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Abstract. BOINC is a middleware for Volunteer Computing. In BOINC projects,
heterogeneous resources distributed across the Internet are used for large-scale
scientific simulations. The large need for resources in BOINC projects often com-
petes with volunteer’s preferences: volunteers can imposelimits on the use of
their idle resources. The server component of BOINC embodies a number of
scheduling policies and parameters which search for optimal resource allocation,
despite volunteer’s preferences. Most of the time, maximumproject performance
can be achieved only when volunteer’s preferences are neglected.
To address this problem, we propose a novel optimization procedure based on
constraint optimization techniques that actively allocates volunteer resources to
improve project throughput and, at the same time, aims to preserve volunteer
preferences. We evaluate our approach against the current allocation strategies of
BOINC using EmBOINC, a full-scale emulator of BOINC projects using realis-
tic trace populations of volunteer’s clients (including heterogeneity, churn, avail-
ability, reliability). This paper shows the increase in project throughput obtained
with our approach and discusses the trade-off between volunteer preferences and
project throughput for heterogeneous resources.

1 Introduction

Volunteer Computing (VC) is a form of distributed computingin which ordinary peo-
ple (i.e., volunteers) volunteer processing and storage resources to computing projects.
BOINC is a well-known middleware for VC [1] supporting scientific computing projects
(e.g., physics, biology, and medicine). The main strength of BOINC systems is its ca-
pability to provide scientists with PetaFLOPs of computingpower at low cost. The VC
community powered by BOINC currently counts approximately50 projects and 580
000 volunteer computers supplying an average of 1.2 PetaFLOPs to these projects.

VC resources increasingly include diverse platforms such as video game consoles
(Playstations) and graphics processing units (GPUs). SomeVC projects are able to cus-
tomize their code to benefit from performance features of these platforms. This creates
an instance of a general resource allocation problem where jobs have disparate per-
formance profiles depending on the platform of execution. Inaddition, volunteers can
specify resource allocation preferences over a subset of VCprojects that they want
to participate in, essentially constraining the possible jobs the server can allocate to a
volunteer host and ultimately compromising the throughputof projects. In other words,
maximum project performance, measured in terms of project throughput, is hindered by



volunteer’s preferences. On the other hand, ignoring volunteer’s preferences for perfor-
mance sake can upset the donors who can ultimately withdraw their resources. Server
scheduling policies decide which jobs to assign to volunteer hosts given a set of unallo-
cated jobs and volunteer’s preferences. Ideally these policies should optimize allocation
of jobs across heterogeneous volunteer resources and, at the same time, preserve the
volunteer’s preferences in the best way and with the highestperformance. This task is
made more and more challenging by the increasing heterogeneity of VC systems.

To address this challenge, we propose a novel optimization procedure that actively
allocates volunteer resources to improve project throughput and preserve volunteer pref-
erences. Our optimization procedure is based on constraintoptimization techniques
(COP) and provides a robust framework for maximizing the contributions of largely
diverse heterogeneous resources. We evaluate our approachagainst the current, most
advanced allocation strategies of BOINC using EmBOINC, a full-scale emulation of
the BOINC platform using realistic trace populations of volunteer’s hosts (including
resource heterogeneity, churn, availability, reliability). This paper shows the increase
in project throughput obtained with our approach and discusses the trade-off between
volunteer preferences and project throughput.

This paper is organized as follows: Section 2 presents a short overview of important
background concepts such as VC, BOINC, our emulation of BOINC projects, and COP.
In Section 3 we introduce our optimization procedure. Section 4 compares our approach
with the current practice scheduling policies of BOINC. Section 5 concludes the paper
and presents some future work.

2 Background and Related Work

2.1 Volunteer Computing

Volunteer Computing (VC) projects employ computing resources (e.g., desktops, note-
books, and servers) owned by ordinary people and connected to the Internet. Tradi-
tionally, VC projects target large search problems in science and, therefore, generate
large sets of jobs that are distributed across VC resources.Replication of jobs is used
to address the volatility of these systems as well as other issues like malicious attacks,
hardware malfunctions, or software modifications that ultimately affect the reliability
of results. Replicas of jobs (also called job instances) aredistributed to different VC re-
sources (also called hosts) that execute them. When finished, the hosts send their results
to the project server, which collects the results and distinguishes between successful
and unsuccessful results. Unsuccessful results are those that either are erroneous or are
returned too late, i.e., timed-out.

2.2 BOINC

BOINC (Berkeley Open Infrastructure for Network Computing) [1] is an open-source
system that harnesses the computing power and storage capacity of thousands or mil-
lions of PCs owned by volunteers for scientific simulations.The computing resources
available to a BOINC project are highly diverse: the hosts differ by orders of magnitude



in their processor speed, available RAM, disk space, and network connection speed.
Some hosts connect to the Internet by modem only every few days, while others are
permanently connected. Recently, the heterogeneity of BOINC platforms has been en-
riched by the adding of GPUs and Playstations. The BOINC model involves projects
and volunteers. Projects are organizations (typically academic research groups) that
need computing power. Projects are independent (each operates its own BOINC server)
and have different resource requirements. Volunteers participate by running the BOINC
client software on their computers (hosts). Volunteers canattach their hosts to one or
multiple projects (preferred projects). When a BOINC client is attached to a project, it
periodically issues a schedulerrequest to the project’s server. The request message in-
cludes a description of the host and its current workload (jobs queued and in progress),
descriptions of newly-completed jobs, and a request for newjobs based on the volun-
teer’s preferences. Thereply message from the server may contain a set of new jobs.
Multiple job results may be returned; this reduces the rate of scheduler requests and
accommodates clients that are disconnected from the Internet for long periods.

2.3 Scheduling in BOINC

Initially BOINC scheduling policies relied on greed and naive policies. Recently, more
sophisticated server-side scheduling policies have been implemented in several BOINC
projects. Currently, World Community Grid has a number of criteria for job assign-
ment [2], based on host and job diversity (e.g., size of the job and speed of the host
relative to an estimated statistical distribution, disk and memory requirements for the
job to be completed, homogeneous redundancy [3] and host error rate). A scoring-based
scheduling policy uses a linear combination of these terms to select the best set of jobs
that can be assigned to a given host. Projects can adjust the weights of these terms, or
they can replace the scoring function entirely. None of these policies search for trade-
off between volunteer’s preferences and project requirements. Trade-offs are less likely
when the level of heterogeneity of the resource population and their diversity increase
(e.g., when GPUs are also part of the available hosts).

2.4 Emulating BOINC

The scheduling policies embedded in the BOINC server have a large impact on the
project throughput and other performance metrics. Unfortunately, it is difficult (if not
impossible) to do controlled performance experiments in the context of a large VC
project because there are many factors that cannot be controlled and because poorly-
performing mechanisms can waste lots of resources driving away volunteers. On the
other hand, exploring new policies and tuning setting parameters for high performance
can be done in simulated environments, where it is possible to test a wider range of
hypotheses in a shorter period of time without affecting theBOINC community. To
evaluate our scheduling approach we use EmBOINC (Emulator of BOINC Projects), a
trace-driven emulator that models heterogeneous hosts andtheir interaction with a real
BOINC server [4]. By plugging into a BOINC server, EmBOINC triggers the server’s



daemons to generate and distribute jobs to the EmBOINC hosts. EmBOINC uses sta-
tistical information obtained from real BOINC traces to characterize volatile, heteroge-
neous, and error-prone hosts. As it occurs in real BOINC projects, EmBOINC can em-
ulate different projects running simultaneously. Projects can share the simulated hosts
partially or completely. For every project, the associatedhosts can have different levels
of heterogeneity, errors, availability, and reliability.Using EmBOINC, different patterns
for job generations as well as different policies for job distribution and validation can
be studied.

2.5 Constraint Optimization

Many historical problems in the AI community can be transformed into Constraint Sat-
isfaction Problems (CSP). Early domains for constraint satisfaction problems (DisCSP)
included job shop scheduling [5] and resource allocation [6]. Many domains for dis-
tributed systems, especially teamwork coordination, distributed scheduling, and sensor
networks, involve overly constrained problems that are difficult or impossible to satisfy
for every constraint. Recent approaches to solving problems in these domains rely on
optimization techniques that map constraints into multi-valued utility functions. Instead
of finding an assignment that satisfies all constraints, these approaches find an assign-
ment that produces a high level of global utility. This extension to the original CSP ap-
proach has become popular in distributed systems, and has been labeled the Distributed
Constraint Optimization Problem (DCOP) [5]. A typical constraint optimization prob-
lem (COP) begins with a constraint graph mapping of a problem. The COP mapping
is defined as a set ofn variables andm constraints producing the tuple< X, D, U >

where:

– X = {x1,..,xn} is a set of variables, each one assigned to a unique agent
– D = {d1,..,dn} is a set of finite domains for each variable
– U = {u1,..,um} is a set of utility functions such that each function involves a subset

of variables inX and defines a utility for each combination of values among these
variables

An optimal solution to a COP instance consists of an assignment of values inD to
X such that the sum of utilities inU is maximal. An example COP instance for the
standard graph coloring problem with weighted utilities isshown in Figure 1.

Fig. 1. COP Example: Simple graph coloring problem with utility functions. Coloring shown is
optimal for this problem, and utility values are placed alongside the constraints.



3 Methodology

The idea behind our approach is that we can increase throughput for BOINC projects
by intelligently coordinating schedules for volunteers. To achieve this, we develop a
constraint optimization (COP) mapping that pursues high throughput while trying to
adhere to the volunteer’s preferences.

3.1 Approach Overview

In Figure 2 we show the different components of our solution to optimize BOINC
schedules. The process can be run continuously in a real-time environment because
it only interacts with the BOINC server through its database. Thus, the flow through the
diagram can be considered a cycle, beginning with the input factors and ending with an
update to the BOINC database. The input factors are passed tothe mapping layer (map-
ping application) to convert the actual BOINC scheduling data and parameters into a
constraint graph. The constraint graph is used as a general representation for a COP and
is passed into the optimization algorithm. The optimization algorithm determines a new
containing allocation schedules for each volunteer’s resources to the BOINC projects.
These allocation schedules are then updated in the databaseand are used to determine
which jobs to return when a volunteer requests new work. We will describe in detail
each of these steps in the following sections.
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Fig. 2. Overview of our constraint optimization approach

3.2 Input Factors

The first step in our approach is to define input factors that wewill consider for the
optimization. The value of each factor directly affects theoutcome of the optimization
procedure. A list of these factors and the actor responsiblefor providing their value
appears in Table 1. In addition to these definable factors, input values are also derived
from the BOINC database about volunteer resources (e.g., estimated flops) and project
characteristics (e.g., GPU/coprocessor support).



ID Factor Actor Description
VP Volunteer Preferences Volunteer Set of projects preferences for a vol-

unteer. Volunteers assign 1 to preferred
projects and 0 otherwise.

PTN Project Throughput NeedScientist A target number of results returned per
project per day. Specified in GFLOPS/s
(or using deadlines on a set of jobs).

AS Allocation Schedule BOINC-COPThe specific allocation of volunteer re-
sources to different projects. The current
set of allocation schedules is input to the
optimization procedure and a new set of
allocation schedules is output. Percent
per project per volunteer.

TvP Throughput vs. PreferenceScientist Determines whether the optimization
procedure favors increased project
throughput or increased compliance
with volunteer preferences. A weight
between 0 and 1 for each characteristic,
with total weight adding to 1, where
0 means full matching of volunteer
preferences and 1 complete ignore.

Table 1. Input factors

3.3 Mapping BOINC Schedules to COP

The next step is to map the input factors into a coherent problem representation. We
use a constraint optimization representation, so we will provide a mapping from the
input factors to a constraint graph. A constraint graph contains variables as nodes and
constraints as edges. We consider two types of variable nodes:

Allocation Schedule (AS) represents the allocated volunteer schedule. The AS factor
listed earlier determines the starting value for this variable. Possible assignments
for this variable represent new allocation schedules for the volunteer.

Project Throughput Need (PTN) represents a level between 0 and 1 to which the
project needs additional volunteer resources. In relationto the TN factor listed ear-
lier, a value of 1 means that the project needs additional resources and is currently
short of its target. A value of 0 means that the project has no use for additional
resources and has already met its throughput target. A valuein between means that
a project has met its throughput target but could use additional resources.

Each volunteer has one AS variable and each project has one PTN variable. We now
create binary constraints between each volunteer (AS variable) and every project (PTN
variable) the volunteer is willing to work for. This constraint returns a utility value that
represents the utility of a volunteer’s current allocationschedule for a given project’s
level of throughput need. The value of this constraint,U(N, M) for projectN and



volunteerM is:

U(N, M) = PN (ASM ) · PTNN · CM (N)
·(WAT + (1 − WAT ) · V PM (N))

(1)

Where:

– PN (ASM ) is the percent allocated to projectN in the schedule ofM
– PTNN is the level of throughput need for projectN (between 0 and 1)
– CM (N) is the contribution of volunteerM to projectN in GFLOP/s
– WAT is the weight given to optimizing project throughput (between 0 and 1)
– V PM (N) is the volunteer preference of volunteerM given to projectN as a score

(between 0 and 1)

These variables and constraints form the constraint graph representation of our original
input factors. We now take this general COP representation and apply our optimization
algorithm to find a high utility scheduling policy.

3.4 Optimization Algorithm

Our optimization algorithm takes as input the constraint graph formed in the previous
section, and solves for a new scheduling policy containing allocations that optimize
each volunteer’s resources to the BOINC projects. Our algorithm is a modified version
of the stochastic gain algorithm described in [7]. We add support for derived variables
and random gain delays. The following steps are performed inparallel for each variable:

1. Get max local gain (best schedule for a volunteer given current state of PTN vari-
ables)

2. With probabilityp, change to max assignment (new value for AS variable; setting
p too high can prevent full convergence)

3. Derive new values from neighbors (new value for PTN variables based on all vol-
unteer schedules)

These three local search steps are performed for a number of cycles; at a specified
maximum amount of time the algorithm is terminated and the best utility assignment
encountered so far is chosen. The algorithm converges with low enoughp. We imple-
mented a delay in number of cycles between changes to the sameAS variable to also
help with convergence. The algorithm can scale to tens of thousands of variables. If we
require optimization of larger sets of volunteers, we can pre-process the set and cluster
volunteers into groups that share similar preferences and resource contribution char-
acteristics. Then we simply treat each group as a super-volunteer with one volunteer
variable which represents an identical allocation schedule assigned to all volunteers in
the group.

3.5 Integration with BOINC server

The output from the optimization algorithm is a set of allocation schedules for each
volunteer. We store these allocation schedules in the BOINCdatabase. Modifying the



BOINC server to use our allocation schedules is easily done.The BOINC scheduler uses
a scoring mechanism to handle each request for work from a volunteer. Each unassigned
job receives a score for possible assignment to the requesting volunteer. The highest
scoring set of jobs that fill the amount of time requested by the volunteer are sent. To
integrate our allocation schedules we simply add a value to the score if the job matches
the volunteer’s allocation schedule. The schedule contains a number between 0 and 1 for
each project for this volunteer. We generate a random numberbetween 0 and 1 and if it
is less than the schedule allocation number than that job receives a higher score. Thus,
over time the allocation of jobs will match the percentages specified in the schedule.
This also involves minimal calculation effort on the BOINC server, so our allocation
policies do not impact the time it takes to process volunteerrequests for work.

4 Evaluation

To evaluate our approach, we use EmBOINC and consider different scenarios matching
the behavior of real BOINC projects.

4.1 Performance Metrics

With EmBOINC it is possible to conduct extensive experiments targeting different per-
formance metrics. We measure the following metrics:

Throughput-based metrics include project throughput in terms of total results re-
turned to the scientist or results returned per day.

Preference metrics count the total number of jobs executed by volunteers for preferred
and non-preferred projects.

Deadline-based metricscount the number of job results that completed prior to the
deadline given by the scientist.

4.2 Scenarios

We tested our approach in two orthogonal scenarios with respect to the way jobs are
generated. We considered three projects running simultaneously.

Scenario 1 In this scenario we tested the ability of our solution to optimize throughput
with uniform generation of jobs. Project 1 (uses only CPU) and 3 (uses CPU or
GPU) were given a target of 20% of the overall throughput each. Project 2 (uses
only CPU) targeted 60% of the throughput. The scenario generated 4000 jobs for
Projects 1 and 3 and 12000 for Project 2. This scenario is typical for projects with-
out deadlines like SETI@Home (http://setiathome.berkeley.edu).

Scenario 2 In this scenario we tested the ability of our solution to optimize throughput
with irregular generation of jobs. For Project 2 we randomly injected 8 batches of
1500 jobs over 25 days, with a 10 day deadline for each batch. For Projects 1 and
3 we kept a uniform generation of 4000 jobs each. This scenario is similar to the
real-world case in Critical Assessment of techniques for protein Structure Predic-
tion (CASP). During the biennial CASP competition (http://predictioncenter.org/),



new targets (amino acid sequences) are released to the participants almost every
day with a deadline of 15 days for the target 3D prediction. Projects such as Pre-
dictor@Home and Rosetta@Home belong to this class of scenarios.

We ran our simulations using a fixed amount of simulated time (25 days). We used a
base set of 500 volunteers, of which 20% have GPUs. Each volunteer randomly chose
1 or 2 preferred projects of the 3 possible. All other host characteristics (e.g., CPU
speed, memory) were randomly generated based on trace data from real-world BOINC
projects.

4.3 Results

Figure 3(a) shows total throughput (number of results) for the three projects in Scenario
1 using BOINC and different levels of TvP for our constraint optimization (COP) ap-
proach. A low TvP means closer matching to volunteer preferences, where TvP equal to
zero means perfect matching. The gray bar is jobs executed byvolunteers for their pre-
ferred projects, and the white bar is jobs executed for non-preferred projects. If we fully
comply with volunteer preferences (TvP=0), our system has the same performance as
BOINC. As we increase the TvP factor, we increase the total throughput of the system,
but we diverge from volunteer preferences. A complete violation of volunteer prefer-
ences is not needed to achieve high levels of throughput, as TvP setting of 0.25 already
achieves higher throughput than BOINC (+12%). Figure 3(b) shows the same metric for
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Fig. 3. Throughput (number of results) for the two different scenarios

the project with deadlines in Scenario 2. In this scenario, batches of jobs are randomly
injected, with a 10 day deadline for each batch. Throughput is the number of results
for Project 2 returned to the BOINC server before their deadline. As in Scenario 1, the
gray bar is jobs executed by volunteers for their preferred projects, and the white bar is
jobs executed for non-preferred projects. If we fully comply with volunteer preferences
(TvP=0), our system performs slightly better than BOINC (+7.4%). As we increase the
TvP factor, the throughput increases significantly. Again,we do not need to completely
violate the volunteer preferences; with a TvP setting of 0.25 we gain 39.6% throughput.



Increasing the TvP factor allows our system to re-allocate volunteer resources to jobs
with upcoming deadlines. Note that the percentage of jobs performed for non-preferred
projects is minimal (1.6%).

Overall, we see that our approach increases throughput for both uniform and ir-
regular job generation scenarios. Increasing the TvP factor allows us to achieve higher
throughput at a cost of making volunteers execute jobs for non-preferred projects. A
TvP trade-off of 0.25 provides maximum throughput with minimum volunteer prefer-
ence violation. The reason for increase in total throughputis not due to additional idle
cycles (we had the same amount of resource idle time for the several runs); it is because
we use the resources more efficiently. For both BOINC and our approach, we made sure
that we do not have host starvation (i.e., there are always jobs available for the projects
when the volunteer requests new jobs). The results were validated by repeating each
simulation three times; each time we observed the same behavior.

5 Conclusions and Future Work

We presented a novel optimization procedure based on constraint optimization tech-
niques that actively allocates volunteer resources to improve project throughput and,
at the same time, aims to preserve volunteer preferences. Weshow two scenarios that
exhibit increased project throughput (up to 39.6%) for a minimal trade-off in execution
of jobs for non-preferred projects. Our results show that itis possible to balance the
needs of scientists with the preferences of volunteers in VCprojects. In the future, we
intend to extend our approach to include optimization of an expanded definition of vol-
unteer credit. Currently, volunteer credit is based on the number of FLOPS executed by
the volunteer for an project. However, in some scenarios scientists may want to assign
greater credit per FLOP for one project than another. In thiscase the volunteer would
want to optimize the amount of credit they receive for their resource contribution. This
is similar to some scenarios in grid and cloud computing scheduling, and we intend to
examine how our approach can be applied to these related problems.
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