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ABSTRACT

The presence of internal waves (IWs) in the ocean alters the isotropic properties of sound speed

profiles (SSPs) in the water column. Changes in the SSPs affect underwater acoustics since most

of the energy is dissipated into the seabed due to the downward refraction of sound waves. In

consequence, variations in the SSP must be considered when modeling acoustic propagation in

the ocean. Regularly, empirical orthogonal functions (EOFs) are employed to model and represent

SSPs using a linear combination of basis functions that capture the sound speed variability. A

different approach is to use dictionary learning (DL) to obtain a learned dictionary (LD) that gen-

erates a non-orthogonal set of basis functions (atoms) that generate a better sparse representation.

In this paper, the performance of EOFs and LDs are evaluated for sparse representation of SSPs

affected by the passing of IWs. In addition, an LD-based supervised framework is presented for

SSP classification and is compared with classical learning models. The algorithms presented in

this work are trained and tested on data collected from the shallow water experiment 2006. Re-

sults show that LDs yield lower reconstruction error than EOFs when using the same number of

basis. In addition, overcomplete LDs demonstrate to be a robust method to classify SSPs during

low, medium, and high IW activity, reporting comparable and sometimes higher accuracy than

standard supervised classification methods.
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1. Introduction

Internal waves (IWs) are caused by differences in the temperature of water in the ocean. The

presence of such anomalies in the seawater creates time-dependent and spatial variations in the

sound speed profiles (SSPs) and affects underwater sound propagation due to the downward re-

fraction of sound waves (Katsnelson et al. 2021; Rouseff 2001). Usually, sparse representations of

SSPs via empirical orthogonal functions (EOFs) are used to support inversion algorithms for sound

speed (North 1984). However, effective sparse representation of SSPs can be compromised due

to high perturbations in the water column. Recently, Bianco and Gerstoft (2017) have shown that

dictionary learning (DL), an unsupervised machine learning method, is better suited to sparsely

represent SSPs. In this paper, DL and EOFs are used to model and classify measured SSPs affected

by IWs during the Shallow Water Experiment 2006 (SW06).

Internal waves can be thought of as 4-dimensional phenomena due to their effects in both 3D

spatial (x, y, z) and temporal (t) domains. Characterization of the behavior and statistical prop-

erties of IWs have been carried out using 3D mapping techniques (Badiey et al. 2013, 2016),

resulting in the general understanding of the regimens in the propagation of IWs. Several studies

have shown that internal waves create significant variability in the speed of sound, affecting how

sound propagates through the ocean, due to the fluctuations in the acoustic modal behavior (Flatté

and Tappert 1975; Rouseff 2001; Helfrich and Melville 2006). The variation due to the passing of

internal wave packets affects the propagation and reception of acoustic signals underwater because

of drastic changes in the acoustic channel (Huang et al. 2008).

EOF analysis has been commonly used to represent SSPs as a linear combination of few orthog-

onal basis functions that describe the statistics of the sound speed uncertainty (Xu and Schmidt

2006; Abiva et al. 2019). Those resulting sparse representations are employed to aid inversion
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procedures (Huang et al. 2008), However, strong variations in the SSPs occurring due to the pass-

ing of IWs yield a dramatic decay in the reconstruction accuracy of SSPs using EOFs (Sun and

Zhao 2020; Roundy 2015). As a result, different approaches such as 3D dimensional modeling

(Badiey et al. 2013) or learning methods (Jain and Ali 2006; Bianco and Gerstoft 2017; Sun and

Zhao 2020) have been studied for SSPs modeling and reconstruction.

Dictionary learning, an unsupervised learning method, aims to find a set of non-orthogonal ba-

sis functions (referred to as atoms) that can sparsely reconstruct signals (Zhang et al. 2015). DL

framework has been extensively applied to dimensionality reduction (Tošić and Frossard 2011),

pattern recognition (Wright et al. 2010) and sparse representation modeling (Rubinstein et al.

2010). Recent studies have been conducted to sparsely represent SSPs using learned dictionaries

(LDs) (Kuo and Kiang 2020). Bianco and Gerstoft (2017) showed LDs are well-suited to gen-

erate sparse representations of SSPs using few basis functions. Sun and Zhao (2020) tested the

effectiveness of LDs using HYCOM data and supported the results found by Bianco and Gerstoft

(2017), concluding that non-orthogonal atoms allow for more flexible dictionaries and produce

better sparse representations of SSPs.

Due to the relaxation of the orthogonal requirements and the possibility of generating optimal

sparse representations, LDs have also been applied to clustering (Sprechmann and Sapiro 2010)

and classification tasks (Tang et al. 2019; Suo et al. 2014). In this approach, specific dictionaries

are trained to retain most of the meaningful information of each class. Then, testing data are clas-

sified by selecting the dictionary yielding the sparse representation that generates the lowest error

(Ramirez et al. 2010; Zhao et al. 2018). Here, classification via dictionary learning is extended

to label data containing SSPs affected by low, medium, and high IW activity collected during the

SW06 experiment.
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In this paper, there are two main contributions. First, a comparison of the ability to sparsely

model SSPs with few basis functions is made between EOFs, complete LDs and overcomplete

LDs. Second, a DL-based SSPs classification setting is proposed and assessed via LD. The

proposed framework is compared with standard classification algorithms such as support vector

machine (SVM) and k-nearest neighbors (KNN) classifier. The dictionary atoms are calculated

with online dictionary learning, a stochastic gradient-descent approach introduced by Mairal et al.

(2009), while sparse coding is performed using the orthogonal matching pursuit (OMP) algorithm

and Lasso convex optimization. This paper is structured as follows, in Sec. 2 preliminary concepts

and notations are presented. Section 3 introduces the data collected during the SW06 experi-

ment used in this paper. Both EOF analysis and dictionary learning frameworks are introduced in

Sec. 4, while results for modeling and classification of SSPs are shown in Sec. 5, followed by the

conclusions in Sec. 6.

2. Preliminaries and notation

In this paper matrices are denoted in upper case bold, vectors in lower case bold, and scalars in

lower case italic. The `p-norm of a vector or matrix is represented as ‖ · ‖p, with 1 ≤ p < ∞.

For any X, if p = 2, ‖ · ‖p takes the name of Frobenius norm ‖·‖F . Notice, these p-norms are

entry-wise rather than the induced norms.

Any square diagonalizable matrix X ∈ Rn×n can be factorized into its canonical form via eigen-

decomposition satisfying the linear equation X = QΛQT . Where Q = [q1, . . . ,qn] ∈ Rn×n is the

matrix containing eigenvectors and Λ = diag(λ1, . . . λn) ∈ Rn×n is a diagonal matrix with the set

of eigenvalues. Similarly, any rectangular diagonizable matrix X ∈ Rm×n accepts the factoriza-

tion X = UΣVT via singular value decomposition (SVD) (Stewart 1993). Where U ∈ Rm×m and

V ∈ Rn×n are the matrices of left and right singular vectors, respectively, and Σ ∈ Rm×n contains
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the singular values. For the cases XXT and XTX, the diagonal matrix of the non-zero eigenvalues

is related to the singular values of X, such that Λ = Σ2 = ΣΣT = ΣTΣ.

3. Experimental data

The raw data introduced in this work were collected during the Shallow Water acoustic and

oceanographic Experiment 2006 (SW06) performed off the coast of New Jersey from mid-July

to mid-September in 2006 (Tang et al. 2007; Newhall et al. 2007). During the experiment, 62

acoustic and oceanographic moorings were deployed in a ”T” geometry as sketched in Fig. 1.

This ”T” mooring conformation measured data on an almost constant bathymetry of 80 m in the

along-shelf, and a bathymetry across-shelf starting at 600 m going shoreward to 60 m depth. The

intersection of the two paths in the ”T” was populated with a cluster of 16 moorings to measure

the 3D environment. Most of the environmental moorings in the area consisted of temperature,

conductivity, and pressure sensors that measured the physical oceanography in the water column.

This paper uses data from mooring SW30, deployed at 39° 01.501’ N, 73° 04.007’ W, to study

the time-evolving SSPs via dictionary learning. The SW30 station was part of the 16 mooring

cluster located at the intersection of the ”T” geometry deployed in the SW06 experiment. The

location of mooring SW30 inside the cluster is marked with a white star in Fig. 1. The SW30

station had 11 unevenly spaced sensors collecting conductivity and temperature profiles from 14

to 83.3 m in a water column with seafloor at 86 m depth. For the present study, temperature,

conductivity, and pressure data were extracted from 01 Aug 00:00:00 to 05 Sep 16:00:00 UTC

2006 at SW30 location.

During the SW06 experiment, IW activities were reported initiating at the shelf break and prop-

agating toward the shore after 17 Aug 2006 (Badiey et al. 2013). The transition of internal waves

over the area caused highly anisotropic SSPs as the ones depicted in Fig. 2(a), where temperature
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profiles exhibited significant variations across the water column and caused notable changes in

both the acoustic channel and sound transmission.

The study of IWs is a difficult task due to the spatial resolution of the measurements in experi-

ment areas (Badiey et al. 2016). In this paper, only temporal IW anomalies are used for the analy-

ses and applications presented in subsequent sections. As an example, the temporal displacement

of an internal wave event spotted from 17 Aug 21:00:00 to 18 Aug 10:00:00 UTC 2006 at SW30

location is presented in Fig. 2. The temperature variability across the water column produced by

the passing of IWs provokes changes in the acoustic duct and degrades the acoustic propagation

underwater. In Fig. 2(a), the beginning of each stage (approaching, on-set, propagation and tail) of

the IW event is marked with a dashed line in Fig. 2(a) and labeled with a geotime tgi (i.e. tg0 , tg1 ,

tg2 , and tg3). These abrupt changes in temperature alter the isotropic properties of the SSPs and

produce drastic variations in the SSPs as shown in Figs. 2(c)-(d). Figure 2(c) shows the mean µyi

and standard deviation σyi values of the SSPs over the entire time window in panel (a), whereas

Fig. 2(d) depicts individual SSPs at geotimes tgi , with colors matching the vertical lines in part (a).

An additional consequence of the IW passing is the instability of vertical displacements that

affects acoustic propagation. The periodicity at which a vertically displaced small volume of water

oscillates is measured by the Buoyancy frequency N in s−1. The oscillations in the water column

are expressed as the squared of the Buoyancy frequency N2 to obtain real values, as shown in

Fig. 2(b). The time interval has been divided into four sections, each categorized by the regimens

(1)-(4) describing the IW behavior. These regimens are (1) the approaching, (2) the on-set, (3)

the propagation, and (4) the tale of the IW event. The square Buoyancy frequency N2 is given

by g2ρβdSA−αdΘ
dP

, where g is the gravitational acceleration in m/s2, ρ is the density in kg/m3, SA

is the absolute salinity in g/kg, Θ is the conservative temperature in Celsius, P is the pressure in

Pascals, and β and α are the saline contraction and thermal expansion coefficients evaluated at the
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average values of SA, Θ and P . The mean value of N2 for each of the four regimens indicated

in panel (b) is shown in Fig. 2(e). The behavior of the Buoyancy frequency clearly shows the

magnitude of oscillations at different depths during the IW passing.

The sound speed profiles used in this work were derived from environmental measurements at

mooring SW30. The temperature, conductivity, and pressure values collected at mooring SW30

were employed to generate water salinity profiles using the equation introduced by Fofonoff and

Millard Jr (1983). Then, a discretized version of SSPs in terms of depth is obtained using Eq. 1,

which is referred to as the nine-term equation derived by Mackenzie (1981). The nine-term equa-

tion utilizes depth, temperature, and salinity profiles to compute discrete samples of SSPs at times

ti, with i = 0, . . . , n as

cz = 1448.96 + 4.591T − 5.304× 10−2T 2 + 2.374× 10−4T 3 + 1.340(S − 35)

+ 1.630× 10−2Z + 1.675× 10−7Z2 − 1.025× 10−2T (S − 35)− 7.139× 10−13TZ3,

(1)

where cz is the discretized sound speed profile in m/s, T is the temperature in Celsius, Z is the

depth in meters, and S is the salinity ratio PSS-78 (Lewis and Perkin 1981). Even though the

salinity ratio is a dimensionless value is commonly reported as ppt (parts per thousand).

The computed SSPs were structured as a group of sample vectors yi such that Y = [y1, . . . yn] ∈

Rm×n, with m discrete depths points (features) and n SSP samples in time. SSP samples were

generated every 15 s during the entire period. To obtain a better representation of the sound speed

in the water column, shape-preserving piecewise cubic interpolation was used along the depths

from 14 m to 40 m with a spacing of 0.5 m, yielding m = 53 depth-dependent features. The above

resulted in n = 205, 547 SSP samples for the entire dataset (01 Aug 00:00:00 to 05 Sep 16:00:00

2006).
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As shown in Fig. 2 and 3, internal waves events can be categorized as phenomena with low,

medium, and high effects in the water column by considering the amplitude of the internal wave

(variation of temperature versus depth). To distinguish between IW activities with low, medium,

and high incidence, the extracted SSPs were labeled in four different classes (1)-(4), as detailed

in Table 1. These resulting labels serve for the supervised framework presented in the following

sections. The classes were inferred via k-medoids clustering with Euclidean distance as the mea-

suring metric (Park and Jun 2009). This approach is more robust to noise and outliers as compared

to k-means because it minimizes a sum of pairwise dissimilarities instead of a sum of squared

Euclidean distances. The clustering strategy is composed of two steps, the build-step, and the

swap-step. In the build-step, each of k clusters is associated with a potential medoid, while in

swap-step, each point is tested as a potential medoid by checking the sum of within-cluster dis-

tances to define a new medoid. At each iteration, every point is then assigned to the cluster with

the closest medoid until convergence.

The aforementioned process led to a full-labeled dataset with four distinguishable subsets Yi,

one per class (i) ∈ [1, . . . 4]. Out of the total number of samples in the dataset (n = 205, 547).

Class (1) has n = 32, 992 SSPs, class (2) n = 59, 630 samples, class (3) n = 67, 536 SSPs,

whereas class (4) n = 45, 389 samples. The distribution of classes can be observed in Fig. 4. Basic

descriptive statistics were calculated for each subset, as shown in Table 1. The mean (µYi
) and the

standard deviation (σYi
) of all elements in class (i) were computed as µYi

= 1
mn

∑m
i=1

∑n
j=1 yij

and σYi
=
√

1
(n−1)(m−1)

∑m
i=1

∑n
j=1 (yij − µYi

)2, respectively.

The values of µYi
and σYi

for each class subset provide a general view of the magnitude and

variability of the SSPs within class (i). As shown in Table 1 and Fig. 3, those classes with higher

µYi
and σYi

present SSPs with the larger fluctuations in depth (classes (1)-(4)), while classes with

lower values of µYi
and σYi

exhibit less variable SSPs (classes (1)-(3)).
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The entire labeled dataset presented in Fig. 3(a) was split into training/testing sets to be used

for supervised classification of SSPs. Uniform random sampling was used to split the data, where

80% of data were destined for training, while the remaining 20% for testing, and resulted in

164,438 and 41,109 samples, respectively. The training data are meant to train the classification

algorithms, while the testing data are used to perform classification and measure the performance

of each model. The distribution of training and testing sets for each class is shown in Fig. 4.

4. Sparse representation of SSPs

Sparse representation aims to describe a dataset as a linear combination of few elements (basis)

(Rubinstein et al. 2010). These elements capture the relevant statistical information that best

describes the data and are combined with a matrix of few non-zero coefficients calculated by

imposing an `p constraint that controls the sparsity level or non-zero elements (Zhang et al. 2015;

Wright et al. 2010). In ocean acoustics, SSPs inversions are often regularized by considering a

sparse representation of SSPs using EOF analysis (Gerstoft and Gingras 1996; Huang et al. 2008)

or DL (Bianco and Gerstoft 2017). This section introduces a method to implement empirical

orthogonal function analysis and dictionary learning to represent SSPs as a linear combination of

basis functions using measured data from the SW06 experiment [see Sec. 3].

a. Empirical orthogonal functions (EOF)

EOF analysis is employed to reduce the dimensionality and identify meaningful underlying fea-

tures from a dataset. In statistics, EOF analysis is also known as principal component analysis

(PCA) and is described as the way of transforming correlated variables into a smaller number of

uncorrelated variables (Abdi and Williams 2010). EOF analysis can simplify a spatial-temporal

dataset by transforming it to spatial patterns of variability and temporal projections of these pat-
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terns (Weare et al. 1976). These spatial patterns are called EOFs and can be thought of as basis

functions in terms of variance. The associated temporal projections are the principal component

scores (ECs) and are the temporal coefficients of the EOF patterns.

EOFs are computed via an SVD in which a dataset is decomposed in terms of orthogonal basis

functions to generate a compressed version of the data. Here, EOF analysis is carried out on a

collection of SSPs Y = [y1, . . . , yn] ∈ Rm×n with m features corresponding to depths and n

time samples. Initially, the dataset Y is centered by removing time-mean value across the rows to

capture only the variance of each depth feature. Subsequently, an SVD is applied to the zero-mean

version of Y.

The SVD of Y is given by Y = UΣVT . Since Y is a centered matrix with zero mean, the

covariance matrix CY can be expressed as CY = 1
m−1

YYT = 1
m−1

(UΣVT )(UΣVT )T = U Σ2

m−1
UT .

The last expression is analogous to eigendecomposition, where the terms U and Σ2

m−1
are the non-

zero eigenvectors and eigenvalues of CY respectively. This formulation yields the definition of

EOFs. Let Q be the matrix whose columns contain the EOFs that represent the eigenvectors of the

matrix YYT , such that:

YYT = UΣ2UT = QΛQT (2)

where Q = [q1, . . . ,qm] ∈ Rm×m are the eigenvectors (EOFs) of YYT , and Λ = Σ2 ∈ Rm×m

shows the variances of the respective EOF qi, with i = 1, . . . ,m.

Since the EOFs in Q are ordered from highest to lowest variance, dimension reduction of Y

is addressed using only the first k ≤ m leading-order EOFs (denoted by columns of Q). This

new low-dimensional space retains meaningful properties from the original data. Typically, k =

5 EOFs can explain most of the variance in Y (Bianco and Gerstoft 2017). In the same way,

EOFs are also used for data compression, using the basis functions in the dictionary Q. A sparse
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representation of Y is achieved by expressing the dataset as the product of the EOFs in Q and a

coefficient matrix C such that

Ŷ = QC, (3)

where Ŷ is the sparse representation of the original dataset Y, and C = [c1, . . . , cn] ∈ Rm×n.

A full representation of individual SSPs yi can be obtained using ŷi = Qci, i = 1, . . . n. A

sparse representation ŷi is computed by using the k leading-order EOFs such that ŷi = Qkci, with

Qk ∈ Rm×k and a coefficient vector ci ∈ Rk. Here, a dictionary is defined as a matrix whose

columns comprises of basis functions that retrieve meaningful information from a dataset. In

consequence, Qk can be thought of as a dictionary containing the first k orthogonal basis functions

(EOFs).

b. Sparse coding

Any dataset Y ∈ Rm×n containing m features and n samples can be successfully reconstructed

with acceptable error ε utilizing a combination of basis vectors in a dictionary D ∈ Rm×k, where

k represents number of basis functions contained by the dictionary D. If k < m the dictionary

is under-complete, if k = m the dictionary is referred to as complete, whereas if k > m the

dictionary is considered overcomplete. Data described with sparse coding are assumed to be a

linear combination of basis functions di ∈ Rm and sparse coding vectors ci ∈ Rk from the matrix

C ∈ Rk×n, responsible for defining the synthesis of the data using basis functions.

An optimal sparse solution of the coefficients ci such that i = 1, . . . , k can be obtained by solv-

ing an optimization scheme with an `0-norm constraint used to limit the number of non-zero entries

in the vector ci. The optimization problem with the `0 penalty is formulated as
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ĉi = arg min
ci∈Rk

‖yi − Dci‖2
2 subject to ‖ci‖0≤ nnz, (4)

where nnz is the number of non-zero elements in ci. The optimization problem in Eq. 4 yields

an exact solution. However, the `0-norm constraint brings in a non-convex and NP-hard prob-

lem whose solution is practically unreachable (Tošić and Frossard 2011; Ramirez et al. 2010).

Approximation algorithms exist to find a suboptimal solution for the NP-hard problem. Greedy

algorithms such as matching pursuit (MP) and orthogonal MP (OMP) (Mallat and Zhang 1993)

iteratively solve the non-convex problem imposed by the `0-norm constraint. These algorithms

find the suboptimal sparse coefficients ci that best approximate the global minimum. Note that the

optimization problem presented in Eq. 4 can also be convex-relaxed by changing the `0-norm term

to a `1 regularization term (Tošić and Frossard 2011); targeting the solution to

ĉi = arg min
ci∈Rk

‖yi − Dci‖2
2+λ‖ci‖1, (5)

where λ is the regularization parameter. The minimization in Eq. 5 can be solved efficiently as an

`1 least-squared problem using approaches based on convex relaxation such as basis pursuit (BP)

denoising (Chen et al. 2001) or Lasso (Hans 2009). In this approach, the exact number of non-zero

elements in the vector ci is not controlled by the `1 penalty as in the `0-norm case.

One good way to compare the performance between EOFs and LDs for sparse representation is

by fixing the number of non-zero coefficients nnz in ci. Since nnz is fixed, the sparse representation

of SSPs must be performed with the k-leading basis from EOFs and LDs. This fact permits focus

mostly on the ability of DL and EOF to capture relevant features in the data using very few basis

functions. As a result, the OMP algorithm with `0-norm is used to fairly compare the ability of

EOFs and DLs to sparsely represent SSPs.
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c. Dictionary learning (DL)

Contrary to EOF analysis in which the basis functions are computed via SVD, DL aims to find

a dictionary D = [d1, . . . ,dk] ∈ Rm×k that is learned directly from a dataset Y = [y1, . . . , yn] ∈

Rm×n. The basis functions contained in the columns of the dictionary D are called atoms, and

are not required to be orthogonal as in EOF analysis. With DL, each signal in Y can be sparsely

represented as a linear combination of few atoms. Sparse coding is used during the process to

guarantee the sparse representation of the dataset Y, where an `p constraint is imposed to the

sparse coefficients in C = [c1, . . . cn] ∈ Rk×n as shown in Sec. 4(b).

In this method, not only the dictionary atoms di but also the sparse coefficients ci have to si-

multaneously be learned from data. This problem is addressed using iterative algorithms which

solve for the coefficient matrix C and the dictionary D separately, and alternate the solutions until

convergence. Some efficient algorithms to learn dictionaries are the method of optimal directions

(MOD) (Engan et al. 1999) and the K-SVD algorithm (Aharon et al. 2006), based on k-means

clustering. Even tough K-SVD converges faster than MOD, K-SVD is computationally expensive

and relies in high memory use when the dataset Y is large. In this paper, the stochastic online

learning algorithm proposed by Mairal et al. (2009) is used to learn dictionaries. This optimiza-

tion strategy overcomes the computational issues of the K-SVD algorithm and can be applied to

large-scale contexts. Here, the learned dictionary D is chosen from a convex set C that contains

dictionaries whose columns are `2-normalized

C :=
{

D ∈ Rm×k s.t. ∀i = 1, . . . , k, dTi di ≤ 1
}
. (6)

The approach introduced by Mairal et al. (2009), uses stochastic gradient descent to update

the dictionary Dt sequentially by accessing one training sample at a time and using the previous

14
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0090.1. Brought to you by University of Delaware Library | Unauthenticated | Downloaded 09/08/22 10:16 PM UTC



dictionary Dt−1 as a warm restart during the iteration t, as shown in Algorithm 1. The optimization

problem to solve for D and C, using the `1 regularization term is formulated as,

〈
D̂, Ĉ

〉
= arg min

D∈C,C∈Rk×n

‖Y− DC‖2
2+λ‖C‖1 (7)

= arg min
D∈C,C∈Rk×n

1

n

n∑
i=1

(
‖yi − Dci‖2

2+λ‖ci‖1

)
where λ is the regularization parameter applied to the `1-norm constraint, n is the number of

samples in the dataset Y ∈ Rm×n, D is the dictionary in the convex set C, and C is the matrix with

the sparse coefficients. The convex optimization induced by the `1-norm can be solved efficiently

using the least-angle regression Lasso (LARS-Lasso).

d. Dictionary learning for SSP classification

A dictionary D ∈ Rm×k containing a set of k basis functions di ∈ Rm can retain much of the

statistical properties of a zero-mean dataset Y = [y1, . . . yi] ∈ Rm×n i ∈ [1, . . . n], composed by m

features and n samples. Similarly, a sparse coefficient vector ci ∈ Rk is employed to reconstruct

samples yi ∈ Y, with acceptable error ε, using a linear combination of the basis functions di [see

Sec. 4(b)-(c)]. Let Φ = {φ1, . . . , φl}lj=1 denote a set of labeled classes, then dictionary learning

can be extended to supervised classification tasks using a measuring metric R̂(y, ŷ) to classify

unlabeled testing data to a specific class φj . Here, R̂(·) is a metric to measure the dissimilarity

between the sample yi and the reconstruction ŷi = Dci. Usually, when using the OMP algorithm

for sparse coding the dissimilarity metric is defined as R̂ (y, ŷ) = ‖y − Dc‖2
2. However, exist

cases where the OMP algorithm can be unstable for classification tasks since small variations in

the input signal (i.e., sound speed profiles) yield irregular sparse codes that difficult classification

(Ramirez et al. 2010).
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Algorithm 1 Online dictionary learning. Adapted from (Mairal et al. 2009)
Require:

Y ∈ Rm×n ∼ ρ(y) : Training data

T : number of iterations

λ : sparsity level

D0 ∈ Rm×k : Initial dictionary

1: A0 ← 0, B0 ← 0 . Initialize A0 and B0

2: for t = 1 to T do

3: Draw yt from ρ(y)

4: Sparse Coding : via OMP or LARS-Lasso algorithm

ĉt = arg min
ct∈Rk

‖yt − Dt−1ct‖2
2 subject to ‖ct‖0≤ nnz

or

ĉt = arg min
ct∈Rk

‖yt − Dt−1ct‖2
2+λ‖ci‖1

5: At ← At−1 + ĉtĉTt . Update At using ĉt

6: Bi ← Bt−1 + ytĉ
T
t . Update Bt using ĉt and yi

7: Dictionary Update : compute Dt with Dt−1 as initialization

Dt = arg min
D∈C

1

t

t∑
i=1

(
‖yi − Dci‖2

2+λ‖ci‖1

)
= arg min

D∈C

1

t

(
1

2
Tr
(
DTDAt

)
− Tr

(
DTBt

))

8: end for

9: Return DT (learned dictionary)
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In consequence, for classification contexts, the `0-norm constraint is replaced by an `1-norm

regularization term to balance the trade-off between reconstruction error and sparsity, mitigating

in this way undesirable outcomes resulting from OMP. The use of `1-norm constraint leads to the

updated dissimilarity metric

R̂ (y, ŷ) = ‖y− Dc‖2
2+λ‖c‖1, (8)

which is in fact equal to Eq. 5. The terms in Eq. 8 takes into account the reconstruction error (‖y−

Dc‖2
2) and the complexity of the sparse decomposition (λ‖c‖1). In other words, the reconstruction

error measures the quality of the approximation while the complexity is measured by the `1-norm

of the optimal c.

Additionally, the minimization problem to learn dictionaries [refer to Eq. 7] is modified to train

the class-specific dictionaries, following the scheme introduced by Ramirez et al. (2010)

min
{Dj ,Cj}j=1,...,l

l∑
j=1

{
‖Yj − DjCj‖2

2+λ
k∑

j′=1

‖cjj′‖1

}
+

η
∑
j′ 6=j

‖DT
j′D

T
j ‖2
F ,

(9)

where j and j′ are sub-indices to denote elements from different classes φj′ , φj ∈ Φ, η is a regu-

larization parameter that penalizes the coherence between inter-class dictionaries Dj and Dj′ . The

last term in Eq. 9 promotes incoherence between the different class dictionaries by weakening the

ability of a dictionary Dj to classify correctly for other classes (j′) 6= (j). In other words, the

class-specific dictionary Dj for class (j) is trained using Eq. 7 while considering the coherence

with dictionaries from other classes at the same time (i.e. dictionaries Dj′ s.t. j′ 6= j). This op-

timization process yields class-specific dictionaries than are very different from each other and
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contains the most relevant information from the data. For further details, refer to Ramirez et al.

(2010).

The classification setting presented here is comprised by five steps, (1) dictionary training:

class-specific dictionaries Dj are trained using labeled data in each class φj , these class-specific

learned dictionaries are meant to capture meaningful information about data in the class φj . This

step is performed by combining Algorithm. 1 with Eq. 9. (2) Sparse coding on testing data:

sparse coding via LARS-Lasso algorithm with `1 is applied to each class-specific dictionary Dj

and testing data ytest
i to compute the sparse coefficients ctest

i . (3) Reconstruction: the jth class

dictionary Dj and set of sparse coefficients ctest
i are used to compute the ith reconstruction ŷji =

Djctest
i . As a result of this, a sparse representation ŷji is generated for each class φj ∈ Φ, j =

1, . . . , l. (4) Error calculation: dissimilarity between the each reconstruction ŷji and testing data

ytest
i is computed via R̂(ytest, ŷj

i). (5) Labeling: the testing dataset ytest
i is assigned to the class ĵ

that generates the lowest error R̂(·) as follows

ĵ = arg min
j=1,...,l

R̂
(

ytest
i , ŷj

i

)
, (10)

where ĵ is the class assigned to the unlabeled testing data sample ytest
i .

5. Results and Discussion

To illustrate the practicability of the methods presented in Sec. 4, both DL and EOF analysis are

applied to data collected at SW30 station during the SW06 experiment [Sec. 2]. In this section,

DL and EOFs are implemented to sparsely represent SSPs altered by the passing of IWs using

OMP algorithm for sparse coding. In addition, dictionary learning is later employed for SSP

classification following the scheme described in Sec. 4(d), using the LARS-Lasso algorithm for

sparse coding.
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The matrix Q ∈ Rm×k containing the EOFs is calculated via SVD [Eq. 2], and the learned dic-

tionary D ∈ Rm×k is obtained using the convex optimization shown in Eq. 7, via online dictionary

learning algorithm. Equation 7 is solved iteratively using the LARS algorithm with a tolerance

parameter δ = 1e−8, number of iterations Tmax = 2000, and regularization parameter λ = 1

(Pedregosa et al. 2011). Furthermore, sparse coding via OMP algorithm with Tmax = 2000 and

is used to compute the coefficient matrix C ∈ Rk×n to compare performance of EOFs and DL

[Sec. 5(a)]. The number of non-zero elements in ci, computed via OMP algorithm, are set to ex-

actly nnz = 3 non-zero coefficients. For classification, only DL is used and sparse coding is done

via LARS-Lasso algorithm with λ = 1, η = 1, Tmax = 2000, and δ = 1e−8 [see Sec. 5(b)].

a. Dictionary learning and EOF analysis for SSPs sparse representation

Due to the reward for sparsity and the absence of an orthogonality requirement, learned dictio-

naries (LD) can provide an alternative for a sparse representation that might yield more accurate

reconstructions than traditional methods, such as empirical orthogonal functions. Bianco and Ger-

stoft (2017) showed that LDs are suitable for representing sound speed profiles in underwater

environments, even outperforming EOFs with few basis functions.

In order to test the versatility of dictionary atoms in highly fluctuating environments such as

those with internal waves, both EOFs and DL are compared using a portion of data collected

from 17 Aug 00:00:00 to 18 Aug 23:59:59 UTC 2006 at SW30 station during high internal wave

activity. The data used to compared both methods are shown between the two black lines drawn in

Fig. 4(a), with n = 11520 SSPs sampled every 15 s measured at m = 53 different depths. EOFs

are calculated for k = 53 basis functions. Similarly, a complete dictionary with k = 53 and an

overcomplete dictionary with k = 100 are also computed. Sparse coding based on both EOFs and

LDs is performed using nnz = 3 non-zero coefficients via OMP algorithm. The resulting EOFs and

19
Accepted for publication in Journal of Atmospheric and Oceanic Technology. DOI 10.1175/JTECH-D-21-0090.1. Brought to you by University of Delaware Library | Unauthenticated | Downloaded 09/08/22 10:16 PM UTC



atoms from the LD are shown in Fig. 5. Each EOF/atom contains meaningful information about the

sound speed variability in terms of depth. Notice only the leading-order EOFs in Fig. 5(a) capture

the variability of SSPs, whereas the SSP variance is distributed on all atoms of both complete

[Fig. 5(b)] and overcomplete dictionary [Fig. 5(c)].

The explained variance ratio per EOF/atom is shown in Fig. 6 and complements the findings

presented in Fig. 5. Most of the variance of the SSPs is mainly concentrated in the first k = 5

leading-order EOFs [Fig. 6(a)], while in the case of LDs, the variance is shared among most of the

basis functions [Figs. 6(a)-(b)]. Given these findings, SSPs can be reconstructed effectively using

only the first leading-order EOFs, while in the case of LDs, the SSPs can be sparsely represented

by a sparse combination of almost any atom in the dictionary.

As stated in Sec. 4, the EOFs in the matrix Q are computed via SVD and have the property of

being normalized orthogonal basis functions. Conversely, atoms in a dictionary D are not required

to be orthogonal and are restricted to have unit `2-norm as stated in Eq. 6. Coherence among

column entries in Q and D can be calculated by computing the Gram matrix GQ = |QTQ| for

EOFs, and GD = |DTD| for LDs. For the EOF analysis, GQ = I, as shown in Fig. 7(a), because of

the orthogonal properties of EOFs. In contrast, atoms in the complete and overcomplete LDs are

not necessarily orthogonal, as displayed in Fig. 7(b)-(c).

The relaxation of the orthogonality requirement for LD atoms leads to more flexible dictionaries

and richer data representation. As a result of this, better compression of data is achieved using

dictionary learning. For both LDs and EOFs, increasing the number of basis functions k and non-

zero coefficients nnz yields lower representation errors. To study sparse representation of SSPs,

the OMP algorithm is used to compute sparse codes with 1 ≤ nnz ≤ 12 for EOFs and LDs. The

root-mean-squared error (RMSE) between the sparse representation Ŷi and the original data Y for

is measured as
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RMSE =

√∑n
i=1

∑m
j=1 (yij − ŷij)2

mn
, (11)

where m are depths, and n is the number of SSPs in Y. The RMSE values as a function of nnz,

shown in Fig. 8, provides a method for comparing the different sparse representations. It is clear

that for nnz ≥ 8, the EOFs, complete LD, and overcomplete LD give the almost the same RMSE.

For nnz < 7, however, the RMSE using EOFs is larger than for LDs, with the overcomplete LD

yielding the lowest RMSE for small values of nnz.

As an attempt to demonstrate the efficacy of both EOFs and LDs to sparsely represent SSPs, six

individual random samples yi are chosen from the dataset Y and are depicted with solid green lines

in Fig. 9. The sparse representation of SSPs ŷi of the six samples using the EOFs and the complete

LD, both with k = 53 and nnz = 3 are shown in Fig, 9. The dashed orange line presents the

time-mean value from the entire dataset, dotted blue line shows the SSP reconstructed using EOFs

whereas dash-dotted red line the reconstruction using LDs. In addition, the absolute error between

each real sample yi and the reconstruction ŷi in terms of depth was computed as |yi − ŷi|, and is

shown with color bars (to the right of each line plot) for both LD and EOFs. Dark colors in the

bars correspond to small errors, whereas light colors represent high absolute errors. For each case,

only with nnz = 3 basis functions both EOFs complete LD yield a good representation of SSPs.

Even with internal wave events passing by, complete LD provides a nearly perfect representation

of the six SSPs and outperforms conventional EOF analysis in the sparse reconstruction of sound

speed profiles.

b. Classification of SSPs via dictionary learning

In previous sections is mentioned that learned dictionaries D can retain meaningful information

from a dataset Y ∈ Rm×n that can or not be labeled in a class φj , j = 1, . . . , l. However, limitations
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for data classification arise when few nnz atoms are used due to the impossibility of representing

the variability in the data. Overcomplete dictionaries, due to their redundant nature, are suitable

for classification since they can perform data analysis with functions that are likely to match the

characteristics in different classes of data.

In this section, the dictionary learning framework is used to label sound speed profiles following

the classification setting introduced in Sec. 4(d). Complete and overcomplete LDs are employed

to classify data with low, medium, and high occurrence of internal wave events in the ocean. For

the best analysis, the data introduced in sec. 2 and Table 1 are used for to test the algorithms in

this section.

As the extracted SSPs from the experiment are not initially labeled, each SSP sample is labeled

into four classes (1)-(4) depending on the internal wave level using k-medoids algorithm. Once all

data samples are labeled, the effectiveness of LD atoms to infer a class-type for SSPs is studied

using the training/testing sets described in Sec. 3. Here, class-specific dictionaries are learned

using training data, to then, classify unlabeled SSPs samples in the testing set utilizing a dissimi-

larity metric R̂(y, ŷ), [Eq. 10]. The scheme introduced in Sec. 4(d) is implemented for complete

(k = 53) and overcomplete (k = 100 and k = 300) dictionaries. In addition, dictionary learning

is compared with support vector machine (SVM) and k-nearest neighbor (KNN) algorithms, both

commonly used for supervised classification tasks. KNN is implemented using k = 100 neighbors

and Euclidean distance as metric, whereas `2 regularized SVM with Gaussian kernel is employed

with a one-vs-the-rest configuration for multi-class classification.

The LDs models, KNN and SVM are trained using the training set with n = 164, 438 samples

and four different classes and then tested on the remaining n = 41, 109 unseen samples, whose

labels are inferred by the classification model. That is, the trained classifier h ∈ H aims to assign

a label to unlabeled data ytest
i , such that ĵi = h(ytest

i ), ĵ = 1, . . . , l. Here, the accuracy is reported
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for each model, and accounts for the number of correct classifications over the total number of

samples in the testing set. This metric is calculated as

accuracy =

∑n
i=1 1(ĵi = ji)

n
× 100% (12)

where 1(·) is the indicator function, n is the total number of samples in the dataset, ji is label or

ground truth for the ith sample, and ĵi is the inferred class for the ith SSP, such that ĵi = h(ytest
i ).

The classification results for KNN, SVM and LDs are shown in Table 2, where accuracy is re-

ported for all the models using the entire testing data along with the performance for individual

subsets corresponding to each independent class (j). As demonstrated in Sec. 5(a), the overcom-

plete LD yields lower reconstruction errors than complete LDs. This fact is also corroborated by

results in Table 2, where the overcomplete LD with k = 300 reaches higher accuracy than LDs

with k = 53 and k = 100 for all the four classes.

It is notable that results of the overcomplete LD with k = 300 are comparable to SVM and KNN

and are even better at differentiating between classes with high internal wave activity (classes (2)

and (4)). Notice the misclassification of SSPs by LDs is due to the possible lack of sufficient

information about the variability retrieved by the k atoms. It is clear to see that the more atoms

the dictionary uses, the more the accuracy will be. Therefore, the classification results reported

for LDs in Table 2 can be improved by increasing the number of atoms used. This study shows

that classification of SSPs via dictionary learning is feasible and can be extended to large-context

scenarios as long as exists labeled data to compute specific dictionaries for each class.

From results in Table 2, it is possible to conclude overcomplete dictionary learning offers a

good alternative for classifying SSPs with high internal wave activity if using sufficient k atoms.

The relaxation in the orthogonal constraint in the basis functions allows DLs to capture the most

representative information from data. Each class-specific dictionary Dj tends to have different
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patterns than others from different classes (Dj′). The coherence GDj
for class-specific learned

dictionaries with k = 53, k = 100, and k = 300 atoms are shown in Fig. 10. Notice that for

different values of k and class, each class-specific dictionary presents different and distinctive

patterns than are being learned from data.

It is important to remark that if the number of k atoms increases, the dictionary will lead to higher

accuracy with a cost of an increment in the complexity of the convex optimization. Therefore, it

is important to consider the trade-off between accuracy and complexity when training LDs, as is

done with any learning model, such as neural networks. In cases where there are not sufficient

labeled training data, it is possible to apply data processing techniques such as data augmentation

to increase the variability and the number of data samples within a class (Castro-Correa et al.

2021).

Similar to previous research (Bianco and Gerstoft 2017; Sun and Zhao 2020), overcomplete

LDs perform well as a sparse representation algorithm for SSPs. Dictionary learning outperforms

EOFs because it tends to distribute the SSPs energy among all the atoms and its ability to generate

non-orthogonal functions. Furthermore, as few as nnz non-zero coefficients are needed to con-

sistently provide a complete enough representation to achieve very low training error even when

dictionaries are trained on SSPs in the presence of internal waves. Results demonstrate competi-

tive performance of LDs with respect to standard classification models. The amount of data, the

sparsity level provided by nnz, and the number of atoms k are crucial factors to obtain optimal

sparse representations of SSPs.

6. Conclusions

Both dictionary learning and empirical orthogonal functions (EOFs) were implemented to

sparsely represent SSPs disturbed by the passing of internal waves in the SW06 experiment. Due
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to their redundant nature and their ability to generate non-orthogonal basis functions, overcom-

plete learned dictionaries (LD) showed better performance for reconstructing SSPs than the EOFs

and the complete LD when using the best nnz = 3 combination of basis functions.

The presence of internal waves in the water column causes highly anisotropic SSPs. The vari-

ability in the SSPs induced by IWs was reflected in higher errors when both EOF and dictionary

learning frameworks were applied. Under those circumstances, overcomplete dictionaries with

k > m atoms were shown to achieve even better compression of SSPs than EOFs and the complete

LD k = m. The improvement in the reconstruction of SSPs was produced due to the relaxation of

the orthogonal requirements, and the number of atoms used in the dictionary.

In this paper, the classification of SSPs via dictionary learning was introduced. Here, specific

dictionaries were built for each class of internal wave activity, and testing datasets were classi-

fied by finding the dictionary corresponding to the most accurate sparse representation. Results

demonstrated that overcomplete learned dictionaries trained on labeled data are suitable to clas-

sify SSPs successfully. When the training data are representative and are labeled by a class, the

resulting overcomplete dictionary can be effectively applied to other datasets to classify SSPs.

This work provides insights into the application of learned dictionaries for the representation

and classification of SSPs. Further analyses are required to find the optimal number of non-zero

coefficients nnz and k atoms used for an optimal sparse representation of SSPs. Future research

needs to be conducted to find a better-suited dissimilarity cost R̂(·) that can yield higher classifi-

cation performance, while futher studies are required to determine if undercomplete LDs (k < m)

are suitable for sparse representation and dimensionality reduction of SSPs.

Sparse representation of sound speed profiles using dictionary learning promotes and expedites

research into internal waves. A representative dictionary of basis functions is an efficient way to

store and generate thousands of unique sound speed profiles, given that the dictionary succinctly
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and effectively represents the small-scale variability to model. Using learned dictionaries to gen-

erate realistic and variable training datasets may further the progress of machine learning in many

undersea applications.
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TABLE 1: Four resulting classes after applying k-medoids to SSP data extracted from SW30 (01
Aug 00:00:00 to 05 Sep 16:00:00 UTC 2006). The columns in the table show the number of SSP
samples per class, the mean (µY), and standard deviation (σY) for the SSPs in each class.

Class Number of SSPs µY (m/s) σY (m/s)

(1) 33,992 1513.46 12.93

(2) 59,630 1497.51 11.34

(3) 67,536 1490.81 7.61

(4) 45,389 1503.64 14.95

Total 205,547 1499.49 13.91
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TABLE 2: Classification results for KNN, SVM, complete LD, and overcomplete LDs for testing
data. Accuracy in (%) is reported for each classification model. The first four rows in the table
correspond to independent classes in the testing set, while the last row presents the overall accuracy
for each model in the complete testing set.

Dataset KNN SVM Complete LD (k = 53) Overcomplete LD (k = 100) Overcomplete LD (k = 300)

Testing - only class (1) 97.91 99.38 95.61 98.51 99.71

Testing - only class (2) 98.68 89.39 83.65 90.00 95.46

Testing - only class (3) 98.30 99.72 89.16 92.51 95.42

Testing - only class (4) 97.18 72.50 93.63 95.65 98.79

Testing - complete 98.10 90.64 89.59 93.44 96.87
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FIG. 1: Some of the SW06 moorings along-shelf and across-shelf conforming a ”T” geometry.
SSPs used in this work are derived from data collected at SW30 station, which is marked with a
white star in the figure.
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FIG. 2: IW event spotted from 17 Aug 21:00:00 to 18 Aug 10:00:00 UTC 2006. (a) Temporal
evolution of temperature profiles at mooring SW30. (b) The square of the Buoyancy frequency
N2, in terms of depth, divided into four sections corresponding to different regimens. (c) Standard
and mean of the SSPs presented in part (a). (d) Individual SSP samples at each geotimes tgi with
colors matching the vertical dashed lines in part (a). (e) Buoyancy frequency N2 for each of the
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FIG. 3: Sound speed profiles from SW30 station calculated using the nine-term equation (Macken-
zie 1981). The SSPs are depth-dependent as indicated with the y-axis. The x-axis shows the num-
ber of SSPs in each panel. These SSPs are extracted every 15 seconds from 01 Aug 00:00:00 to
05 Sep 16:00:00 UTC 2006. In (a), a total n = 205, 547 of SSPs are extracted during the period
described. In this work, k-medoids clustering is used to label the data. The resulting classes from
(1) to (4) that are shown in panels (b), (c), (d) and (e), respectively. Notice that the SSPs on each
class are not ordered in time.
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FIG. 4: Distribution of data into the four classes calculated using k-medoids algorithm. The
original data are split into training and testing sets, whose number of samples per class are also
depicted in the plot.
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FIG. 5: Basis functions computed via (a) EOF analysis, (b) complete DL, and (c) overcomplete
DL. Only the first leading-order EOFs describe variability in the SSPs, whereas variance is dis-
tributed along all atoms in the LDs.
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FIG. 6: SSP explained variance ratio for (a) EOFs and (b) complete LD entries with k = 53, and
(c) overcomplete LD with k = 100 atoms using nnz = 3 non-zero coefficients.
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FIG. 7: Coherence matrices for (a) EOFs, (b) complete LD entries, and (c) overcomplete LD [see
Fig. 5] using nnz = 3 non-zero coefficients. Eigenvectors in the EOF dictionary are orthogonal,
whereas those of the LDs are not.
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FIG. 8: Root mean square error (RMSE) of EOFs and complete LD, both with k = 53, and
overcomplete LD with k = 100 when different numbers of non-zeros coefficients nnz used for
sparse coding.
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FIG. 9: Sparse representation of six SSP samples using complete DL and EOF with nnz = 3 non-
zero coefficients and k = 53 atoms and EOFs. For each sample, color bars present the absolute
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FIG. 10: Coherence of individual class-specific learned dictionaries (LD) for classification of
SSPs. (a), (b), (c) and (d) are coherence for the complete LD (k = 53) for each class (1)-(4). (e),
(f), (g) and (h) are coherence of overcomplete LDs with k = 100 atoms for all the classes. (i), (j),
(k) and (l) are coherence for LDs with k = 300 for the four classes.
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