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ABSTRACT
The recovery of time-varying graph signals is a fundamental
problem with numerous applications in sensor networks and
forecasting in time series. Effectively capturing the spatio-
temporal information in these signals is essential for the
downstream tasks. Previous studies have used the smooth-
ness of the temporal differences of such graph signals as an
initial assumption. Nevertheless, this smoothness assumption
could result in a degradation of performance in the corre-
sponding application when the prior does not hold. In this
work, we relax the requirement of this hypothesis by includ-
ing a learning module. We propose a Time Graph Neural
Network (TimeGNN) for the recovery of time-varying graph
signals. Our algorithm uses an encoder-decoder architec-
ture with a specialized loss composed of a mean squared
error function and a Sobolev smoothness operator.TimeGNN
shows competitive performance against previous methods in
real datasets.

Index Terms— Graph neural networks, graph signal pro-
cessing, time-varying graph signal, recovery of signals

1. INTRODUCTION

Recent advances in information technology have led to an ac-
cumulation of large amounts of unstructured data. The repre-
sentation and analysis of such irregular and complex data is
a daunting task. Graph Signal Processing (GSP) and Graph
Neural Networks (GNNs) are emerging research fields that
have proved to be helpful for such tasks in recent years [1–6].
In GSP and GNNs, the data is modeled as signals or vectors
on a set of nodes of a graph, incorporating both the feature
information and the underlying structure of the data. GSP
and GNNs thus provide new perspectives on data handling,
connecting machine learning and signal processing [7], with
profound impact in various fields like semi-supervised learn-
ing [3], computer vision [8, 9], and social media [10].

The sampling and reconstruction of graph signals are
fundamental tasks that have recently attracted considerable
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attention from the signal processing and machine learning
communities [1, 11–18]. Nevertheless, the problem of time-
varying graph signal reconstruction1 has not been widely
explored [18]. The reconstruction of time-varying graph sig-
nals has significant applications in data recovery in sensor
networks, forecasting of time-series, and infectious disease
prediction [18–22]. Previous studies have extended the def-
inition of smooth signals from static to time-varying graph
signals [23]. Similarly, other works have focused on the rate
of convergence of the optimization methods used to solve
the reconstruction problem [18, 20]. However, the success of
these optimization-based methods requires appropriate prior
assumptions about the underlying time-varying graph signals,
which could be inflexible for real-world applications.

In this work, we propose the Time Graph Neural Net-
work (TimeGNN) model to recover time-varying graph sig-
nals. TimeGNN encodes the time series of each node in latent
vectors. Therefore, these embedded representations are de-
coded to recover the original time-varying graph signal. Our
architecture comprises: 1) a cascade of Chebyshev graph con-
volutions [2] with increasing order and 2) linear combination
layers. Our algorithm considers spatio-temporal information
using: 1) graph convolutions [2] and 2) a specialized loss
function composed of a Mean Squared Error (MSE) term and
a Sobolev smoothness operator [18]. TimeGNN shows com-
petitive performance against previous methods in real-world
datasets of time-varying graph signals.

The main contributions of our work are summarized as
follows: 1) we exploit GNNs to recover time-varying graph
signals from their samples, 2) we relax the strict prior as-
sumption of previous methods by including some learnable
modules in TimeGNN, and 3) we perform experimental eval-
uations on natural and artificial data, and compare TimeGNN
to four methods of the literature. The rest of the paper
is organized as follows. Section 2 introduces the proposed
TimeGNN model. Section 3 presents the experimental frame-
work and results. Finally, Section 4 shows the conclusions.

1One can think of the recovery of time-varying graph signals as a matrix
completion task where each column (or row) is associated with time, and
each row (or column) is associated with a vertex of a graph.IC
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2. TIME GRAPH NEURAL NETWORK

2.1. Preliminaries

We represent a graph with G = (V, E ,A), where V is the set
of nodes with |V| = N , E ⊆ {(i, j) | i, j ∈ V and i ̸= j} is
the set of edges, and A ∈ RN×N is the weighted adjacency
matrix with A(i, j) = ai,j ∈ R+ if (i, j) ∈ E and 0 other-
wise. In this work, we consider connected, undirected, and
weighted graphs. We also define the symmetrized Laplacian
as L = I − D− 1

2AD− 1
2 , where D = diag(A1) is the di-

agonal degree matrix of the graph. Finally, a node-indexed
real-valued graph signal is a function x : V → R, so that we
can represent a one-dimensional graph signal as x ∈ RN .

2.2. Reconstruction of Time-varying Graph Signals

The sampling and recovery of graph signals are crucial tasks
in GSP [11, 12]. Several studies have used the smoothness
assumption to address the sampling and recovery problems
for static graph signals. The notion of global smoothness was
formalized using the discrete p-Dirichlet form [24] given by:

Sp(x) =
1

p

∑
i∈V

∑
j∈Ni

A(i, j)[x(j)− x(i)]2


p
2

, (1)

where Ni is the set of neighbors of node i. When p = 2, we
have S2(x) which is known as the graph Laplacian quadratic
form S2(x) =

∑
(i,j)∈E A(i, j)[x(j)− x(i)]2 = xTLx [24].

For time-varying graph signals, some studies assumed
that the temporal differences of time-varying graph signals
are smooth [18, 23]. Let X = [x1,x2, . . . ,xM ] be a time-
varying graph signal, where xs ∈ RN is a graph signal in G
at time s. Qiu et al. [23] defined the smoothness of X as:

S2(X) =

M∑
s=1

xT
sLxs = tr(XTLX). (2)

S2(X) only computes the summation of the individual
smoothness of each graph signal xs ∀ s ∈ {1, 2, . . . ,M},
so we do not consider any temporal information. To address
this problem, we can define the temporal difference operator
Dh as follows [23]:

Dh =


−1
1 −1

1
. . .
. . . −1

1

 ∈ RM×(M−1). (3)

Therefore, we have that XDh = [x2−x1,x3−x2, . . . ,xM−
xM−1]. Some studies [18, 23] have found that S2(XDh)
shows better smoothness properties than S2(X) in real-world
time-varying data, i.e., xs − xs−1 exhibits smoothness in the
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Fig. 1. Cascade of Chebyshev graph convolutions.

graph even if xs is not smooth across the graph. Qiu et al. [23]
used S2(XDh) to present a Time-varying Graph Signal Re-
construction (TGSR) method as follows:

min
X̃

1

2
∥J ◦ X̃−Y∥2F +

υ

2
tr
(
(X̃Dh)

TLX̃Dh

)
, (4)

where J ∈ {0, 1}N×M is a sampling matrix, ◦ is the
Hadamard product between matrices, υ is a regularization
parameter, and Y ∈ RN×M is the matrix of observed values.
The optimization problem in (4) has some limitations: 1)
the solution of (4) could lose performance if the real-world
dataset does not satisfy the smoothness prior assumption, and
2) (4) is solved with a conjugate gradient method in [23],
which has a slow convergence rate because S2(X̃Dh) is
ill-conditioned [18]. Our algorithm relaxes the smoothness
assumption by introducing a learnable module. Similarly,
TimeGNN is fast once the GNN parameters are learned.

2.3. Graph Neural Network Architecture

TimeGNN is based on the Chebyshev spectral graph convolu-
tional operator defined by Defferrard et al. [2], whose propa-
gation rule is given as follows:

X′ =
K∑

k=1

Z(k)W(k), (5)

where W(k) is the kth matrix of trainable parameters, Z(k)

is computed recursively as Z(1) = X, Z(2) = L̂X, Z(k) =
2L̂Z(k−1)−Z(k−2), and L̂ = 2L

λmax
−I. We use the filtering op-

eration in (5) to propose a new convolutional layer composed
of: 1) a cascade of Chebyshev graph filters, and 2) a linear
combination layer as in Fig. 1. More precisely, we define the
propagation rule of each layer of TimeGNN as follows:

H(l+1) =

α∑
ρ=1

µ(l)
ρ

ρ∑
k=1

Z(k)W
(k)
l,ρ , (6)

where H(l+1) is the output of layer l+1, α is a hyperparame-
ter, µ(l)

ρ is a learnable parameter, Z(k) is recursively computed
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Fig. 2. Pipeline of our Time Graph Neural Network (TimeGNN) for the recovery of time-varying graph signals.

as in (5), and W
(k)
l,ρ is the kth learnable matrix in the layer l for

the branch ρ. The architecture of TimeGNN is given by stack-
ing n cascade layers as in (6), where the input is (J ◦X)Dh.
Finally, our loss function is such that:

L =
1

|S|
∑

(i,j)∈S

(X(i, j)− X̄(i, j))2

+λ tr
(
(X̄Dh)

T(L+ ϵI)X̄Dh

)
, (7)

where X̄ is the reconstructed graph signal, S is the training
set, with S a subset of the spatio-temporal sampled indexes
given by J, and ϵ ∈ R+ is a hyperparameter. The term
tr
(
(X̄Dh)

T(L+ ϵI)X̄Dh

)
is the Sobolev smoothness [18].

We can think of TimeGNN as an encoder-decoder net-
work with a loss function given by an MSE term plus
a Sobolev smoothness regularization. The first layers of
TimeGNN encode the term (J ◦X)Dh to an H-dimensional
latent vector that is then decoded with the final layer. As a
result, we capture the spatio-temporal information using the
GNN, the temporal encoding-decoding structure, and the reg-
ularization term tr

(
(X̄Dh)

T(L+ ϵI)X̄Dh

)
where we use

the temporal operator Dh. The parameter λ in (7) weighs the
importance of the regularization term against the MSE loss.
Figure 2 shows the pipeline of our TimeGNN applied to a
graph of the sea surface temperature in the Pacific Ocean.

3. EXPERIMENTS AND RESULTS

We compare TimeGNN with Graph Convolutional Net-
works (GCN) [3], Natural Neighbor Interpolation (NNI) [25],
TGSR [23], and Time-varying Graph signal Reconstruction
via Sobolev Smoothness (GraphTRSS) [18].

3.1. Implementation Details

We implement TimeGNN and GCN using PyTorch and PyG
[26]. We define the space search for the hyperparameters tun-
ing of TimeGNN as follows: 1) number of layers {1, 2, 3}, 2)
hidden units {2, 3, . . . , 10}, 3) learning rate [0.005, 0.05], 4)
weight decay [1e − 5, 1e − 3], 5) λ ∈ [1e − 6, 1e − 3], 6)

α ∈ {2, 3, 4}. Similarly, we set the following hyperparame-
ters: 1) ϵ = 0.05, and 2) the number of epochs to 5, 000. The
graphs are constructed based on the coordinate locations of
the nodes in each dataset with a k-Nearest Neighbors (k-NN)
algorithm as in [18]. NNI, TGRS, and GraphTRSS are im-
plemented using the code in [18] in MATLAB® 2022b. The
hyperparameters of the baseline methods are optimized fol-
lowing the same strategy as with TimeGNN.

3.2. Datasets

Synthetic Graph and Signals: We use the synthetic graph
dataset developed in [23]. The graph contains 100 nodes
randomly generated from a uniform distribution in a 100 ×
100 square area using k-NN. The graph signals are generated
with the recursive function xt = xt−1 + L−1/2ft, where x1

is a low frequency graph signal with energy 104, L−1/2 =
UΛ−1/2UT, where U is the matrix of eigenvectors, Λ =
diag(λ1, λ2, . . . , λN ) is the matrix of eigenvalues, Λ−1/2 =

diag(0, λ
−1/2
2 , . . . , λ

−1/2
N ), and ft is an i.i.d. Gaussian signal.

PM 2.5 Concentration: We use the daily mean concentration
of PM 2.5 in the air in California, USA2. Data were collected
from 93 sensors over 220 days in 2015.
Sea-surface Temperature: We use the sea-surface temper-
ature data, which are measured monthly and released by the
NOAA PSL3. We use a sample of 100 locations in the Pacific
Ocean over a duration of 600 months.
Intel Lab Data: We use the data captured by the 54 sensors
deployed at the Intel Berkeley Research Laboratory 4. The
data consists of temperature readings between February 28th
and April 5th, 2004.

3.3. Evaluation Metrics

We use the Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE)
metrics, as defined in [18], to evaluate our algorithm.

2https://www.epa.gov/outdoor-air-quality-data
3https://psl.noaa.gov
4http://db.csail.mit.edu/labdata/labdata.html
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Fig. 3. Comparison of TimeGNN to baseline methods in one synthetic and three real-world datasets (RMSE).

Table 1. Quantitative comparison of TimeGNN with the baselines in all datasets using the average error metrics.

Method Synthetic Graph Signals PM2.5 Concentration Sea-surface Temperature Intel Lab Data
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

GCN (Kipf and Welling [3]) 11.296 8.446 1.123 4.657 2.959 0.550 3.766 2.922 0.548 2.998 2.327 0.120
NNI (Kiani et al. [25]) 0.775 0.436 0.255 4.944 2.956 0.593 0.772 0.561 0.067 0.661 0.291 0.015
GraphTRSS (Giraldo et al. [18]) 0.260 0.256 0.178 3.824 2.204 0.377 0.357 0.260 0.029 0.056 0.023 0.001
TGSR (Qiu et al. [23]) 0.263 0.193 0.144 3.898 2.279 0.394 0.360 0.263 0.030 0.069 0.037 0.002

TimeGNN (ours) 0.452 0.323 0.226 3.809 2.172 0.362 0.275 0.203 0.023 0.156 0.095 0.005

The best and second-best performing methods on each dataset are shown in red and blue, respectively.

3.4. Experiments

We construct the graphs using k-NN with the coordinate
locations of the nodes in each dataset with a Gaussian ker-
nel as in [18]. We follow a random sampling strategy in
all experiments. Therefore, we compute the reconstruction
error metrics on the non-sampled vertices for a set of sam-
pling densities. We evaluate all the methods with a Monte
Carlo cross-validation with 50 repetitions for each sampling
density. For the synthetic data, k = 5 in the k-NN, and
the sampling densities are given by {0.1, 0.2, . . . , 0.9}. For
PM2.5 concentration, k = 5 and the sampling densities
are {0.1, 0.15, 0.2, . . . , 0.45}. For the sea-surface tempera-
ture, we keep k = 5 and the sampling densities are set to
{0.1, 0.2, . . . , 0.9}. For Intel Lab data, we set k = 3 and the
sampling densities at {0.1, 0.3, 0.5, 0.7}.

3.5. Results and Discussion

Figure 3 shows the performance of TimeGNN against the
previous methods for all datasets using RMSE. Furthermore,
Table 1 shows the quantitative comparisons using the aver-
ages of all metrics along the set of sampling densities. We
do not plot the performance of GCN in Fig. 3 because this
network performs considerably worse than the other meth-
ods, as shown in Table 1. GCN was implemented using the
same input and loss function as in TimeGNN. Our algorithm
outperforms previous methods for several metrics in PM2.5
concentration and sea-surface temperature datasets. The syn-
thetic data were created to satisfy the conditions of smoothly
evolving graph signals (Definition 1 in [23]), while here, we
relaxed that prior assumption by adding a trainable GNN
module. Therefore, TGRS and GraphTRSS are better suited

for that artificial dataset, as shown in Fig. 3 and Table 1.
Similarly, the Intel Lab dataset is highly smooth. Some of
the reasons behind our model’s success in real-world datasets
are: 1) its ability to capture spatio-temporal information, 2)
its encoding-decoding structure, and 3) its powerful learning
module given by a cascade of Chebyshev graph convolutions.

4. CONCLUSIONS

In this paper, we introduced a GNN architecture named
TimeGNN for the recovery of time-varying graph signals
from their samples. Similarly, we proposed a new convo-
lutional layer composed of a cascade of Chebyshev graph
filters. TimeGNN includes a learning module that relaxes
the requirement of strict smoothness assumptions. We found
that our framework shows competitive performance against
several approaches in the literature for reconstructing graph
signals, delivering better performance in real datasets. Our
algorithm could help solve problems like recovering missing
data from sensor networks, forecasting weather conditions,
intelligent transportation systems, and many others.

For future work, we plan to extend our framework to other
graph filters like transformers [27], and alternative compact
operators as introduced in [28]. Similarly, we will explore
TimeGNN in highly dynamic 4D real datasets [29, 30].
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