
A Memory Bounded Hybrid Approach to Distributed
Constraint Optimization

James Atlas, Matt Warner, and Keith Decker

Computer and Information Sciences
University of Delaware

Newark, DE 19716
atlas, warner, decker@cis.udel.edu

Abstract. Distributed Constraint Optimization (DCOP) is a general framework
that can model complex problems in multi-agent systems. Current algorithms that
solve general DCOP instances rely on two main techniques, search and dynamic
programming. While search algorithms such as ADOPT maintain polynomial
memory requirements for participating agents, they incur a large performance
penalty to establish initial bounds and to backtrack to previous solutions. Dy-
namic programming algorithms such as DPOP can be more efficient than search
algorithms, but are not usually memory bounded and do not take advantage of
search space pruning.
We introduce a new hybrid algorithm using a memory bounded version of DPOP
to establish bounds in ADOPT. For problems with memory requirements below
the bound we observe similar performance to DPOP. For problems with memory
requirements above the given bound we observe significant improvements in per-
formance compared to previous ADOPT techniques and the most recent memory
bounded version of DPOP (MB-DPOP).

1 Introduction

Many historical problems in the AI community can be transformed into Constraint Sat-
isfaction Problems (CSP). With the advent of distributed AI, multi-agent systems be-
came a popular way to model the complex interactions and coordination required to
solve distributed problems. CSPs were originally extended to distributed agent environ-
ments in [17]. Early domains for distributed constraint satisfaction problems (DisCSP)
included job shop scheduling [6] and resource allocation [10]. Many domains for agent
systems, especially teamwork coordination, distributed scheduling, and sensor net-
works, involve overly constrained problems that are difficult or impossible to satisfy
for every constraint.

Recent approaches to solving problems in these domains rely on optimization tech-
niques that map constraints into multi-valued utility functions. Instead of finding an
assignment that satisfies all constraints, these approaches find an assignment that pro-
duces a high level of global utility. This extension to the original DisCSP approach has
become popular in multi-agent systems, and has been labeled the Distributed Constraint
Optimization Problem (DCOP) [6].

Current algorithms that solve complete DCOPs use two main approaches: search
and dynamic programming. Search based algorithms that originated from DisCSP typ-
ically use some form of backtracking [18] or bounds propagation, as in ADOPT [11].
These algorithms tend to have polynomial memory requirements for each agent, but in-
cur a large performance penalty to establish initial bounds and to backtrack to previous
solutions. Some previous work has been done in the area of preprocessing techniques
for ADOPT in [1]. Dynamic programming based algorithms include DPOP and its ex-
tensions [14, 16]. The original version of DPOP is not memory bounded, and the newest
extension, MB-DPOP, uses iteration to achieve memory bounding but does not take ad-
vantage of search space pruning. Some other algorithms exist, such as OptAPO [8], but
involve partial centralization and/or have been shown to scale worse than ADOPT and
DPOP [16].

We introduce a new hybrid algorithm, ADOPT with bounded dynamic program-
ming (ADOPT-BDP), that can take advantage of the strengths of both ADOPT and
DPOP. Our algorithm employs a memory bounded version of DPOP to generate lower
and upper bounds for each agent. The bounds are then used to guide the search thresh-
olds in ADOPT. The result is an algorithm that can take advantage of a bounded amount
of memory at each agent. For many problem types and configurations we achieve better
performance than either DPOP or ADOPT.

We begin with a formal introduction of DCOP and a brief summary of both DPOP
and ADOPT. We then introduce our version of ADOPT with bounded dynamic pro-
gramming. We show how the intermediate results from the dynamic programming can
be used as lower and upper bounds and threshold values at each agent. We compare
performance in several domains, and results include comparisons to the original DPOP
and ADOPT algorithms, to the earlier techniques presented in [1], and to the recent
memory bounded version of DPOP, MB-DPOP [16]. We conclude with a discussion of
results, related work, and future work.

2 DCOP

DCOP has been formalized in slightly different ways in recent literature, so we will
adopt the definition as presented in [14]. A Distributed Constraint Optimization Prob-
lem with n variables and m constraints consists of the tuple < X,D, U > where:

– X = {x1,..,xn} is a set of variables, each one assigned to a unique agent
– D = {d1,..,dn} is a set of finite domains for each variable
– U = {u1,..,um} is a set of utility functions such that each function involves a subset

of variables in X and defines a utility for each combination of values among these
variables

An optimal solution to a DCOP instance consists of an assignment of values in D
to X such that the sum of utilities in U is maximal. Problem domains that require
minimum cost instead of maximum utility can map costs into negative utilities. The
utility functions represent soft constraints but can also represent hard constraints by
using arbitrarily large negative values.

3 State of the Art Complete DCOP Algorithms

Current algorithms that solve complete DCOPs use two main approaches: search and
dynamic programming. Our algorithm uses a hybrid approach that involves both search
and dynamic programming based on ADOPT and DPOP. Our algorithm also uses the
traditional arrangement of agents into a pseudotree to solve the problem. We refer the
reader to [14] or [11] for more detail on pseudotrees and how they are created.

3.1 ADOPT

The original ADOPT algorithm operates asynchronously on a pseudotree of agents [11].
Each agent represents a single variable in the DCOP and chooses values concurrently.
Three main types of messages are exchanged between agents:

– VALUE messages sent down to all neighbors lower in the pseudotree
– COST messages sent up only to the parent
– THRESHOLD messages sent down only to children

Each agent keeps track of lower and upper bounds and threshold values as
well as contextual information including the state of other variable values when
the bounds/thresholds were recorded. The threshold values determine when an agent
changes its variable to a different value. By carefully recording bounds on children,
when a parent changes its value it can send a threshold to its child to help the child
quickly recover a previous search. The algorithm begins termination when the root
agent’s threshold reaches its upper bound.

Since ADOPT is an opportunistic best-first search, the average case complexity will
depend heavily on the problem structure. The worst case complexity is determined by
the total messages sent, and is O(|d|n) where |d| is the maximum domain size, and n
is the depth of the pseudotree. ADOPT is also completely asynchronous, so additional
message overhead exists when a context is out of date and the message is discarded.

3.2 DPOP

The original DPOP algorithm operates in three main phases. The first phase generates a
traditional pseudotree from the DCOP instance using a distributed algorithm. The sec-
ond phase joins utility hypercubes (multi-dimensional matrices) from children and the
local agent and propagates them towards the root. The third phase chooses an assign-
ment for each domain in a top down fashion beginning with the root agent. Each phase
is semi-synchronous in that each parent must wait for messages from its children in
phase 2, and children wait for messages from parents in phase 3. However, agents in
seperate branches of the tree may process concurrently. Given a strict linear ordered tree
DPOP is synchronous, but given a fully distributed binary tree up to half of the agents
may be concurrently processing at any given time.

The complexity of DPOP depends on the size of the largest computation and utility
message during phase two. It has been shown that this size directly corresponds to the
induced width of the pseudotree generated in phase one [14]. DPOP uses polynomial

time heuristics to generate the pseudotree since finding the minimum induced width
pseudotree is NP-hard. The induced width of the pseudotree is always less than or equal
to the depth of the pseudotree. The memory complexity of DPOP is O(|d|m) where |d|
is the maximum domain size and m is the induced width of the pseudotree. The number
of messages produced is linear.

The original version of DPOP is extremely fast and efficient for loosely constrained
problems, and can scale to thousands of sparsely constrained agents. Unfortunately for
many problems the original version of DPOP is intractable because of constraint den-
sity. In such problems the exponential memory requirement precludes any solution. A
memory bounded version of DPOP [16] (MB-DPOP) bounds the memory requirement,
but in doing so increases the number of messages from linear to exponential, making a
direct tradeoff between memory usage and messages/cycles.

4 A Hybrid Approach: ADOPT-BDP

We now introduce our hybrid algorithm, ADOPT-BDP, that takes advantage of the
strengths of both ADOPT and DPOP. Our algorithm extends the ADOPT algorithm
as shown in Algorithm 1. We do not show the procedure for pseudotree creation as they
are the same as employed in previous DCOP algorithms [11, 14]. We have included
only our modifications to the ADOPT algorithm and not its entirety.

The pseudocode shown in Algorithm 1 follows a typical sequence for our hybrid
algorithm:

1. An agent initiates a DPOP utility propagation by sending a DPRequest to its chil-
dren.

2. This DPRequest propagates to agents at the pseudotree leaves who begin propagat-
ing utility upwards.

3. Each agent stores the propagated utility in its boundsCache.
4. The propagation stops at the agent who initiated the DPRequest.
5. Traditional ADOPT backtracking commences.
6. When an agent receives a new value assignment for its context it initializes its

bounds with values from its boundsCache.

4.1 DPOP with memory bounds

The DPOP utility propagation that is part of our hybrid algorithm is memory bounded.
The original DPOP algorithm can use up to an exponential amount of memory during its
utility propagation phase. It was shown in [13] that the DPOP algorithm can be modified
to produce an approximate result using memory bounds. We have used the techniques
from [13] to split hypercubes requiring too much memory into upper and lower bounds
hypercubes. These two hypercubes can be reduced in size to meet the memory bounds
by removing the dimension representing the highest agent in the tree. When a dimension
is removed from a lower bounds hypercube we choose the minimum value over the
remaining dimensions for each value in the removed dimension. Conversely we choose
the maximum value for the upper bounds hypercube. If the memory bound was not
reached during utility propagation, the upper and lower bounds are equal.

Algorithm 1 ADOPT with Bounded Dynamic Programming
1: initialize()
2: if agent is DP source then
3: send DPRequest to children
4: waitingForDP ← true

5: whenReceived(DPRequest r)
6: if agent is leaf then
7: propagateUtil(r)
8: waitingForDP ← false
9: else

10: add r to waitList
11: waitingForDP ← true
12: send r to children

13: propagateUtil(DPRequest r)
14: u← combine utilPropagations (bounded)
15: add u to boundsCache
16: reduce u by domain of agent
17: if r did not originate at agent then
18: send UtilMessage(u) to parent
19: remove r from waitList
20: if waitList is empty then
21: waitForDP ← false
22: backtrack()

23: whenReceived(UtilMessage u)
24: add u to utilPropagations for u.r
25: if all child messages for u.r ∈ utilPropagations then
26: propagateUtil(u.r)

27: backtrack()
28: if not waitingForDP then
29: normal backtrack()
30: if agent is DP source AND context change then
31: send DPRequest to children
32: waitingForDP ← true

33: updateContexts(V = v)
34: . . .
35: if (V = v) not compatible with context then
36: update context
37: set lb, ub, and threshold from boundsCache
38: . . .

4.2 Integration with ADOPT

When an ADOPT agent receives a VALUE message, it updates its contexts with the
new value assignment. In normal ADOPT when a variable in the context changes value,
each child lower bound is set to zero and the child upper bound is set to the maximum
possible value (i.e. positive infinity). In our modified update method (line 32), we check
the boundsCache for a result from the DPOP component with a matching context. If
found, we can immediately set the bounds and thresholds to better values. If the DPOP
component completed its propagation without reaching the memory bound, then our
cached lower and upper bounds are equal. The agent does not need to explore any child
assignments for this context because it has perfect information.

Since each agent in the ADOPT algorithm operates asynchronously, we wanted to
be careful that our agents would not throw away work done by the DPOP component.
To accomplish this, we implemented a synchronous mode for the utility propagation.
When an agent issues a DPRequest, each agent encountered while this request prop-
agates to the leaves enters a blocking mode. This blocking mode prevents the agent
from backtracking while it is waiting for the utility propagation from its children. An
agent resumes asynchronous backtracking when all DPRequests have been matched to
subsequent utility propagations and its waitList is empty.

In this paper we have limited the source for DPRequests to the root node, which
produces a phased execution of utility propagation and ADOPT. If the memory bound
does not change during execution, there are only two phases, the initial bounded utility
propagation and then ADOPT. For the any-bound solution presented in this paper, the
phases repeat these two initial phases until the bounded utility propagation reaches the
maximum allowable memory bound. Using multiple nodes as sources for DPRequests
allows ADOPT to continue execution in the upper portions of the search tree while
utility propagation is performed in the lower portions. Results for multiple node settings
are not presented in this paper and are the topic of future research.

4.3 Correctness and Complexity Analysis

The correctness of our hybrid algorithm can easily be seen by observing that we never
overestimate a lower bound or underestimate an upper bound. During the DPOP utility
propagation when we reduce a hypercube because of memory limitations we lose in-
formation about a dimension. We choose the minimum value from this dimension for
our lower bound, so we guarantee that our lower bound is less than or equal to any
possible assignment for the reduced dimension. We choose the maximum value for this
dimension for our upper bound, and similarly guarantee that it is greater than or equal
to any possible assignment for the reduced dimension. Thus since our bounds are cor-
rect for all agents, ADOPT can perform its best first search within these bounds and is
guaranteed to find the optimal solution.

The worst case complexity of the hybrid algorithm is generally the same as ADOPT,
which is O(|d|n) because of the possible total number of messages. The only case where
the worst case complexity is the same as DPOP, O(|d|m), is when the given memory
bound is large enough for complete DPOP utility propagation. However, in practice the
performance is much better than the worst case because the worst case assumes the

utility propagation provides little benefit. While the benefit from combining search and
dynamic programming varies according to the problem domain and setup, it is very
clear from our results that even a small amount of dynamic programming can provide
large speedups to searches.

4.4 Any-bound solution

Several static values for memory bounds perform well for most problem types. If a
problem type is known in advance, it would be best to use offline statistical methods
to learn an optimal setting for the memory bound for each problem type. Since this is
not possible for all settings, we have developed a simple iterative increasing approach,
shown in Algorithm 2, to set the value for MB. The approach begins by setting MB
to a small value. The first utility propagation runs using this value. The total time for
propagation, t, is measured. If the algorithm does not find the solution after another
t units of time, the value for MB increases until it reaches the maximum allowable
memory bound.

Algorithm 2 Any-bound Algorithm
1: MAX ← max memory allowed
2: MB ← small amount of memory < MAX
3: t← total time taken by last util propagation

4: backtrack()
5: if not waitingForDP then
6: normal backtrack()
7: if agent is DP source AND context change then
8: . . .
9: else if MB < MAX AND time > t then

10: MB ← max(MB · |d|, MAX)
11: send DPRequest to children
12: waitingForDP ← true

5 Results

We tested our new hybrid algorithm in 3 different domains: distributed sensor networks
(DSN), graph coloring problems (GCP), and meeting scheduling problems (MSP). For
the initial tests we used the same set of problem data used in [1], which can be obtained
from [12]. Additionally we generated a set of increasingly difficult meeting scheduling
problems that require increasing amounts of memory for DPOP.

Results are reported using four measurements: total number of messages (Mes-
sages), total message byte size (Size), number of cycles (Cycles), and total runtime
(Time) in milliseconds. Similar to experiments in previously published DCOP algo-
rithms [11, 1, 14, 16], all algorithms were run in a deterministic fashion by giving each

agent an opportunity to process messages once per cycle. Note that the total number of
messages or cycles should not be directly compared between algorithms. DPOP-based
algorithms are semi-synchronous and send low numbers of large-size messages and
ADOPT-based algorithms are asynchronous and send high numbers of small-size mes-
sages. Similarly, ADOPT-based algorithms do less computation and send more mes-
sages per cycle, while DPOP-based algorithms do more computation and send less
messages per cycle.

We compare our algorithm, ADOPT-BDP, with ADOPT-DP2 [1], and MB-DPOP
[16]. We do not include the original ADOPT because ADOPT-DP2 is significantly bet-
ter for all cases. We also do not include the original DPOP because MB-DPOP with
a large enough memory bound is exactly the same. For ADOPT-BDP and MB-DPOP
we set a maximum memory bound. For the any-bound version of ADOPT-BDP, repre-
sented by a + next to the bound, we start the memory bound at this value and allow it
to increase up to the maximum available in the system. All memory bounds are shown
as the maximum total size of values in a hypercube. Each value is stored internally as a
4-byte integer, so this allows up to 1000 values in a hypercube for ADOPT-BDP(4KB).

DSN GCP
Algorithm Msgs Size Cycles Time Msgs Size Cycles Time
ADOPT-DP2 19797 485008 121 382 200330 5101232 6010 2390
ADOPT-BDP(4KB) 137 9746 27 27 1056 30762 39 36
ADOPT-BDP(40KB) 137 9746 27 28 19 4108 9 18
ADOPT-BDP(4KB+) 137 9746 27 29 130 8831 14 23
MB-DPOP(4KB) 137 9472 27 23 23 4187 11 17
MB-DPOP(40KB) 137 9472 27 23 19 4070 9 16

Table 1. Results from the graph coloring problem (GCP) and distributed sensor network (DSN)
domains. The total message size (Size) is in bytes and the total runtime (Time) is in milliseconds.
All numbers are averages over 98 tests for the GCP and 59 tests for the DSN. Each set of tests
had the following graph properties: GCP: Induced Width (IW) = 3 to 7, number of variables (V)
= 9 to 12, number of constraint edges (E) = 18 to 30, size of domains (|d|) = 3. DSN: IW = 2 to
2, V = 40 to 100, E = 32 to 121, |d| = 5.

5.1 DSN and GCP

The DSN and GCP tests use the model from [11, 1] and can be obtained from [12].
They are trivial for DPOP based algorithms since they are sparse problems and require
only a small amount of memory to perform dynamic programming. We show results for
these tests in Table 1. Neither test case is particularly difficult and are not as interest-
ing as later results because they are solved by ADOPT-BDP and MB-DPOP in under
40 milliseconds using less than 40KB of memory. However, these tests highlight the
usefulness of including dynamic programming in our hybrid approach, as seen in the
improvement over ADOPT-DP2, but do not benefit from search space pruning because
the search space is very small.

Messages Size
Algorithm A B C D A B C D
ADOPT-DP2 574697 170152 843375 259414 14264392 4337852 20625288 6300347
ADOPT-BDP(40KB+) 12759 5528 9099 4144 455224 235978 363331 213342
ADOPT-BDP(4KB) 60210 23288 80559 18417 1514479 616857 1992710 470906
ADOPT-BDP(40KB) 27747 5814 10131 4144 747693 225052 374771 213342
ADOPT-BDP(400KB) 4467 2252 7011 4431 358609 609835 587176 380091
ADOPT-BDP(4MB) 44 50 140 142 575550 2012400 1200000 518656
MBDPOP(4KB) 9776 20965 15284 9488 1155686 2822918 1852018 756398
MBDPOP(40KB) 571 1862 1088 908 589198 2269986 1224274 538244
MBDPOP(400KB) 82 202 216 161 576548 2016706 1201770 518884
MBDPOP(4MB) 44 50 140 142 575462 2012300 1199720 518372

Cycles Time
Algorithm A B C D A B C D
ADOPT-DP2 8905 2425 4409 1360 11389 3560 17316 5235
ADOPT-BDP(40KB+) 224 90 66 39 453 275 319 204
ADOPT-BDP(4KB) 950 343 439 116 1684 783 1814 454
ADOPT-BDP(40KB) 449 94 71 39 750 265 335 205
ADOPT-BDP(400KB) 88 44 55 41 305 505 471 326
ADOPT-BDP(4MB) 21 14 19 19 506 1727 1022 430
MBDPOP(4KB) 4883 5364 6766 3868 968 2216 1643 868
MBDPOP(40KB) 282 511 442 352 431 1545 893 429
MBDPOP(400KB) 39 61 54 27 437 1487 889 397
MBDPOP(4MB) 21 14 19 19 508 1732 1017 430

Table 2. Results from the meeting scheduling problem (MSP) domain. Case A has 23 variables
(V), 43 constraint edges (E), and induced width (IW) of 5; Case B has V=26, E=47, and IW=5;
Case C has V=71, E=122, and IW=5; Case D has V=72, E=123, and IW=5.

100000

1e+006

1e+007

1e+008

ADOPT-DP2

ADOPT-BDP(40KB+)

ADOPT-BDP(4KB)

ADOPT-BDP(40KB)

ADOPT-BDP(400KB)

ADOPT-BDP(4M
B)

M
BDPOP(4KB)

M
BDPOP(40KB)

M
BDPOP(400KB)

M
BDPOP(4M

B)

A
B
C
D

Fig. 1. MSP: Total Message Size (in bytes, logarithmic)

100

1000

10000

100000

ADOPT-DP2

ADOPT-BDP(40KB+)

ADOPT-BDP(4KB)

ADOPT-BDP(40KB)

ADOPT-BDP(400KB)

ADOPT-BDP(4M
B)

M
BDPOP(4KB)

M
BDPOP(40KB)

M
BDPOP(400KB)

M
BDPOP(4M

B)

A
B
C
D

Fig. 2. MSP: Runtime (in milliseconds, logarithmic)

5.2 MSP

Results for the MSP cases from [1] are shown in Figures 1 and 2 and Table 2. We used
the problem sets generated using the PEAV model from [7]. There are four sets of test
cases, labelled A, B, C, and D in the figure. Each case contained 30 similar problems
and domain sizes of 9. The results shown are averages over these 30 problems.

We show MB-DPOP and ADOPT-BDP with memory bound settings of 4KB, 40KB,
400KB, and 4MB. Since the maximum induced width is 5 for these problems, the max-
imum memory required at an agent for full utility propagation is 95+1 = 531441 values
(2.1MB). Thus the 4MB bound produces a full utility propagation. We also show the
any-bound version of ADOPT-BDP starting with a 40KB memory bound which it can
increase up to 4MB (shown as ADOPT-BDP(40KB+)). We observe that ADOPT-BDP
is more efficient at solving the problems in all four sets of test cases than MB-DPOP for
various bound settings. The any-bound version of ADOPT-BDP is the best performer
over all four of the test cases.

5.3 MSP (scaling)

To test the scalability of our hybrid approach to large problem sets, we generated 40
test problems using the same PEAV model for the MSP as before. For these tests we
slowly increased each parameter at similar rates, with the range of values covered for
V from 10 to 342, E from 9 to 622, and IW from 1 to 13. We set a runtime threshold
of 20 minute and ran 4 tests on each algorithm for each parameter setting. If a test did
not complete for a given setting of V, then it does not have a data point for that setting.
Results are shown in Figures 5 and 4.

10

100

1000

10000

100000

1e+006

1e+007

1e+008

0 50 100 150 200 250 300 350

To
ta

lM
es

sa
ge

s

Variables

ADOPT-DP2
ADOPT-BDP(4KB+)

ADOPT-BDP(4KB)
ADOPT-BDP(400KB)
ADOPT-BDP(40MB)

MBDPOP(4KB)
MBDPOP(400KB)
MBDPOP(40MB)

Fig. 3. MSP (scaling difficulty): Total Messages (logarithmic)

100

1000

10000

100000

1e+006

1e+007

1e+008

1e+009

0 50 100 150 200 250 300 350

To
ta

lM
es

sa
ge

Si
ze

(b
yt

es
)

Variables

ADOPT-DP2
ADOPT-BDP(4KB+)

ADOPT-BDP(4KB)
ADOPT-BDP(400KB)
ADOPT-BDP(40MB)

MBDPOP(4KB)
MBDPOP(400KB)
MBDPOP(40MB)

Fig. 4. MSP (scaling difficulty): Total Message Size (in bytes, logarithmic)

10

100

1000

10000

100000

1e+006

0 50 100 150 200 250 300 350

R
un

tim
e

(m
s)

Variables

ADOPT-DP2
ADOPT-BDP(4KB+)

ADOPT-BDP(4KB)
ADOPT-BDP(400KB)
ADOPT-BDP(40MB)

MBDPOP(4KB)
MBDPOP(400KB)
MBDPOP(40MB)

Fig. 5. MSP (scaling difficulty): Runtime (in milliseconds, logarithmic)

The scalability of our approach clearly indicates the advantages of combining search
and dynamic programming. By using the asynchronous search space pruning capabil-
ities of ADOPT, we are able to solve much larger problems than MB-DPOP, and no-
tice improved performance when the memory requirements for a problem approach
the amount of available memory. In particular, significant improvements begin in both
overall message size and runtime in Figures 5 and 4 at the tests with 84 variables (IW
of 6; max memory = 40MB). We also observe that our hybrid algorithm scales better
than the previous best ADOPT technique, DP2, and offers similar performance to MB-
DPOP for low induced width problems. MB-DPOP cannot complete the problems at
184 variables with induced width of 9 or more difficult problems within the 20 minute
time limit.

6 Related Work

ADOPT and DPOP are covered earlier in this paper. We included in our comparisons
related preprocessing techniques for ADOPT, namely the DP2 procedure from [1]. We
also included comparisons with MB-DPOP. We did not compare results to all exist-
ing complete algorithms for DCOPs. OptAPO has been shown to have similar overall
complexity to ADOPT in [4], but makes a tradeoff for less messages with more com-
putation spent in each cycle. NCBB, presented in [3] offers a somewhat similar branch
and bound algorithm to ADOPT, and for many cases performs better than ADOPT, but
shares a similar scaling problem. Its performance closely resembles that of ADOPT

using the DP2 preprocessing heuristic. NCBB has also been extended in [2] to cache
bounds for previous search contexts, allowing quick retrieval of a previous search state.
This technique improved the performance of NCBB, and may be useful to implement
in our ADOPT-BDP algorithm.

Several incomplete algorithms exist for solving DCOPs. They often provide better
performance, especially on difficult problems, but do not guarantee to find the optimal
solution. A description and comparison of two popular local search algorithms, DBA
and DSA, can be found in [19]. A hybrid local/global search algorithm using DPOP is
presented in [15]. All of these algorithms show good results for time versus optimality,
but do not converge to the optimal solution over time. We did not provide comparisons
with these algorithms because they are suboptimal. However, since our algorithm is
based on ADOPT, we can use the any-time and bounded error approximation techniques
that have previously been applied to ADOPT in [11].

Some centralized constraint processing techniques also combine search and
dynamic programming. AND/OR Branch-and-Bound (AOBB) search is combined
with static and dynamic mini-bucket elimination in [9]. Backtracking with Tree-
Decomposition (BTD) also combines backtracking search with stored structural
goods/nogoods to achieve a similar effect for CSPs in [5]. Both AOBB and BTD have
extensions for valued-CSPs for optimization problems. Like AOBB, BTD is not an
asynchronous algorithm. BTD also does not use a bottom-up heuristic to guide the
search; instead it fully explores partial assignments and stores the results at the sepa-
rators (which avoids redundent exploration on subsequent searches). Many additional
improvements have been made to the original AOBB and BTD algorithms in the central-
ized context. It is unclear how AOBB and BTD and their improvements would extend
to a distributed setting.

7 Conclusions and Future Work

We have introduced a hybrid approach to solving distributed constraint optimization
problems. Our approach is based on two common approaches to solving DCOPs: search
and dynamic programming. By extending current algorithms that use each approach, we
are able to achieve performance that reflects the strengths of both approaches. We also
introduce an iterative increasing procedure that chooses an appropriate memory bound
less than or equal to the available memory.

We compare the performance of our hybrid algorithm to other complete algorithms
for DCOPs. Because of the diversity of implementations, the total message byte size and
runtime measurements best reflect the overall complexity of the algorithms involved.
Using our any-bound approach, we conclude that our algorithm is better than previ-
ous ADOPT-based approaches, and for problems that can be solved in memory using
DPOP, our algorithm performs similarly to DPOP. Furthermore, we show that our any-
bound algorithm is similar to MB-DPOP for small problems, but scales better on hard
problems with a much lower curve than MB-DPOP.

There are several possibilities to further enhance our hybrid approach. First, caching
mechanisms may prove useful to prevent discarding bounds when the variable context
is changed in ADOPT. Second, in this paper we have limited the source for DPRequests

to the root node, but using additional source agents for DPRequests may prove benefi-
cial. Third, we intend to explore alternative mechanisms for memory bounding such as
symbolic value representation and value-bounded sparse hypercubes. Fourth, our initial
hybrid algorithm relied on the integration of two existing distributed algorithms, pro-
viding an inherently distributed algorithm, but limiting techniques to concepts present
in both algorithms. Several hybridization techniques have been introduced in the area
of centralized algorithms, and extending these techniques for a distributed setting is an
area for future research.

References

1. S. Ali, S. Koenig, and M. Tambe. Preprocessing techniques for accelerating the DCOP
algorithm ADOPT. In AAMAS ’05: Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, pages 1041–1048, New York, NY, USA,
2005. ACM Press.

2. A. Chechetka and K. Sycara. An any-space algorithm for distributed constraint optimization.
In Proceedings of AAAI Spring Symposium on Distributed Plan and Schedule Management,
March 2006.

3. A. Chechetka and K. Sycara. No-commitment branch and bound search for distributed con-
straint optimization. In AAMAS ’06: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, pages 1427–1429, New York, NY, USA,
2006. ACM Press.

4. J. Davin and P. J. Modi. Impact of problem centralization in distributed constraint optimiza-
tion algorithms. In AAMAS ’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems, pages 1057–1063, New York, NY, USA, 2005.
ACM Press.

5. P. Jégou and C. Terrioux. Hybrid backtracking bounded by tree-decomposition of constraint
networks. Artificial Intelligence, 146(1):43–75, 2003.

6. J. Liu and K. P. Sycara. Exploiting problem structure for distributed constraint optimization.
In Proceedings of the First International Conference on Multi–Agent Systems, pages 246–
254, San Francisco, CA, 1995. MIT Press.

7. R. T. Maheswaran, M. Tambe, E. Bowring, J. P. Pearce, and P. Varakantham. Taking DCOP to
the real world: Efficient complete solutions for distributed multi-event scheduling. In AAMAS
’04: Proceedings of the Third International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 310–317, Washington, DC, USA, 2004. IEEE Computer Society.

8. R. Mailler and V. Lesser. Asynchronous Partial Overlay: A New Algorithm for Solving
Distributed Constraint Satisfaction Problems. Journal of Artificial Intelligence Research,
25:529–576, April 2006.

9. R. Marinescu and R. Dechter. AND/OR branch-and-bound for graphical models. In IJCAI,
pages 224–229, 2005.

10. P. J. Modi, H. Jung, M. Tambe, W.-M. Shen, and S. Kulkarni. A dynamic distributed con-
straint satisfaction approach to resource allocation. Lecture Notes in Computer Science,
2239:685–, 2001.

11. P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete method for
distributed constraint optimization. In AAMAS 03, 2003.

12. J. P. Pearce. USC DCOP repository, 2005.
13. A. Petcu and B. Faltings. A-DPOP: Approximations in distributed optimization. In Poster in

Principles and Practice of Constraint Programming CP 2005, pages 802–806, Sitges, Spain,
October 2005.

14. A. Petcu and B. Faltings. DPOP: A scalable method for multiagent constraint optimization.
In IJCAI 05, pages 266–271, Edinburgh, Scotland, Aug 2005.

15. A. Petcu and B. Faltings. LS-DPOP: A propagation/local search hybrid for distributed op-
timization. In CP 2005- LSCS’05: Second International Workshop on Local Search Tech-
niques in Constraint Satisfaction, Sitges, Spain, October 2005.

16. A. Petcu and B. Faltings. MB-DPOP: A new memory-bounded algorithm for distributed
optimization. In IJCAI-07, Hyderabad, India, Jan 2007.

17. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed constraint satisfaction
for formalizing distributed problem solving. In International Conference on Distributed
Computing Systems, pages 614–621, 1992.

18. M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed constraint satisfaction
problem: Formalization and algorithms. Knowledge and Data Engineering, 10(5):673–685,
1998.

19. W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis and application of distributed
constraint satisfaction and optimization algorithms in sensor networks. In AAMAS ’03: Pro-
ceedings of the second international joint conference on Autonomous agents and multiagent
systems, pages 185–192, New York, NY, USA, 2003. ACM Press.

