
A Complete Distributed Constraint Optimization Method
For Non-Traditional Pseudotree Arrangements∗

James Atlas
Computer and Information Sciences

University of Delaware
Newark, DE 19716

atlas@cis.udel.edu

Keith Decker
Computer and Information Sciences

University of Delaware
Newark, DE 19716

decker@cis.udel.edu

ABSTRACT
Distributed Constraint Optimization (DCOP) is a general frame-
work that can model complex problems in multi-agent systems.
Several current algorithms that solve general DCOP instances, in-
cluding ADOPT and DPOP, arrange agents into a traditional pseu-
dotree structure. We introduce an extension to the DPOP algorithm
that handles an extended set of pseudotree arrangements. Our al-
gorithm correctly solves DCOP instances for pseudotrees that in-
clude edges between nodes in separate branches. The algorithm
also solves instances with traditional pseudotree arrangements us-
ing the same procedure as DPOP.

We compare our algorithm with DPOP using several metrics in-
cluding the induced width of the pseudotrees, the maximum dimen-
sionality of messages and computation, and the maximum sequen-
tial path cost through the algorithm. We prove that for some prob-
lem instances it is not possible to generate a traditional pseudotree
using edge-traversal heuristics that will outperform a cross-edged
pseudotree. We use multiple heuristics to generate pseudotrees and
choose the best pseudotree in linear space-time complexity. For
some problem instances we observe significant improvements in
message and computation sizes compared to DPOP.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent Systems

General Terms
Algorithms

∗This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under the CO-
ORDINATORs program and the Air Force Research Laboratory
(AFRL) under Contract No. FA8750-05-C-0034, subcontract
01SC-FA8750-05-C0034. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of DARPA or
AFRL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’07 May 14–18 2007, Honolulu, Hawai’i, USA.
Copyright 2007 IFAAMAS .

Keywords
Distributed Constraint Satisfaction and Optimization, Multi-agent
Coordination

1. INTRODUCTION
Many historical problems in the AI community can be trans-

formed into Constraint Satisfaction Problems (CSP). With the ad-
vent of distributed AI, multi-agent systems became a popular way
to model the complex interactions and coordination required to
solve distributed problems. CSPs were originally extended to
distributed agent environments in [9]. Early domains for dis-
tributed constraint satisfaction problems (DisCSP) included job
shop scheduling [1] and resource allocation [2]. Many domains
for agent systems, especially teamwork coordination, distributed
scheduling, and sensor networks, involve overly constrained prob-
lems that are difficult or impossible to satisfy for every constraint.

Recent approaches to solving problems in these domains rely
on optimization techniques that map constraints into multi-valued
utility functions. Instead of finding an assignment that satisfies all
constraints, these approaches find an assignment that produces a
high level of global utility. This extension to the original DisCSP
approach has become popular in multi-agent systems, and has been
labeled the Distributed Constraint Optimization Problem (DCOP)
[1].

Current algorithms that solve complete DCOPs use two main
approaches: search and dynamic programming. Search based al-
gorithms that originated from DisCSP typically use some form of
backtracking [10] or bounds propagation, as in ADOPT [3]. Dy-
namic programming based algorithms include DPOP and its ex-
tensions [5, 6, 7]. To date, both categories of algorithms arrange
agents into a traditional pseudotree to solve the problem.

It has been shown in [6] that any constraint graph can be mapped
into a traditional pseudotree. However, it was also shown that find-
ing the optimal pseudotree was NP-Hard. We began to investi-
gate the performance of traditional pseudotrees generated by cur-
rent edge-traversal heuristics. We found that these heuristics of-
ten produced little parallelism as the pseudotrees tended to have
high depth and low branching factors. We suspected that there
could be other ways to arrange the pseudotrees that would pro-
vide increased parallelism and smaller message sizes. After ex-
ploring these other arrangements we found that cross-edged pseu-
dotrees provide shorter depths and higher branching factors than
the traditional pseudotrees. Our hypothesis was that these cross-
edged pseudotrees would outperform traditional pseudotrees for
some problem types.

In this paper we introduce an extension to the DPOP algorithm
that handles an extended set of pseudotree arrangements which
include cross-edged pseudotrees. We begin with a definition of



DCOP, traditional pseudotrees, and cross-edged pseudotrees. We
then provide a summary of the original DPOP algorithm and in-
troduce our DCPOP algorithm. We discuss the complexity of our
algorithm as well as the impact of pseudotree generation heuris-
tics. We then show that our Distributed Cross-edged Pseudotree
Optimization Procedure (DCPOP) performs significantly better in
practice than the original DPOP algorithm for some problem in-
stances. We conclude with a selection of ideas for future work and
extensions for DCPOP.

2. PROBLEM DEFINITION
DCOP has been formalized in slightly different ways in recent

literature, so we will adopt the definition as presented in [6]. A
Distributed Constraint Optimization Problem with n nodes and m
constraints consists of the tuple < X, D, U > where:

• X = {x1,..,xn} is a set of variables, each one assigned to a
unique agent

• D = {d1,..,dn} is a set of finite domains for each variable

• U = {u1,..,um} is a set of utility functions such that each
function involves a subset of variables in X and defines a
utility for each combination of values among these variables

An optimal solution to a DCOP instance consists of an assignment
of values in D to X such that the sum of utilities in U is maximal.
Problem domains that require minimum cost instead of maximum
utility can map costs into negative utilities. The utility functions
represent soft constraints but can also represent hard constraints
by using arbitrarily large negative values. For this paper we only
consider binary utility functions involving two variables. Higher
order utility functions can be modeled with minor changes to the
algorithm, but they also substantially increase the complexity.

2.1 Traditional Pseudotrees
Pseudotrees are a common structure used in search procedures

to allow parallel processing of independent branches. As defined in
[6], a pseudotree is an arrangement of a graph G into a rooted tree
T such that vertices in G that share an edge are in the same branch
in T. A back-edge is an edge between a node X and any node which
lies on the path from X to the root (excluding X’s parent). Figure 1
shows a pseudotree with four nodes, three edges (A-B, B-C, B-
D), and one back-edge (A-C). Also defined in [6] are four types of
relationships between nodes exist in a pseudotree:

• P(X) - the parent of a node X: the single node higher in the
pseudotree that is connected to X directly through a tree edge

• C(X) - the children of a node X: the set of nodes lower in
the pseudotree that are connected to X directly through tree
edges

• PP(X) - the pseudo-parents of a node X: the set of nodes
higher in the pseudotree that are connected to X directly
through back-edges (In Figure 1, A = PP(C))

• PC(X) - the pseudo-children of a node X: the set of nodes
lower in the pseudotree that are connected to X directly
through back-edges (In Figure 1, C = PC(A))

Figure 1: A traditional pseudotree. Solid line edges repre-
sent parent-child relationships and the dashed line represents
a pseudo-parent-pseudo-child relationship.

Figure 2: A cross-edged pseudotree. Solid line edges represent
parent-child relationships, the dashed line represents a pseudo-
parent-pseudo-child relationship, and the dotted line repre-
sents a branch-parent-branch-child relationship. The bolded
node, B, is the merge point for node E.

2.2 Cross-edged Pseudotrees
We define a cross-edge as an edge from node X to a node Y that is

above X but not in the path from X to the root. A cross-edged pseu-
dotree is a traditional pseudotree with the addition of cross-edges.
Figure 2 shows a cross-edged pseudotree with a cross-edge (D-E).
In a cross-edged pseudotree we designate certain edges as primary.
The set of primary edges defines a spanning tree of the nodes. The
parent, child, pseudo-parent, and pseudo-child relationships from
the traditional pseudotree are now defined in the context of this pri-
mary edge spanning tree. This definition also yields two additional
types of relationships that may exist between nodes:

• BP(X) - the branch-parents of a node X: the set of nodes
higher in the pseudotree that are connected to X but are not
in the primary path from X to the root (In Figure 2, D =
BP(E))

• BC(X) - the branch-children of a node X: the set of nodes
lower in the pseudotree that are connected to X but are not in
any primary path from X to any leaf node (In Figure 2, E =
BC(D))

2.3 Pseudotree Generation



Current algorithms usually have a pre-execution phase to gen-
erate a traditional pseudotree from a general DCOP instance. Our
DCPOP algorithm generates a cross-edged pseudotree in the same
fashion. First, the DCOP instance < X, D, U > translates directly
into a graph with X as the set of vertices and an edge for each pair
of variables represented in U . Next, various heuristics are used to
arrange this graph into a pseudotree. One common heuristic is to
perform a guided depth-first search (DFS) as the resulting traversal
is a pseudotree, and a DFS can easily be performed in a distributed
fashion. We define an edge-traversal based method as any method
that produces a pseudotree in which all parent/child pairs share an
edge in the original graph. This includes DFS, breadth-first search,
and best-first search based traversals. Our heuristics that generate
cross-edged pseudotrees use a distributed best-first search traversal.

3. DPOP ALGORITHM
The original DPOP algorithm operates in three main phases. The

first phase generates a traditional pseudotree from the DCOP in-
stance using a distributed algorithm. The second phase joins utility
hypercubes from children and the local node and propagates them
towards the root. The third phase chooses an assignment for each
domain in a top down fashion beginning with the agent at the root
node.

The complexity of DPOP depends on the size of the largest com-
putation and utility message during phase two. It has been shown
that this size directly corresponds to the induced width of the pseu-
dotree generated in phase one [6]. DPOP uses polynomial time
heuristics to generate the pseudotree since finding the minimum
induced width pseudotree is NP-hard. Several distributed edge-
traversal heuristics have been developed to find low width pseu-
dotrees [8]. At the end of the first phase, each agent knows its
parent, children, pseudo-parents, and pseudo-children.

3.1 Utility Propagation
Agents located at leaf nodes in the pseudotree begin the process

by calculating a local utility hypercube. This hypercube at node
X contains summed utilities for each combination of values in the
domains for P(X) and PP(X). This hypercube has dimensional size
equal to the number of pseudo-parents plus one. A message con-
taining this hypercube is sent to P(X). Agents located at non-leaf
nodes wait for all messages from children to arrive. Once the agent
at node Y has all utility messages, it calculates its local utility hy-
percube which includes domains for P(Y), PP(Y), and Y. The local
utility hypercube is then joined with all of the hypercubes from
the child messages. At this point all utilities involving node Y are
known, and the domain for Y may be safely eliminated from the
joined hypercube. This elimination process chooses the best utility
over the domain of Y for each combination of the remaining do-
mains. A message containing this hypercube is now sent to P(Y).
The dimensional size of this hypercube depends on the number of
overlapping domains in received messages and the local utility hy-
percube. This dynamic programming based propagation phase con-
tinues until the agent at the root node of the pseudotree has received
all messages from its children.

3.2 Value Propagation
Value propagation begins when the agent at the root node Z has

received all messages from its children. Since Z has no parents
or pseudo-parents, it simply combines the utility hypercubes re-
ceived from its children. The combined hypercube contains only
values for the domain for Z. At this point the agent at node Z sim-
ply chooses the assignment for its domain that has the best utility.

A value propagation message with this assignment is sent to each
node in C(Z). Each other node then receives a value propagation
message from its parent and chooses the assignment for its domain
that has the best utility given the assignments received in the mes-
sage. The node adds its domain assignment to the assignments it
received and passes the set of assignments to its children. The al-
gorithm is complete when all nodes have chosen an assignment for
their domain.

4. DCPOP ALGORITHM
Our extension to the original DPOP algorithm, shown in Algo-

rithm 1, shares the same three phases. The first phase generates the
cross-edged pseudotree for the DCOP instance. The second phase
merges branches and propagates the utility hypercubes. The third
phase chooses assignments for domains at branch merge points and
in a top down fashion, beginning with the agent at the root node.

For the first phase we generate a pseudotree using several dis-
tributed heuristics and select the one with lowest overall complex-
ity. The complexity of the computation and utility message size
in DCPOP does not directly correspond to the induced width of
the cross-edged pseudotree. Instead, we use a polynomial time
method for calculating the maximum computation and utility mes-
sage size for a given cross-edged pseudotree. A description of
this method and the pseudotree selection process appears in Sec-
tion 5. At the end of the first phase, each agent knows its par-
ent, children, pseudo-parents, pseudo-children, branch-parents, and
branch-children.

4.1 Merging Branches and Utility Propaga-
tion

In the original DPOP algorithm a node X only had utility func-
tions involving its parent and its pseudo-parents. In DCPOP, a node
X is allowed to have a utility function involving a branch-parent.
The concept of a branch can be seen in Figure 2 with node E rep-
resenting our node X. The two distinct paths from node E to node
B are called branches of E. The single node where all branches of
E meet is node B, which is called the merge point of E.

Agents with nodes that have branch-parents begin by sending
a utility propagation message to each branch-parent. This mes-
sage includes a two dimensional utility hypercube with domains for
the node X and the branch-parent BP(X). It also includes a branch
information structure which contains the origination node of the
branch, X, the total number of branches originating from X, and the
number of branches originating from X that are merged into a sin-
gle representation by this branch information structure (this num-
ber starts at 1). Intuitively when the number of merged branches
equals the total number of originating branches, the algorithm has
reached the merge point for X. In Figure 2, node E sends a utility
propagation message to its branch-parent, node D. This message
has dimensions for the domains of E and D, and includes branch
information with an origin of E, 2 total branches, and 1 merged
branch.

As in the original DPOP utility propagation phase, an agent at
leaf node X sends a utility propagation message to its parent. In
DCPOP this message contains dimensions for the domains of P(X)
and PP(X). If node X also has branch-parents, then the utility prop-
agation message also contains a dimension for the domain of X,
and will include a branch information structure. In Figure 2, node
E sends a utility propagation message to its parent, node C. This
message has dimensions for the domains of E and C, and includes
branch information with an origin of E, 2 total branches, and 1
merged branch.

When a node Y receives utility propagation messages from all of



its children and branch-children, it merges any branches with the
same origination node X. The merged branch information structure
accumulates the number of merged branches for X. If the cumu-
lative total number of merged branches equals the total number of
branches, then Y is the merge point for X. This means that the
utility hypercubes present at Y contain all information about the
valuations for utility functions involving node X. In addition to the
typical elimination of the domain of Y from the utility hypercubes,
we can now safely eliminate the domain of X from the utility hy-
percubes. To illustrate this process, we will examine what happens
in the second phase for node B in Figure 2.

In the second phase Node B receives two utility propagation
messages. The first comes from node C and includes dimensions
for domains E, B, and A. It also has a branch information structure
with origin of E, 2 total branches, and 1 merged branch. The second
comes from node D and includes dimensions for domains E and B.
It also has a branch information structure with origin of E, 2 total
branches, and 1 merged branch. Node B then merges the branch
information structures from both messages because they have the
same origination, node E. Since the number of merged branches
originating from E is now 2 and the total branches originating from
E is 2, node B now eliminates the dimensions for domain E. Node
B also eliminates the dimension for its own domain, leaving only
information about domain A. Node B then sends a utility propa-
gation message to node A, containing only one dimension for the
domain of A.

Although not possible in DPOP, this method of utility propaga-
tion and dimension elimination may produce hypercubes at node Y
that do not share any domains. In DCPOP we do not join domain
independent hypercubes, but instead may send multiple hypercubes
in the utility propagation message sent to the parent of Y. This lazy
approach to joins helps to reduce message sizes.

4.2 Value Propagation
As in DPOP, value propagation begins when the agent at the root

node Z has received all messages from its children. At this point
the agent at node Z chooses the assignment for its domain that has
the best utility. If Z is the merge point for the branches of some
node X, Z will also choose the assignment for the domain of X.
Thus any node that is a merge point will choose assignments for
a domain other than its own. These assignments are then passed
down the primary edge hierarchy. If node X in the hierarchy has
branch-parents, then the value assignment message from P(X) will
contain an assignment for the domain of X. Every node in the hi-
erarchy adds any assignments it has chosen to the ones it received
and passes the set of assignments to its children. The algorithm is
complete when all nodes have chosen or received an assignment for
their domain.

4.3 Proof of Correctness
We will prove the correctness of DCPOP by first noting that

DCPOP fully extends DPOP and then examining the two cases for
value assignment in DCPOP. Given a traditional pseudotree as in-
put, the DCPOP algorithm execution is identical to DPOP. Using a
traditional pseudotree arrangement no nodes have branch-parents
or branch-children since all edges are either back-edges or tree
edges. Thus the DCPOP algorithm using a traditional pseudotree
sends only utility propagation messages that contain domains be-
longing to the parent or pseudo-parents of a node. Since no node
has any branch-parents, no branches exist, and thus no node serves
as a merge point for any other node. Thus all value propagation
assignments are chosen at the node of the assignment domain.

For DCPOP execution with cross-edged pseudotrees, some

nodes serve as merge points. We note that any node X that is not a
merge point assigns its value exactly as in DPOP. The local utility
hypercube at X contains domains for X, P(X), PP(X), and BC(X).
As in DPOP the value assignment message received at X includes
the values assigned to P(X) and PP(X). Also, since X is not a merge
point, all assignments to BC(X) must have been calculated at merge
points higher in the tree and are in the value assignment message
from P(X). Thus after eliminating domains for which assignments
are known, only the domain of X is left. The agent at node X can
now correctly choose the assignment with maximum utility for its
own domain.

If node X is a merge point for some branch-child Y, we know
that X must be a node along the path from Y to the root, and from
P(Y) and all BP(Y) to the root. From the algorithm, we know that
Y necessarily has all information from C(Y), PC(Y), and BC(Y)
since it waits for their messages. Node X has information about all
nodes below it in the tree, which would include Y, P(Y), BP(Y),
and those PP(Y) that are below X in the tree. For any PP(Y) above
X in the tree, X receives the assignment for the domain of PP(Y)
in the value assignment message from P(X). Thus X has utility in-
formation about all of the utility functions of which Y is a part.
By eliminating domains included in the value assignment message,
node X is left with a local utility hypercube with domains for X and
Y. The agent at node X can now correctly choose the assignments
with maximum utility for the domains of X and Y.

4.4 Complexity Analysis
The first phase of DCPOP sends one message to each P(X),

PP(X), and BP(X). The second phase sends one value assignment
message to each C(X). Thus, DCPOP produces a linear number of
messages with respect to the number of edges (utility functions) in
the cross-edged pseudotree and the original DCOP instance. The
actual complexity of DCPOP depends on two additional measure-
ments: message size and computation size.

Message size and computation size in DCPOP depend on the
number of overlapping branches as well as the number of overlap-
ping back-edges. It was shown in [6] that the number of overlap-
ping back-edges is equal to the induced width of the pseudotree. In
a poorly constructed cross-edged pseudotree, the number of over-
lapping branches at node X can be as large as the total number
of descendants of X. Thus, the total message size in DCPOP in a
poorly constructed instance can be space-exponential in the total
number of nodes in the graph. However, in practice a well con-
structed cross-edged pseudotree can achieve much better results.
Later we address the issue of choosing well constructed cross-
edged pseudotrees from a set.

We introduce an additional measurement of the maximum se-
quential path cost through the algorithm. This measurement di-
rectly relates to the maximum amount of parallelism achievable by
the algorithm. To take this measurement we first store the total
computation size for each node during phase two and three. This
computation size represents the number of individual accesses to a
value in a hypercube at each node. For example, a join between two
domains of size 4 costs 4 ∗ 4 = 16. Two directed acyclic graphs
(DAG) can then be drawn; one with the utility propagation mes-
sages as edges and the phase two costs at nodes, and the other with
value assignment messages and the phase three costs at nodes. The
maximum sequential path cost is equal to the sum of the longest
path on each DAG from the root to any leaf node.

5. HEURISTICS
In our assessment of complexity in DCPOP we focused on the

worst case possibly produced by the algorithm. We acknowledge



Algorithm 1 DCPOP Algorithm
1: DCPOP(X; D; U )

Each agent Xi executes:

Phase 1: pseudotree creation
2: elect leader from all Xj ∈ X
3: elected leader initiates pseudotree creation
4: afterwards, Xi knows P(Xi), PP(Xi), BP(Xi), C(Xi), BC(Xi)

and PC(Xi)

Phase 2: UTIL message propagation
5: if |BP(Xi)| > 0 then
6: BRANCHXi ← |BP(Xi)|+ 1
7: for all Xk ∈BP(Xi) do
8: UTILXi(Xk)←Compute utils(Xi, Xk)
9: Send message(Xk,UTILXi(Xk),BRANCHXi)

10: if |C(Xi)| = 0(i.e. Xi is a leaf node) then
11: UTILXi(P(Xi))← Compute utils(P(Xi),PP(Xi))

for all PP(Xi)
12: Send message(P(Xi),

UTILXi(P(Xi)),BRANCHXi)
13: Send message(PP(Xi), empty UTIL,

empty BRANCH) to all PP(Xi)
14: activate UTIL Message handler()

Phase 3: VALUE message propagation
15: activate VALUE Message handler()

END ALGORITHM

UTIL Message handler(Xk,UTILXk (Xi),
BRANCHXk )

16: store UTILXk (Xi),BRANCHXk (Xi)
17: if UTIL messages from all children and branch children arrived

then
18: for all Bj ∈BRANCH(Xi) do
19: if Bj is merged then
20: join all hypercubes where Bj ∈UTIL(Xi)
21: eliminate Bj from the joined hypercube
22: if P(Xi) == null (that means Xi is the root) then
23: v ∗ i← Choose optimal(null)
24: Send VALUE(Xi, v ∗ i) to all C(Xi)
25: else
26: UTILXi(P(Xi))← Compute utils(P(Xi),

PP(Xi))
27: Send message(P(Xi),UTILXi(P(Xi)),

BRANCHXi(P(Xi)))

VALUE Message handler(VALUEXi ,P(Xi))
28: add all Xk ← v ∗ k ∈VALUEXi ,P(Xi) to agent view
29: Xi ← v ∗ i =Choose optimal(agent view)
30: Send VALUEXl , Xi to all Xl ∈C(Xi)

that in real world problems the generation of the pseudotree has
a significant impact on the actual performance. The problem of
finding the best pseudotree for a given DCOP instance is NP-Hard.
Thus a heuristic is used for generation, and the performance of the
algorithm depends on the pseudotree found by the heuristic. Some
previous research focused on finding heuristics to generate good
pseudotrees [8]. While we have developed some heuristics that
generate good cross-edged pseudotrees for use with DCPOP, our
focus has been to use multiple heuristics and then select the best
pseudotree from the generated pseudotrees.

We consider only heuristics that run in polynomial time with re-
spect to the number of nodes in the original DCOP instance. The
actual DCPOP algorithm has worst case exponential complexity,
but we can calculate the maximum message size, computation size,
and sequential path cost for a given cross-edged pseudotree in lin-
ear space-time complexity. To do this, we simply run the algorithm
without attempting to calculate any of the local utility hypercubes
or optimal value assignments. Instead, messages include dimen-
sional and branch information but no utility hypercubes.

After each heuristic completes its generation of a pseudotree, we
execute the measurement procedure and propagate the measure-
ment information up to the chosen root in that pseudotree. The
root then broadcasts the total complexity for that heuristic to all
nodes. After all heuristics have had a chance to complete, every
node knows which heuristic produced the best pseudotree. Each
node then proceeds to begin the DCPOP algorithm using its knowl-
edge of the pseudotree generated by the best heuristic.

The heuristics used to generate traditional pseudotrees perform
a distributed DFS traversal. The general distributed algorithm uses
a token passing mechanism and a linear number of messages. Im-
proved DFS based heuristics use a special procedure to choose the
root node, and also provide an ordering function over the neighbors
of a node to determine the order of path recursion. The DFS based
heuristics used in our experiments come from the work done in [4,
8].

5.1 The best-first cross-edged pseudotree
heuristic

The heuristics used to generate cross-edged pseudotrees per-
form a best-first traversal. A general distributed best-first algo-
rithm for node expansion is presented in Algorithm 2. An eval-
uation function at each node provides the values that are used to
determine the next best node to expand. Note that in this algo-
rithm each node only exchanges its best value with its neighbors.
In our experiments we used several evaluation functions that took
as arguments an ordered list of ancestors and a node, which con-
tains a list of neighbors (with each neighbor’s placement depth in
the tree if it was placed). From these we can calculate branch-
parents, branch-children, and unknown relationships for a potential
node placement. The best overall function calculated the value as
ancestors− (branchparents+branchchildren) with the num-
ber of unknown relationships being a tiebreak. After completion
each node has knowledge of its parent and ancestors, so it can eas-
ily determine which connected nodes are pseudo-parents, branch-
parents, pseudo-children, and branch-children.

The complexity of the best-first traversal depends on the com-
plexity of the evaluation function. Assuming a complexity of O(V )
for the evaluation function, which is the case for our best over-
all function, the best-first traversal is O(V · E) which is at worst
O(n3). For each v ∈ V we perform a place operation, and find the
next node to place using the getBestNeighbor operation. The place
operation is at most O(V ) because of the sent messages. Find-
ing the next node uses recursion and traverses only already placed



Algorithm 2 Distributed Best-First Search Algorithm
root← electedleader
next(root, ∅)

place(node, parent)
node.parent← parent
node.ancestors← parent.ancestors ∪ parent
send placement message (node, node.ancestors) to all neigh-
bors of node

next(current, previous)
if current is not placed then

place(current, previous)
next(current, ∅)

else
best← getBestNeighbor(current, previous)
if best = ∅ then

if previous = ∅ then
terminate, all nodes are placed

next(previous, ∅)
else

next(best, current)

getBestNeighbor(current, previous)
best← ∅; score← 0
for all n ∈ current.neighbors do

if n! = previous then
if n is placed then

nscore← getBestNeighbor(n, current)
else

nscore← evaluate(current, n)
if nscore > score then

score← nscore
best← n

return best, score

nodes, so it has O(V ) recursions. Each recursion performs a re-
cursive getBestNeighbor operation that traverses all placed nodes
and their neighbors. This operation is O(V · E), but results can
be cached using only O(V ) space at each node. Thus we have
O(V ·(V +V +V ·E)) = O(V 2 ·E). If we are smart about evaluating
local changes when each node receives placement messages from
its neighbors and cache the results the getBestNeighbor operation
is only O(E). This increases the complexity of the place operation,
but for all placements the total complexity is only O(V · E). Thus
we have an overall complexity of O(V ·E+V ·(V +E)) = O(V ·E).

6. COMPARISON OF COMPLEXITY IN
DPOP AND DCPOP

We have already shown that given the same input, DCPOP per-
forms the same as DPOP. We also have shown that we can accu-
rately predict performance of a given pseudotree in linear space-
time complexity. If we use a constant number of heuristics to gen-
erate the set of pseudotrees, we can choose the best pseudotree in
linear space-time complexity. We will now show that there exists
a DCOP instance for which a cross-edged pseudotree outperforms
all possible traditional pseudotrees (based on edge-traversal heuris-
tics).

In Figure 3(a) we have a DCOP instance with six nodes. This
is a bipartite graph with each partition fully connected to the other

(a) (b) (c)

Figure 3: (a) The DCOP instance (b) A traditional pseudotree
arrangement for the DCOP instance (c) A cross-edged pseu-
dotree arrangement for the DCOP instance

partition. In Figure 3(b) we see a traditional pseudotree arrange-
ment for this DCOP instance. It is easy to see that any edge-
traversal based heuristic cannot expand two nodes from the same
partition in succession. We also see that no node can have more
than one child because any such arrangement would be an invalid
pseudotree. Thus any traditional pseudotree arrangement for this
DCOP instance must take the form of Figure 3(b). We can see that
the back-edges F-B and F-A overlap node C. Node C also has a
parent E, and a back-edge with D. Using the original DPOP algo-
rithm (or DCPOP since they are identical in this case), we find that
the computation at node C involves five domains: A, B, C, D, and
E.

In contrast, the cross-edged pseudotree arrangement in Fig-
ure 3(c) requires only a maximum of four domains in any computa-
tion during DCPOP. Since node A is the merge point for branches
from both B and C, we can see that each of the nodes D, E, and F
have two overlapping branches. In addition each of these nodes has
node A as its parent. Using the DCPOP algorithm we find that the
computation at node D (or E or F) involves four domains: A, B, C,
and D (or E or F).

Since no better traditional pseudotree arrangement can be cre-
ated using an edge-traversal heuristic, we have shown that DCPOP
can outperform DPOP even if we use the optimal pseudotree found
through edge-traversal. We acknowledge that pseudotree arrange-
ments that allow parent-child relationships without an actual con-
straint can solve the problem in Figure 3(a) with maximum com-
putation size of four domains. However, current heuristics used
with DPOP do not produce such pseudotrees, and such a heuristic
would be difficult to distribute since each node would require infor-
mation about nodes with which it has no constraint. Also, while we
do not prove it here, cross-edged pseudotrees can produce smaller
message sizes than such pseudotrees even if the computation size
is similar. In practice, since finding the best pseudotree arrange-
ment is NP-Hard, we find that heuristics that produce cross-edged
pseudotrees often produce significantly smaller computation and
message sizes.

7. EXPERIMENTAL RESULTS



Existing performance metrics for DCOP algorithms include the
total number of messages, synchronous clock cycles, and message
size. We have already shown that the total number of messages is
linear with respect to the number of constraints in the DCOP in-
stance. We also introduced the maximum sequential path cost (PC)
as a measurement of the maximum amount of parallelism achiev-
able by the algorithm. The maximum sequential path cost is equal
to the sum of the computations performed on the longest path from
the root to any leaf node. We also include as metrics the maxi-
mum computation size in number of dimensions (CD) and maxi-
mum message size in number of dimensions (MD). To analyze the
relative complexity of a given DCOP instance, we find the mini-
mum induced width (IW) of any traditional pseudotree produced
by a heuristic for the original DPOP.

7.1 Generic DCOP instances
For our initial tests we randomly generated two sets of problems

with 3000 cases in each. Each problem was generated by assign-
ing a random number (picked from a range) of constraints to each
variable. The generator then created binary constraints until each
variable reached its maximum number of constraints. The first set
uses 20 variables, and the best DPOP IW ranges from 1 to 16 with
an average of 8.5. The second set uses 100 variables, and the best
DPOP IW ranged from 2 to 68 with an average of 39.3. Since most
of the problems in the second set were too complex to actually com-
pute the solution, we took measurements of the metrics using the
techniques described earlier in Section 5 without actually solving
the problem. Results are shown for the first set in Table 1 and for
the second set in Table 2.

For the two problem sets we split the cases into low density and
high density categories. Low density cases consist of those prob-
lems that have a best DPOP IW less than or equal to half of the
total number of nodes (e.g. IW ≤ 10 for the 20 node problems
and IW ≤ 50 for the 100 node problems). High density problems
consist of the remainder of the problem sets.

In both Table 1 and Table 2 we have listed performance met-
rics for the original DPOP algorithm, the DCPOP algorithm using
only cross-edged pseudotrees (DCPOP-CE), and the DCPOP algo-
rithm using traditional and cross-edged pseudotrees (DCPOP-All).
The pseudotrees used for DPOP were generated using 5 heuris-
tics: DFS, DFS MCN, DFS CLIQUE MCN, DFS MCN DSTB,
and DFS MCN BEC. These are all versions of the guided DFS
traversal discussed in Section 5. The cross-edged pseudotrees used
for DCPOP-CE were generated using 5 heuristics: MCN, LCN,
MCN A-B, LCN A-B, and LCSG A-B. These are all versions of
the best-first traversal discussed in Section 5.

For both DPOP and DCPOP-CE we chose the best pseudotree
produced by their respective 5 heuristics for each problem in the
set. For DCPOP-All we chose the best pseudotree produced by all
10 heuristics for each problem in the set. For the CD and MD met-
rics the value shown is the average number of dimensions. For the
PC metric the value shown is the natural logarithm of the maxi-
mum sequential path cost (since the actual value grows exponen-
tially with the complexity of the problem).

The final row in both tables is a measurement of improvement
of DCPOP-All over DPOP. For the CD and MD metrics the value
shown is a reduction in number of dimensions. For the PC metric
the value shown is a percentage reduction in the maximum sequen-
tial path cost (% = DPOP−DCPOP

DCPOP
∗ 100). Notice that DCPOP-

All outperforms DPOP on all metrics. This logically follows from
our earlier assertion that given the same input, DCPOP performs
exactly the same as DPOP. Thus given the choice between the pseu-
dotrees produced by all 10 heuristics, DCPOP-All will always out-

Low Density High Density
Algorithm CD MD PC CD MD PC
DPOP 7.81 6.81 3.78 13.34 12.34 5.34
DCPOP-CE 7.94 6.73 3.74 12.83 11.43 5.07
DCPOP-All 7.62 6.49 3.66 12.72 11.36 5.05
Improvement 0.18 0.32 13% 0.62 0.98 36%

Table 1: 20 node problems

Low Density High Density
Algorithm CD MD PC CD MD PC
DPOP 33.35 32.35 14.55 58.51 57.50 19.90
DCPOP-CE 33.49 29.17 15.22 57.11 50.03 20.01
DCPOP-All 32.35 29.57 14.10 56.33 51.17 18.84
Improvement 1.00 2.78 104% 2.18 6.33 256%

Table 2: 100 node problems

Co
m

pu
ta

tio
n 

D
im

en
si

on
 Im

pr
ov

em
en

t

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Induced Width (DPOP)
 

Figure 4: Computation Dimension Size

M
es

sa
ge

 D
im

en
si

on
 Im

pr
ov

em
en

t

-1

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Induced Width (DPOP)
 

Figure 5: Message Dimension Size



 
P a

t h
  C

os
t I

m
pr

ov
em

en
t %

 

-10  
0  

10  
20  
30  
40  
50  
60  
70  
80  
90  

100  
110  

1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  

Induced Width (DPOP) 
 

Figure 6: Path Cost

DCPOP Improvement
Ag Mtg Vars Const IW CD MD PC
10 4 12 13.5 2.25 -0.01 -0.01 5.6%
30 14 44 57.6 3.63 0.09 0.09 10.9%
50 24 76 101.3 4.17 0.08 0.09 10.7%
100 49 156 212.9 5.04 0.16 0.20 30.0%
150 74 236 321.8 5.32 0.21 0.23 35.8%
200 99 316 434.2 5.66 0.18 0.22 29.5%

Table 3: Meeting Scheduling Problems

perform DPOP. Another trend we notice is that the improvement is
greater for high density problems than low density problems. We
show this trend in greater detail in Figures 4, 5, and 6. Notice
how the improvement increases as the complexity of the problem
increases.

7.2 Meeting Scheduling Problem
In addition to our initial generic DCOP tests, we ran a series

of tests on the Meeting Scheduling Problem (MSP) as described
in [6]. The problem setup includes a number of people that are
grouped into departments. Each person must attend a specified
number of meetings. Meetings can be held within departments or
among departments, and can be assigned to one of eight time slots.
The MSP maps to a DCOP instance where each variable represents
the time slot that a specific person will attend a specific meeting.
All variables that belong to the same person have mutual exclusion
constraints placed so that the person cannot attend more than one
meeting during the same time slot. All variables that belong to the
same meeting have equality constraints so that all of the partici-
pants choose the same time slot. Unary constraints are placed on
each variable to account for a person’s valuation of each meeting
and time slot.

For our tests we generated 100 sample problems for each com-
bination of agents and meetings. Results are shown in Table 3. The
values in the first five columns represent (in left to right order), the
total number of agents, the total number of meetings, the total num-
ber of variables, the average total number of constraints, and the
average minimum IW produced by a traditional pseudotree. The
last three columns show the same metrics we used for the generic
DCOP instances, except this time we only show the improvements
of DCPOP-All over DPOP. Performance is better on average for
all MSP instances, but again we see larger improvements for more
complex problem instances.

8. CONCLUSIONS AND FUTURE WORK
We presented a complete, distributed algorithm that solves gen-

eral DCOP instances using cross-edged pseudotree arrangements.
Our algorithm extends the DPOP algorithm by adding additional
utility propagation messages, and introducing the concept of branch
merging during the utility propagation phase. Our algorithm also
allows value assignments to occur at higher level merge points
for lower level nodes. We have shown that DCPOP fully extends
DPOP by performing the same operations given the same input.
We have also shown through some examples and experimental data
that DCPOP can achieve greater performance for some problem in-
stances by extending the allowable input set to include cross-edged
pseudotrees.

We placed particular emphasis on the role that edge-traversal
heuristics play in the generation of pseudotrees. We have shown
that the performance penalty is minimal to generate multiple
heuristics, and that we can choose the best generated pseudotree
in linear space-time complexity. Given the importance of a good
pseudotree for performance, future work will include new heuris-
tics to find better pseudotrees. Future work will also include adapt-
ing existing DPOP extensions [5, 7] that support different problem
domains for use with DCPOP.

9. REFERENCES
[1] J. Liu and K. P. Sycara. Exploiting problem structure for

distributed constraint optimization. In V. Lesser, editor,
Proceedings of the First International Conference on
Multi–Agent Systems, pages 246–254, San Francisco, CA,
1995. MIT Press.

[2] P. J. Modi, H. Jung, M. Tambe, W.-M. Shen, and S. Kulkarni.
A dynamic distributed constraint satisfaction approach to
resource allocation. Lecture Notes in Computer Science,
2239:685–700, 2001.

[3] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo. An
asynchronous complete method for distributed constraint
optimization. In AAMAS 03, 2003.

[4] A. Petcu. Frodo: A framework for open/distributed
constraint optimization. Technical Report No. 2006/001
2006/001, Swiss Federal Institute of Technology (EPFL),
Lausanne (Switzerland), 2006. http://liawww.epfl.ch/frodo/.

[5] A. Petcu and B. Faltings. A-dpop: Approximations in
distributed optimization. In poster in CP 2005, pages
802–806, Sitges, Spain, October 2005.

[6] A. Petcu and B. Faltings. Dpop: A scalable method for
multiagent constraint optimization. In IJCAI 05, pages
266–271, Edinburgh, Scotland, Aug 2005.

[7] A. Petcu, B. Faltings, and D. Parkes. M-dpop: Faithful
distributed implementation of efficient social choice
problems. In AAMAS 06, pages 1397–1404, Hakodate,
Japan, May 2006.

[8] G. Ushakov. Solving meeting scheduling problems using
distributed pseudotree-optimization procedure. Master’s
thesis, École Polytechnique Fédérale de Lausanne, 2005.

[9] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara.
Distributed constraint satisfaction for formalizing distributed
problem solving. In International Conference on Distributed
Computing Systems, pages 614–621, 1992.

[10] M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The
distributed constraint satisfaction problem: Formalization
and algorithms. Knowledge and Data Engineering,
10(5):673–685, 1998.


