, and S. Giard,

“Performance of a deep neural network at detecting north atlantic right

whale upcalls,” arXiv:2636 (2020).
27P. C. Bermant, M. M. Bronstein, R. J. Wood, S. Gero, and D. F. Gruber,

“Deep machine learning techniques for the detection and classification of

sperm whale bioacoustics,” Sci. Rep. 9(1), 1–10 (2019).
28M. S. Ballard, M. Badiey, J. D. Sagers, J. A. Colosi, A. Turgut, S.

Pecknold, Y.-T. Lin, A. Proshutinsky, R. Krishfield, P. F. Worcester, and

M. A. Dzieciuch, “Temporal and spatial dependence of a yearlong record

of sound propagation from the Canada Basin to the Chukchi Shelf,”

J. Acoust. Soc. Am. 148(3), 1663–1680 (2020).
29M. D. Collins, A. Turgut, R. Menis, and J. A. Schindall, “Acoustic recordings

and modeling under seasonally varying sea ice,” Sci. Rep. 9(1), 1–11 (2019).
30M. Badiey, L. Wan, S. Pecknold, and A. Turgut, “Azimuthal and temporal

sound fluctuations on the Chukchi continental shelf during the Canada

basin acoustic propagation experiment 2017,” J. Acoust. Soc. Am. 146(6),

EL530–EL536 (2019).
31M. Jakobsson, L. Mayer, B. Coakley, J. A. Dowdeswell, S. Forbes, B.

Fridman, H. Hodnesdal, R. Noormets, R. Pedersen, M. Rebesco, H. W.

Schenke, Y. Zarayskaya, D. Accettella, A. Armstrong, R. M. Anderson,

P. Bienhoff, A. Camerlenghi, I. Church, M. Edwards, J. V. Gardner, J. K.

Hall, B. Hell, O. Hestvik, Y. Kristoffersen, C. Marcussen, R. Mohammad,

D. Mosher, S. V. Nghiem, M. T. Pedrosa, P. G. Travaglini, and P.

Weatherall, “The international bathymetric chart of the Arctic Ocean

(IBCAO) version 3.0,” Geophys. Res. Lett. 39(12), 1–6, https://doi.org/

10.1029/2012GL052219 (2012).
32J. P. Lewis, “Fast normalized cross-correlation,” Industrial Light &

Magic, http://scribblethink.org/Work/nvisionInterface/nip.html (Last

viewed: January 10, 2022).
33I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press,

Cambridge, MA, 2016).
34T. B. Neilsen, C. D. Escobar-Amado, M. C. Acree, W. S. Hodgkiss, D. F.

Van Komen, D. P. Knobles, and M. Badiey, “Learning location and sea-

bed type from a moving mid-frequency source,” J. Acoust. Soc. Am. 149,

692–705 (2021).
35C. D. Escobar-Amado, T. B. Neilsen, J. Castro-Correa, D. F. Van Komen,

M. Badiey, D. P. Knobles, and W. S. Hodgkiss, “Seabed classification

from merchant ship-radiated noise using a physics-based ensemble deep

learning algorithms,” J. Acoust. Soc. Am. 150, 1434–1447 (2021).
36A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T.

Killeen, Z. Lin, N. Gimelshein, and L. Antiga, et al. “PyTorch: An imper-

ative style, high-performance deep learning library,” Advances in Neural
Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8–14,
2019, Vancouver, BC, Canada (2019), pp. 8024–8035

37V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-

mann machines,” in Proceedings of the 27th International Conference on
Machine Learning (ICML-10), Madison, WI (June 21–24, 2010), pp.

801–814.
38S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift,” in Proceedings of the
32nd International Conference on International Conference on Machine
Learning, Lille, France (July 6–11, 2015), pp. 448–456.

39D. P. Kingma and J. L. Ba, “Adam: A method for stochastic opti-

mization,” in Proceedings of the 3rd International Conference on
Learning Representations, San Diego, CA (May 7–9, 2015).

40J. A. Castro-Correa, M. Badiey, T. B. Neilsen, D. P. Knobles, and W. S.

Hodgkiss, “Impact of data augmentation on supervised learning for a moving

mid-frequency source,” J. Acoust. Soc. Am. 150(5), 3914–3928 (2021).

J. Acoust. Soc. Am. 151 (1), January 2022 Escobar-Amado et al. 309

https://doi.org/10.1121/10.0009256

https://doi.org/10.14430/arctic4388
https://doi.org/10.1121/1.5010887
https://doi.org/10.1139/z89-272
https://doi.org/10.1007/s00300-013-1337-1
https://doi.org/10.1007/s00300-020-02723-1
https://doi.org/10.1007/s00300-020-02723-1
https://doi.org/10.1016/j.csr.2013.07.009
https://doi.org/10.1139/as-2017-0021
https://doi.org/10.1139/cjz-2018-0077
https://doi.org/10.1121/1.3257588
https://doi.org/10.1121/1.3257588
https://doi.org/10.1007/s00300-019-02462-y
https://doi.org/10.1007/s00300-019-02462-y
https://doi.org/10.1121/1.4816555
https://doi.org/10.1121/1.410274
https://doi.org/10.1121/1.4821203
https://doi.org/10.1121/1.5085647
https://doi.org/10.1121/10.0000921
https://doi.org/10.1038/s41598-020-57549-y
http://arxiv.org/abs/arXiv:2636
https://doi.org/10.1038/s41598-019-48909-4
https://doi.org/10.1121/10.0001970
https://doi.org/10.1038/s41598-019-44707-0
https://doi.org/10.1121/1.5141373
https://doi.org/10.1029/2012GL052219
http://scribblethink.org/Work/nvisionInterface/nip.html
https://doi.org/10.1121/10.0003361
https://doi.org/10.1121/10.0005936
https://doi.org/10.1121/10.0007284
https://doi.org/10.1121/10.0009256

	s1
	tr1
	l
	n1
	n2
	s2
	s3
	f1
	s3A
	d1
	t1
	f2
	s3B
	s3C
	f3
	f4
	t2
	s4
	f5
	t3
	d2
	d3
	s4A
	t4
	f6
	f7
	s4B
	s4C
	f8
	s5
	t5
	f9
	t6
	s6
	c1
	c2
	c3
	f10
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40

