
Task Scheduling using Constraint Optimization with
Uncertainty

James Atlas
Computer and Information Sciences

University of Delaware
Newark, DE 19716

atlas@cis.udel.edu

Keith Decker
Computer and Information Sciences

University of Delaware
Newark, DE 19716

decker@cis.udel.edu

1. INTRODUCTION
Multiagent task scheduling encompasses diverse domains

of problems that require complex models and robust solu-
tions. C-TÆMS [1] is a new specification, based on TÆMS
[2], for multiagent task scheduling problems that represents
the complex relationships necessary to model these domains.

Some recent work has been done in the area of mapping
the C-TÆMS scheduling problem into a Distributed Con-
straint Optimization Problem (DCOP) [6]. Distributed con-
straint optimization is a direct extension to the traditional
AI approach of constraint satisfaction for multi-valued con-
straints in a distributed system [7, 3]. Typical DCOP al-
gorithms define the optimal solution as the optimal sum of
local utilities.

Currently the mapping from C-TÆMS to a DCOP allows
only for certain combinations of quality accumulation func-
tions (QAFs), and works only for deterministic outcomes.
The C-TÆMS scheduling problem contains uncertain infor-
mation describing possible outcome distributions over the
qualities of methods. The combination of these possible out-
come distributions creates uncertainty in the global utility
of a task schedule. Using an evaluation function for com-
parisons, the optimal schedule may not be equal to the one
with the optimal sum of local utilities.

In this paper we extend the original DCOP formaliza-
tion for uncertainty information in the form of utility dis-
tributions. Additionally, we extend the C-TÆMS mapping
to include additional QAF combinations using only binary
constraints. We then show how the C-TÆMS mappings can
take advantage of the extended DCOP formalization with
some sample evaluation functions. This research is ongoing,
and comprehensive results on general classes of C-TÆMS
scheduling problems are pending1.

2. C-TÆMS SCHEDULING PROBLEM
The multiagent task planning and scheduling problem re-

quires a rich language for domain representation. The orig-
inal TÆMS (Task Analysis, Environment Modeling, and
Simulation) language was developed to provide a domain in-
dependent, quantitative representation of the complex coor-
dination problem [2]. A C-TÆMS problem instance contains
a set of agents and a hierarchically decomposed task struc-
ture. Nodes in the graph are either complex tasks (internal
nodes) or primitive methods (leaf nodes). Each node may
have temporal constraints on the earliest start time and the

1This paper is intended as a positional paper. This is on-
going research and results are expected prior to AAMAS
07.

Figure 1: An example C-TÆMS problem instance.

deadline. Nodes may also have non-local effect (NLE) con-
straints that represent hard and soft precedence. Methods
have probabilistic outcomes for duration, quality, and cost.
Tasks have a quality accumulation function (QAF) that de-
scribes the quantitative combination of quality outcomes of
subtasks and methods. Some basic QAFs include sum, min,
max, and sync sum. In the sample C-TÆMS problem in-
stance in Figure 1, the node T1 represents a task with M1
and M2 representing a decomposition of this task into sub-
methods. T1 has constraints for earliest start time of 1 and
deadline of 31. The accumulated quality at T1 is a sum
of the qualities of the executed submethods. In this case if
both M1 and M2 executed within the temporal constraints,
T1 would have an accumulated quality of 5 + 10 = 15.

3. DCOP FORMALIZATION
DCOP has been formalized in slightly different ways in

recent literature, so we will adopt the definition as presented
in [5]. A Distributed Constraint Optimization Problem with
n nodes and m constraints consists of the tuple < X, D, U >
where:

• X = {x1,..,xn} is a set of variables, each one assigned
to a unique agent

• D = {d1,..,dn} is a set of finite domains for each vari-
able

• U = {u1,..,um} is a set of utility functions such that
each function involves a subset of variables in X and

defines a utility for each combination of values among
these variables

An optimal solution to a DCOP instance consists of an as-
signment of values in D to X such that the sum of utilities
in U is maximal. Problem domains that require minimum
cost instead of maximum utility can map costs into negative
utilities. The utility functions represent soft constraints but
can also represent hard constraints by using arbitrarily large
negative values.

4. EXISTING MAPPINGS FOR C-TÆMS
SCHEDULING

A mapping for a subset of C-TÆMS to DCOP is proposed
in [6]. The mapping using our formalization is:

• X = Each method is assigned to a unique variable.

• D = Unique domains for each variable containing all
possible start times for the method assigned to the
variable.

• U = Three types of utility functions:

– Mutex constraints on all pairs of methods that
share the same agent

– For an NLE between two nodes, N1 and N2, all
methods in the subtree of N1 have a precedent
constraint with all methods in the subtree of N2

– Unary soft constraints on each method that apply
a cost if the method is not scheduled

This mapping allows only specific QAFs, enables NLE, and
deterministic task outcomes. The complexity of the map-
ping, where M is the number of methods in the original
C-TÆMS problem, involves O(M) variables, O(M2) utility
functions, and the size of each domain is O(|T |) where T is
the range of all possible start times.

5. PROPOSED MAPPINGS FOR C-TÆMS
SCHEDULING

We can observe that DCOPs naturally optimize global
sums of utility, so the mapping of the sum QAF can be
achieved with relatively simple binary constraints. It is pos-
sible to map min and max QAFs using the existing mapping
if they are the only QAF in a specified instance [6]. This is
achieved by changing the DCOP aggregation function to a
min or max function. The authors in [6] used ADOPT [4]
to verify these mappings.

To date it has proven very difficult to combine QAFs in a
hierarchical fashion. Although all types can be mapped us-
ing n-ary constraints over entire subtrees of tasks/methods,
that increases the computational complexity. We propose
the following mappings to binary constraints for non-sum
QAFs that are correct for problem instances where non-sum
QAFs apply only to methods and not to tasks or task groups.

5.1 sync_sum
This QAF produces quality equal to the sum of the meth-

ods that start at the same time slot. To start, we create a
new variable that represents the synchronized start time of
the methods involved in the sync sum. This variable has the

domain of all possible start times for any of the methods. In-
stead of the unary constraint producing a cost if the method
is not scheduled, we create binary constraints between every
method and the special sync sum variable. If the method is
not scheduled for the same time slot as the special sync sum
variable, the constraint returns a cost equal to the quality
of that method.

5.2 min
This QAF produces quality equal to the minimum quality

of any submethod. An important note is that the min QAF
produces no quality if any of the methods are not scheduled.
To map this QAF, we again create a special variable. This
variable has the domain of true and false. We first determine
which of the submethods has the lowest potential quality. A
special binary constraint is created between this method,
a, and the special variable, v. The cost function for this
constraint is:

cost(a) =


aqual if v = false

∞ if v = true and a not scheduled

0 otherwise

Next, we create a binary constraint between each other
method, b, and the special variable, v, with the cost func-
tion:

cost(b) =

{
∞ if v = true and b not scheduled

0 otherwise

5.3 max
This QAF produces quality equal to the maximum qual-

ity of any submethod. To map this QAF, we create another
special variable. This variable’s domain values are the set
of all possible qualities produced by any submethod (and
a special tag that marks that quality’s submethod) and a
not scheduled value. We first determine which of the sub-
methods has the highest potential quality, qmax. We create
a binary constraint between each of the methods, c and the
special variable, x. If the method, c, is scheduled we use the
cost function:

cost(c) =


∞ if cqual > x

qmax − cqual if cqual = x and xtag = c

0 otherwise

If the method, c, is not scheduled we use the cost function:

cost(c) =


0 if xtag 6= c

qmax if x not scheduled and qmax = cqual

∞ otherwise

6. UNCERTAINTY IN THE C-TÆMS
SCHEDULING PROBLEM

Uncertainty of various task characteristics, such as com-
pletion time, solution quality, and total cost, is one of
the major complexities underlying the C-TÆMS schedul-
ing problem. In our previous discussion of mappings, we do
not attempt to include this concept. All the mappings so
far discussed are based on deterministic outcomes.

Uncertainty can be represented in an agent system as
a statistical distribution of values. We may incorporate a
crude mapping of this uncertainty into the existing DCOP

framework by using average expected value for the uncer-
tainty (a sum product of the probabilities and values). How-
ever, this offers little help in domains where the global utility
over the uncertainty is not an average expected value. For
many domains including C-TÆMS scheduling, it is valuable
to incorporate risk aversion functions into the global utility,
or enforce minimum confidence level utility.

6.1 DCOP with Utility Distributions
We can extend the DCOP problem formulation to include

uncertainty by allowing constraint evaluation functions to
return a distribution instead of a single value. A global op-
timum is now an optimal distribution instead of a maximum
(or minimum) sum. To evaluate the optimality of a distri-
bution, evaluation criteria must be formalized. The optimal
evaluation function may not be the same for all problems
for all agents. Thus we must include the evaluation function
as part of the extended DCOP problem. We extend our
previous DCOP formalization for this:

• U = {u1,..,um} is a set of utility functions such that
each function involves a subset of variables in X and
defines a utility distribution for each combination of
values among these variables

• u = {(u1
p, u1

v),..,(ut
p, ut

v) } is a distribution of proba-

bilities and values such that
∑t

r=1 ur
p = 1

• E = {e1,..,en} is a set of evaluation functions for each
variable that reduce a utility distribution to a single
utility value; e(u) = v where v is a single utility value

6.2 Re-mapping C-TÆMS to DCOP
The C-TÆMS scheduling problem mapping presented in

the previous section can easily be extended to include this
concept of uncertainty. We maintain the current mappings
for all of the hard constraints (ones that return either zero
or infinite cost). For each soft constraint we return a set
of utility distributions instead of the single value. This al-
lows a method to specify that it produces a distribution of
quality; for example in Figure 1 method M1 may now pro-
duce quality = 5 for 80% of executions, quality = 10 for
10% of executions, and quality = 100 for 10% of executions.
This would be represented as a utility distribution of {(0.8,
5), (0.1, 10), (0.1, 100)}. Also, for the C-TÆMS schedul-
ing problem we use a single evaluation function, E, for all
agents.

We illustrate three sample evaluation functions among
many that express the effectiveness of our model. The first
function is a risk neutral expected value function that sim-
ply computes a sum product of the utility distribution. For
the prior example distribution, this function would evaluate
as:

e(u) = 0.8 · 5 + 0.1 · 10 + 0.1 · 100 = 15

The second is a risk averse evaluation function based on
quadratically decreasing utility, where:

e(u) = (

t∑
r=1

ur
p ·

√
ur

v)2

For the example this would evaluate as:

e(u) = (0.8 ·
√

5 + 0.1 ·
√

10 + 0.1 ·
√

100)2 = 9.64

The third is a minimum confidence evaluation function, such
that utility equals the highest value v such that c% of the
values are greater than or equal to v. For the example this
would evaluate as 100 for c = 5%, 10 for c = 20%, and 5
for c = 90%. Many other evaluation functions are available,
but these simple functions will allow our global solution to
incorporate things such as risk aversion and minimum con-
fidence.

It is straightforward to aggregate utility distributions us-
ing the typical summation function. Thus a global aggre-
gated distribution for a specific variable assignment is pos-
sible. Applying the evaluation function to the aggregated
distribution allows for a choice of an optimal variable assign-
ment. However, many DCOP algorithms also require inter-
mediate comparisons between the values, which are distri-
butions in our model. Appropriate comparison mechanisms
that correctly identify the optimal global assignment are a
topic of current research. This research and implementation
is ongoing, and comprehensive results on general classes of
C-TÆMS scheduling problems are pending.

7. CONCLUSION AND FUTURE WORK
We have introduced a new formalization for DCOP that

includes uncertainty characteristics. We showed how a prob-
lem domain that includes uncertain outcomes, the C-TÆMS
scheduling problem, can be mapped into our new formal-
ization. We also introduced some additional mappings for
C-TÆMS QAFs to binary constraints. Using our new for-
malization we illustrated how evaluation functions can ex-
press concepts such as global risk aversion and minimum
confidence.

We are currently testing our formalization in several do-
mains to see how easily it can be applied to various prob-
lems that involve uncertainty. Additionally we plan to de-
velop comparison tests to calculate the effectiveness of the
model. We will also continue to improve the mapping of the
C-TÆMS scheduling problem to the DCOP formalization.

8. REFERENCES
[1] M. Boddy, B. Horling, J. Phelps, R. P. Goldman, and

R. Vincent. C-tæms language specification, 2005.

[2] B. Horling, V. Lesser, R. Vincent, T. Wagner, A. Raja,
S. Zhang, K. Decker, and A. Garvey. The TAEMS
White Paper, January 1999.

[3] J. Liu and K. P. Sycara. Exploiting problem structure
for distributed constraint optimization. In Proceedings
of the First International Conference on Multi–Agent
Systems, pages 246–254, 1995.

[4] P. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guarantees. AIJ, pages 149–180, 2005.

[5] A. Petcu and B. Faltings. Dpop: A scalable method for
multiagent constraint optimization. In IJCAI 05, pages
266–271, Aug 2005.

[6] E. Sultanik, P. J. Modi, and W. Regli. On modeling
multiagent task scheduling as a distributed constraint
optimization problem. In IJCAI, 2007.

[7] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
Distributed constraint satisfaction for formalizing
distributed problem solving. In International
Conference on Distributed Computing Systems, pages
614–621, 1992.

