
Flexible Grid Workflows Using TÆMS

James Atlas, Keith Decker, Martin Swany
Computer and Information Sciences

University of Delaware
Newark, DE 19716

atlas, decker, swany@cis.udel.edu

Abstract

Grid computing tasks are often broken down into mul-
tiple subtasks and connected using a directed acyclic
graph (DAG) to form a grid workflow. If we assume
a dynamic market-based environment with multiple vir-
tual organizations competing to provide grid computing
resources, it becomes apparent that a static mapping of
these resources to the workflow will produce subopti-
mal results. Furthermore, the authors argue that a rigid
workflow model will also produce suboptimal results
within a dynamic environment.
The multi-agent systems community addresses the
problem of executing high-level tasks through a series
of coordination mechanisms. If we view grid comput-
ing service providers and consumers as agents, we can
view the problem of executing a grid computing task
as coordination between agents. The position taken in
this paper is that TÆMS, a domain independent model
of the problem solving activities of an intelligent agent,
can provide a flexible workflow model that incorporates
the notion of quality for grid computing tasks. This
flexible workflow approach improves the capabilities of
workflow execution engines to optimize a workflow.

Introduction
Directed acyclic graphs (DAG) can be used to represent the
general workflow of a grid task. By representing differ-
ent subtasks as nodes on the graph, the connecting edges
can represent the control flow. Tasks can be executed in
sequence or in parallel, and synchronization can be repre-
sented by connecting multiple endpoints to the same node.
A rigid workflow model can be thought of as one in which
one of two conditions holds: all nodes in the DAG must be
visited to complete the task, or all decisions about which
nodes to visit are determined by parameters local to the
problem (results from previous tasks or static configuration).
The second condition would represent a typical conditional
branch. A flexible workflow model allows workflow engines
and compilers to modify or selectively execute the underly-
ing workflow to accomplish the task.

The process of designing a DAG for a computational task
is usually done through a visual modeling tool or through a
specific programming language. The GridAnt system uses
the Apache tool, Ant, to provide a client oriented DAG
workflow solution (Amin & von Laszewski 2003). Other

proprietary solutions have used scripting languages to rep-
resent the flow (UNICORE 2004), (Con 2005). The Globus
community has proposed a standard Grid Services Flow
Language (GSFL) (Krishnan, Wagstrom, & von Laszewski
2002). This standard was based on the Web Services Flow
Language (WSFL), but provided some specific enhance-
ments for grid applications, namely peer-to-peer commu-
nication and on-demand services. The Global Grid Forum
community has proposed an XML-based grid workflow vo-
cabulary (Bivens 2001). The web services community, in-
cluding industry giants IBM and Microsoft, has developed
and endorsed the Business Process Execution Language for
Web Services (BPEL4WS) (OASIS 2003). This specifica-
tion merges and supercedes the earlier WSFL and XLang
specifications (and will soon be changed to Web Services
Business Process Execution Language, WSBPEL, in the up-
coming 2.0 specification). While not aimed directly at grid
applications, the BPEL4WS standard supports many dis-
tributed application constructs that prove useful, including
sequential and parallel flow, fault tolerance and recovery,
and controlled flow branching.

While some these models have sophisticated implemen-
tations, most limit the ability of the execution engine to ne-
gotiate acceptable quality of service for the task initiator.
We could define the quality of service as a measure of task
accuracy, but it is a more general concept. Intuitively, the
higher the quality of service, the better the workflow result.
For example, the quality of a large scale simulation could
reflect how closely the simulation approximates the actual
phenomenon. We assume that the engine is able to negoti-
ate with potential service providers for cost and duration of
tasks, but even with economic negotiation models such as
Contract Net and scheduling support for service level agree-
ments (loose reservations) the execution engine may not be
able to reach the optimal quality of service. Given perfect
information the engine might reach an optimal mapping of
subtasks to resources, but it is limited in its ability to reason
about the list of subtasks that it must execute.

Why might an execution engine want to reason about the
subtasks? As a simple illustration, imagine two paths within
the workflow that both enable the overall task to complete.
Each path represents a different algorithm, but each obtain
the same results for a data set. Algorithm A uses twice as
many CPU cycles as algorithm B, and algorithm B uses

<invoke> Algorithm A

<invoke> Algorithm B

<process>

<flow>

<join>
 success

 failure

 [A or B]

[else]

Figure 1: BPEL4WS representation of the classic OR

twice as much memory as algorithm A. The execution en-
gine gains nothing by executing both paths, but must execute
at least one to finish the overall task. This could be repre-
sented as a classic OR condition in the workflow. BPEL4WS
is the only current workflow model that can handle this sim-
ple condition, as shown in Figure 1.

We can extend the idea of the classic OR to a non-boolean
OR in which we consider the quality of service. In the clas-
sic sense, success quality could map to a value of 1 and fail-
ure quality to 0. By extension, the range of values between
0 and 1 would represent varying levels of quality. For exam-
ple, suppose the previous algorithm A produced a quality of
0.2 and algorithm B produced a quality of 0.5. If both algo-
rithms were executed, the non-boolean OR would obtain the
resulting quality of 0.5. If only algorithm A was executed
the non-boolean OR would obtain the resulting quality of
0.2. If the workflow engine needed to produce a quality of
0.1 then it is free to choose algorithm A or B. If it needed a
quality of 0.4 then algorithm B is the only option.

Under current workflow languages, it is not possible to
represent this situation. BPEL4WS provides flexibility with
the classic OR case that enables the workflow engine to
selectively execute tasks. However, it does not provide a
representation of the task quality. Since the task quality is
determined by the designer of the workflow, this limits the
workflow engine’s ability to provide the best quality result.
Furthermore, there exist more complex task relationships
that affect quality than the simple non-boolean OR. Current
workflow languages do not enable workflow engines to han-
dle these situations.

Approach
The problems discussed so far can be characterized by a lack
of expressiveness and flexibility in current workflow mod-
els. One reason for this shortcoming is the domain from
which these flow languages evolved. The domain of busi-
ness to business (B2B) interactions has several properties
that can be seen in the design of the workflow languages.
The first property is runtime length. In most B2B transac-
tions the runtime is very short, often on the order of seconds.
A short runtime makes it disadvantageous to negotiate and
re-plan a workflow on the fly because of the computation
time involved. The second property is the rigidness of B2B
structure itself. Predictable behavior is a tenet of financial
and other mission-critical applications. These properties are
still present in certain grid applications, but we argue that
in general they are different. Grid computing emphasizes

large scale tasks that most likely have runtimes on the or-
der of hours or longer. It also has a notion of quality that is
not present in typical B2B transactions. A quality level of
99% may be acceptable for a large graphics rendering appli-
cation, whereas most businesses would frown on a quality
level of 99% for a money transfer. These somewhat subtle
differences in domains form the basis for a new workflow
model.

In particular, a more robust model of task relationships
will be necessary to make the grid workflow flexible enough
to handle these situations. These task relationships have
been studied in great detail in the multi-agent systems com-
munity. Multi-agent systems often operate in a satisficing
mode in which the solution may not be 100% of the qual-
ity level, but instead meets some established minimum qual-
ity. In addition to the OR relationship explored earlier, other
task relationships have emerged that lack representation in
current workflow models. In the next section we propose
adopting the TÆMS model for these task relations, and ex-
plore how this could be implemented for a grid computing
task.

TÆMS models the task relations involved in problem-
solving activities of intelligent agent systems (Horlinget al.
1998). A task structure is represented as a graph that is hi-
erarchically decomposed into subtasks. While allowing for
recursivity in the graph, for simplicity sake we will refer to
this task structure as a tree without much loss in expressive-
ness. This tree contains sequences of subtasks, or sub-goals,
and methods. Methods represent leaf nodes of the tree that
the model has not decomposed (without loss of generality
we will refer to both subtasks and methods as tasks). TÆMS
differentiates between two types of node relationships: par-
ent/child and node-to-node(peer-to-peer). The structure for
a parent/child connection is a quality accumulation function,
and for a node-to-node connection is an interrelationship.

The first structure for connections, Quality accumulation
functions (QAF), determine how the quality of child tasks
combine to produce the quality of the parent task. Many
functions have been developed for use within the model, but
we will focus on explaining three of them and how they en-
hance our model for grid applications. They are min, max,
sum. From the TÆMS white-paper:

A min QAF is functionally equivalent to an AND
operator. The quality of the supertask is equal to the
minimum quality of its subtasks.

A max QAF is functionally equivalent to an OR op-
erator. It says that the quality of the supertask is equal
to the maximum quality of any one of its subtasks.

The sum QAF says that the quality of the super-
task is equal to the sum of the qualities of its subtasks,
regardless of order or which methods are actually in-
voked.

In our earlier example of the non-boolean OR, the two
paths could have been represented as child nodes to a parent
using the max QAF, as shown in Figure 2. The execution en-
gine could then reason about which child node to execute to
produce the required quality at the parent node. A min QAF
could be used in execution when all subtasks must complete

Algorithm A
quality = 0.2

Algorithm B
quality = 0.5

Process

q_max

Figure 2: TÆMS representation of the non-boolean OR

for the supertask to produce any quality. It could be used to
represent a parallel computation on a segmented set of data
where any correct result must use the results of each segment
of data. A sum QAF could represent a large scale task where
each subtask produces a useful result and is aggregated with
others to produce the final result. This could be a graphics
scene rendering where the subtasks represent supersampled
points of light for a raytrace. The supertask quality is then
equal to the number of light points that have completed their
raytrace.

These are simple examples, but give us a starting place
to examine the benefits of the model. Suppose the ray-
tracing application belongs to a commercial movie studio
that is paying for computing power using an on demand
market. Also assume that during the movie development
phase, the studio requires frequent full-length renderings to
gauge progress. The studio has allocated a certain amount
of money for the execution and the engine realizes during
processing that it will not be able to complete the task on
time and under budget. Under current workflow models the
engine has no real recourse (other than to perhaps terminate
the application or notify someone in charge of the shortcom-
ing). Under a TÆMS model the studio could have told the
engine that tracing 90% of the rays is an acceptable qual-
ity level for the pre-release renderings (of course 100% is
preferred and would be required for the late stages and fi-
nal release). Given this optimization function and the QAF
structure, the execution engine could have chosen to only
execute 90% of the subtasks and met the requested quality
level. If this 10% reduction in required computing power
allowed the application to finish on time and within budget,
the engine has accomplished the task that was impossible
under current workflow models.

The other TÆMS structure for connections, the node-to-
node interrelationship structure, is represented by two types,
enables and facilitates (actually four if you include their
opposites, disables and hinders which we will not discuss
here). The enable relationship specifies an ordering between
two tasks. If task A is said to enable task B, then task A
must be performed before task B can accumulate any qual-
ity. This relationship provides for sequential task ordering
essential to current workflow models. The facilitates type
specifies a beneficial effect of performing a task. If task A
is said to facilitate task B, then by executing task A, task B

may have a shorter runtime, lower cost, or increased quality.
The facilitates relationship is not present in current work-

flow models, but again can improve the reasoning capabil-
ities of the execution engine. For example, an algorithm C
can run using any random data set, but produces a higher
quality result when algorithm D has preprocessed the data.
Using TÆMS, algorithm D facilitates algorithm C, and the
workflow engine could decide to execute algorithm D if the
increased quality was worth the cost. In current workflow
models the boolean evaluation of success means that the
workflow engine cannot distinguish between the results of
executing D then C or just executing C.

Conclusion
We have explored the idea of a flexible workflow model us-
ing the notion of quality of service within grid applications.
Through the use of several examples it has been shown that a
flexible model offers several advantages over the rigid mod-
els present in current workflow languages. In particular,
the task relationships in the TÆMS language have been ap-
plied to these examples to show that these advantages trans-
late into improvements for grid workflow execution engines.
The next logical step would be to extend a currently accepted
grid workflow standard with TÆMS structures, or to pro-
pose a new model that reflects a combination of both. This
model could then be integrated with an advanced workflow
execution module and experimental results could be gath-
ered for performance measurements in an actual grid appli-
cation. This future work would experimentally validate the
ideas presented here, and provide a richer understanding of
the advantages of flexible grid workflows.

References
Amin, K., and von Laszewski, G. 2003. Gri-
dAnt: A Grid Workflow System. Website: http://www-
unix.globus.org/cog/projects/gridant/.
Bivens, H. P. 2001. Grid workflow. Grid Computing Envi-
ronments Working Group, Category: Experimental.
Condor Team, University of Wisconsin-Madison, Website:
http://www.cs.wisc.edu/condor/manual/. 2005.Condor
Version 6.6.9 Manual.
Horling, B.; Lesser, V.; Vincent, R.; Wagner, T.;
Raja, A.; Zhang, S.; Decker, K.; and Garvey, A.
1998. The taems white paper. Available from
http://dis.cs.umass.edu/research/taems/white/.
Krishnan, S.; Wagstrom, P.; and von Laszewski, G. 2002.
Gsfl : A workflow framework for grid services. In Preprint
ANL/MCS-P980-0802.
OASIS. 2003. Business process execution
language for web services. Available from
http://www.ibm.com/developerworks/library/specification/ws-
bpel/.
UNICORE. 2004. The unicore grid middle-
ware. Available from the UNICORE Forum website:
http://www.unicore.org/.

