
A Distributed Constraint Optimization Approach for Coordination under
Uncertainty

James Atlas∗

University of Delaware
Keith Decker†

University of Delaware

Abstract

Distributed Constraint Optimization (DCOP) provides a
rich framework for modeling multi-agent coordination prob-
lems. Existing problem domains for DCOP focus on small
(<100 variables), deterministic domains. We present a map-
ping to DCOP for large-scale team coordination problems
that were used in the DARPA Coordinators program.

This domain requires distributed, scalable algorithms to
meet difficult bounds on computation and communication
time. To achieve this goal, we develop a new DCOP algo-
rithm that scales to problems involving hundreds of variables
and constraints while converging to better solution qualities
than existing DCOP algorithms. We show that our algo-
rithm outperforms other DCOP algorithms for this domain
and that our approach is competitive with other general ap-
proaches used in the DARPA Coordinators program.

CR Categories: I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent Systems;

Keywords: Distributed Constraint Optimization, Multi-
agent Coordination, Task Scheduling

1 Introduction

Distributed Constraint Optimization (DCOP) is a general
problem representation for multi-agent systems. Recent ad-
vances in DCOP algorithm development have led to an in-
creasing number of application domains and focus on DCOP
techniques. Recent applications of DCOP to real-world
problems include sensor networks[Modi et al. 2005] and traf-
fic flow cooperation [Junges and Bazzan 2008]. These exist-
ing problem domains for DCOP focus on small (<100 vari-
ables), deterministic domains. We present a mapping to
DCOP for large-scale team coordination problems that were
used in the DARPA Coordinators program, an algorithm to
solve this mapping, and comparison of the results with other
DCOP algorithms and DARPA team approaches.

2 C-TÆMS coordination problem

Multi-agent task planning and scheduling problems require
a rich language for domain representation. The original
TÆMS (Task Analysis, Environment Modeling, and Sim-
ulation) language was developed to provide a domain inde-
pendent, quantitative representation of the complex coor-
dination problem [Horling et al. 1999]. A C-TÆMS prob-
lem instance contains a set of agents and a hierarchically
decomposed task structure. Nodes in the graph are either
complex tasks (internal nodes) or primitive methods (leaf
nodes). Each node may have temporal constraints on the
earliest start time and the deadline. Nodes may also have

∗e-mail: atlas@cis.udel.edu
†e-mail:decker@cis.udel.edu

Figure 1: An example C-TÆMS problem instance.

non-local effect (NLE) constraints that represent hard (en-
ables and disables) and soft (facilitates and hinders) node
relationships. Methods have probabilistic outcomes for du-
ration, quality, and cost. A sample C-TÆMS problem in-
stance is shown in Figure 1.

3 Mapping C-TÆMS to DCOP

DCOP has been formalized in slightly different ways in re-
cent literature, so we will adopt the definition as presented
in [Petcu and Faltings 2005]. A Distributed Constraint Op-
timization Problem with n nodes and m constraints consists
of the tuple < X, D, U > where:
• X = {x1,..,xn} is a set of variables, each one assigned

to a unique agent
• D = {d1,..,dn} is a set of finite domains for each variable
• U = {u1,..,um} is a set of utility functions such that

each function involves a subset of variables in X and
defines a utility for each combination of values among
these variables (constraints)

An optimal solution to a DCOP instance consists of an as-
signment of values in D to X such that the sum of utilities
in U is maximal. Our mapping for C-TÆMS to DCOP con-
tains two parts: variable and constraint mappings.

Variables are created for each method and task in the C-
TÆMS problem. Method variables are created with all pos-
sible start times as values and a value for not scheduled. Task
variables can have several different sets of values depend-
ing on the type of QAF assigned to the task; these reflect
whether a task is enabled for execution, if it accumulates
quality, and if it is being forced to execute/not execute. In
addition, a special end-time variable is created for each task
with an outgoing NLE at or above it in the structure.

Constraints are created between each related node in the
problem structure. Task-subtask and task-method con-
straints define how quality accumulation contributes to over-
all solution utility. Method-method mutex constraints en-

Figure 2: DNEA in action. Given constraint valuations
shown at top and a random starting assignment of A=x,
B=y, and C=z, DNEA finds the optimal assignment in one
round of exchanges. Note how the utility exchange message
from B to A in step 2 contains aggregated utility from C.

force that agents only perform one method at a time. NLE
constraints between nodes enforce hard (enables and dis-
ables) and soft (facilitates and hinders) node relationships.

4 Distributed Neighbor Exchange

Our Distributed Neighbor Exchange Algorithm (DNEA) is
similar in phases to other local value exchange based DCOP
algorithms, including MGM, DSA/SCA, DBA, and max-
sum. These algorithms exchange current variable assign-
ments with neighbors, compute a maximization function
based on neighboring assignments, and then choose to up-
date or not update the local variable assignment. DNEA’s
main advantage is that it scales to large problems, operat-
ing in O(

∑
Y ∈NX

|DY | · |DX |) per cycle, while finding high-

utility solutions using approximate neighborhood optimiza-
tion. An example is shown in Figure 2.

5 Results

The DARPA COORDINATORs project uses a simulation
framework based on simulated time ticks with dynamic ex-
ecution outcomes. In Figure 3 we show comparison results
between DNEA and other scalable local search algorithms
(MGM2 and DSA2) using our C-TÆMS mapping in a static
scenario. Results of our full solution on a subset of the real

-2e+006

-1.5e+006

-1e+006

-500000

 0

M
GM

2

DSA2

DNEA

init
no-init

Figure 3: Estimated Solution Quality as a sum of DCOP
utility for static scenario execution after 100 cycles, with
and without an inital schedule. Closer to zero is better.

 0

 0.2

 0.4

 0.6

 0.8

 1

Naive
DNEA-D

DNEA-U

M
DP

FTS
PCM

Figure 4: OptOP5PMix: Solution Quality as % of optimal
(as determined by an offline solver).

DARPA test scenarios are shown in Figure 4. We show com-
parisons with a naive approach that follows a static schedule,
and with the three contracted teams of the DARPA project
(indicated by abbreviations of their approach).

These results are a significant step forward for DCOP tech-
niques. Our mapping and algorithm successfully solves real-
world problems orders of magnitude larger and more com-
plex than previous DCOP applications. Our approach comes
very close to the solutions of the DARPA teams, and shows
promise for future improvements in this domain and appli-
cability of DCOP to other real-world domains.

References

Horling, B. et. al., 1999. The TÆMS White Paper.

Junges, R., and Bazzan, A. L. C. 2008. Evaluating the
performance of DCOP algorithms in a real world, dynamic
problem. In AAMAS ’08, 599–606.

Maheswaran, R. T. et. al. 2004. Taking DCOP to the
real world: Efficient complete solutions for distributed
multi-event scheduling. In AAMAS ’04, 310–317.

Modi, P. et. al. 2005. ADOPT: Asynchronous distributed
constraint optimization with quality guarantees. In AIJ,
149–180.

Petcu, A., and Faltings, B. 2005. DPOP: A scalable
method for multiagent constraint optimization. In IJCAI
05, 266–271.

