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Abstract. BOINC is a middleware for Volunteer Computing. In BOINC p#ois,
heterogeneous resources distributed across the Intemetsad for large-scale
scientific simulations. The large need for resources in BOp¥ojects often com-
petes with volunteer’s preferences: volunteers can imfioses on the use of
their idle resources. The server component of BOINC emlisodi@mumber of
scheduling policies and parameters which search for optiesaurce allocation,
despite volunteer’s preferences. Most of the time, maximuoject performance
can be achieved only when volunteer’s preferences arectegle

To address this problem, we propose a novel optimizatioequhaore based on
constraint optimization techniques that actively allesatolunteer resources to
improve project throughput and, at the same time, aims tegpve volunteer
preferences. We evaluate our approach against the culigrdtéon strategies of
BOINC using EmBOINC, a full-scale emulator of BOINC projectsing realis-
tic trace populations of volunteer’s clients (includingdregeneity, churn, avail-
ability, reliability). This paper shows the increase injpat throughput obtained
with our approach and discusses the trade-off between tes#upreferences and
project throughput for heterogeneous resources.

1 Introduction

Volunteer Computing (VC) is a form of distributed computingvhich ordinary peo-
ple (i.e., volunteers) volunteer processing and storag@urees to computing projects.
BOINC is a well-known middleware for VC [1] supporting sci#it computing projects
(e.g., physics, biology, and medicine). The main strenffB@INC systems is its ca-
pability to provide scientists with PetaFLOPs of computiagver at low cost. The VC
community powered by BOINC currently counts approxima&lyprojects and 580
000 volunteer computers supplying an average of 1.2 PetBBli®these projects.

VC resources increasingly include diverse platforms sigchideo game consoles
(Playstations) and graphics processing units (GPUs). Séngrojects are able to cus-
tomize their code to benefit from performance features afatpdatforms. This creates
an instance of a general resource allocation problem windre have disparate per-
formance profiles depending on the platform of executioraddition, volunteers can
specify resource allocation preferences over a subset opijects that they want
to participate in, essentially constraining the possiblesjthe server can allocate to a
volunteer host and ultimately compromising the througlgfpirojects. In other words,
maximum project performance, measured in terms of prdjeotighput, is hindered by



volunteer’s preferences. On the other hand, ignoring welen’s preferences for perfor-
mance sake can upset the donors who can ultimately withdraiwresources. Server
scheduling policies decide which jobs to assign to voluritests given a set of unallo-
cated jobs and volunteer’s preferences. Ideally theseipslgshould optimize allocation
of jobs across heterogeneous volunteer resources and; aathe time, preserve the
volunteer’s preferences in the best way and with the highedbrmance. This task is
made more and more challenging by the increasing heteragefi& C systems.

To address this challenge, we propose a novel optimizatioceplure that actively
allocates volunteer resources to improve project througitapd preserve volunteer pref-
erences. Our optimization procedure is based on constatinization techniques
(COP) and provides a robust framework for maximizing thetigbutions of largely
diverse heterogeneous resources. We evaluate our appagaaist the current, most
advanced allocation strategies of BOINC using EmBOINC, lasitale emulation of
the BOINC platform using realistic trace populations ofurteer’s hosts (including
resource heterogeneity, churn, availability, reliap)litThis paper shows the increase
in project throughput obtained with our approach and disesishe trade-off between
volunteer preferences and project throughput.

This paper is organized as follows: Section 2 presents a sherview of important
background concepts such as VC, BOINC, our emulation of BDpbjects, and COP.
In Section 3 we introduce our optimization procedure. &cticompares our approach
with the current practice scheduling policies of BOINC. 8&t5 concludes the paper
and presents some future work.

2 Background and Related Work

2.1 Volunteer Computing

Volunteer Computing (VC) projects employ computing resesr(e.g., desktops, note-
books, and servers) owned by ordinary people and conneattitetinternet. Tradi-
tionally, VC projects target large search problems in smeand, therefore, generate
large sets of jobs that are distributed across VC resouRggslication of jobs is used
to address the volatility of these systems as well as otsaeislike malicious attacks,
hardware malfunctions, or software modifications thaimdtiely affect the reliability
of results. Replicas of jobs (also called job instancesylateibuted to different VC re-
sources (also called hosts) that execute them. When finitihetosts send their results
to the project server, which collects the results and distishes between successful
and unsuccessful results. Unsuccessful results are thaseither are erroneous or are
returned too late, i.e., timed-out.

2.2 BOINC

BOINC (Berkeley Open Infrastructure for Network Compudiffig] is an open-source
system that harnesses the computing power and storagetyagfatousands or mil-

lions of PCs owned by volunteers for scientific simulatiohlse computing resources
available to a BOINC project are highly diverse: the hostfedby orders of magnitude



in their processor speed, available RAM, disk space, angarktconnection speed.
Some hosts connect to the Internet by modem only every fews,dealyile others are
permanently connected. Recently, the heterogeneity oNBplatforms has been en-
riched by the adding of GPUs and Playstations. The BOINC tiostelves projects
and volunteers. Projects are organizations (typicallydaodc research groups) that
need computing power. Projects are independent (eachtepéissown BOINC server)
and have different resource requirements. Volunteergjate by running the BOINC
client software on their computers (hosts). Volunteersattarch their hosts to one or
multiple projects (preferred projects). When a BOINC dismattached to a project, it
periodically issues a schedulequest to the project’s server. The request message in-
cludes a description of the host and its current workloallgjgueued and in progress),
descriptions of newly-completed jobs, and a request for jobs based on the volun-
teer's preferences. Theply message from the server may contain a set of new jobs.
Multiple job results may be returned; this reduces the rétecbeduler requests and
accommodates clients that are disconnected from the ktteynlong periods.

2.3 Scheduling in BOINC

Initially BOINC scheduling policies relied on greed andvepolicies. Recently, more
sophisticated server-side scheduling policies have baplemented in several BOINC
projects. Currently, World Community Grid has a number dfecia for job assign-
ment [2], based on host and job diversity (e.g., size of thegod speed of the host
relative to an estimated statistical distribution, diskl amemory requirements for the
job to be completed, homogeneous redundancy [3] and hastrate). A scoring-based
scheduling policy uses a linear combination of these teonselect the best set of jobs
that can be assigned to a given host. Projects can adjustdights of these terms, or
they can replace the scoring function entirely. None of¢haslicies search for trade-
off between volunteer’s preferences and project requirgs@rade-offs are less likely
when the level of heterogeneity of the resource populati@htheir diversity increase
(e.g., when GPUs are also part of the available hosts).

2.4 Emulating BOINC

The scheduling policies embedded in the BOINC server hawge limpact on the
project throughput and other performance metrics. Unfately, it is difficult (if not

impossible) to do controlled performance experiments i ¢bntext of a large VC
project because there are many factors that cannot be dedtemd because poorly-
performing mechanisms can waste lots of resources drivivagy aolunteers. On the
other hand, exploring new policies and tuning setting patans for high performance
can be done in simulated environments, where it is possibtedt a wider range of
hypotheses in a shorter period of time without affecting B@NC community. To

evaluate our scheduling approach we use EmBOINC (Emul&a®B®OdNC Projects), a

trace-driven emulator that models heterogeneous hostthairdnteraction with a real
BOINC server [4]. By plugging into a BOINC server, EmBOIN@tyers the server’s



daemons to generate and distribute jobs to the EmBOINC hestBOINC uses sta-
tistical information obtained from real BOINC traces to ierize volatile, heteroge-
neous, and error-prone hosts. As it occurs in real BOINCaotej EmBOINC can em-
ulate different projects running simultaneously. Prgjezn share the simulated hosts
partially or completely. For every project, the associdtests can have different levels
of heterogeneity, errors, availability, and reliabilitsing EmBOINC, different patterns
for job generations as well as different policies for jobtidigition and validation can
be studied.

2.5 Constraint Optimization

Many historical problems in the Al community can be transfed into Constraint Sat-
isfaction Problems (CSP). Early domains for constrainstadtion problems (DisCSP)
included job shop scheduling [5] and resource allocatignN&ny domains for dis-
tributed systems, especially teamwork coordinationrithisted scheduling, and sensor
networks, involve overly constrained problems that arfatift or impossible to satisfy
for every constraint. Recent approaches to solving problenthese domains rely on
optimization techniques that map constraints into muatized utility functions. Instead
of finding an assignment that satisfies all constraints gtlag@roaches find an assign-
ment that produces a high level of global utility. This exdiem to the original CSP ap-
proach has become popular in distributed systems, and leaddieeled the Distributed
Constraint Optimization Problem (DCOP) [5]. A typical ctragnt optimization prob-
lem (COP) begins with a constraint graph mapping of a problEme COP mapping
is defined as a set of variables andn constraints producing the tupte X, D, U >
where:

- X ={x;,..x,} is a set of variables, each one assigned to a unique agent

— D ={d;,..d,} is a set of finite domains for each variable

— U ={us,..um} is a set of utility functions such that each function invaheesubset
of variables inX and defines a utility for each combination of values amongehe
variables

An optimal solution to a COP instance consists of an assighmevalues inD to
X such that the sum of utilities iV is maximal. An example COP instance for the
standard graph coloring problem with weighted utilitiesh®wn in Figure 1.
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Fig. 1. COP Example: Simple graph coloring problem with utility &ions. Coloring shown is
optimal for this problem, and utility values are placed glside the constraints.



3 Methodology

The idea behind our approach is that we can increase throuhpBOINC projects
by intelligently coordinating schedules for volunteers. &chieve this, we develop a
constraint optimization (COP) mapping that pursues higbughput while trying to
adhere to the volunteer’s preferences.

3.1 Approach Overview

In Figure 2 we show the different components of our solutioroptimize BOINC
schedules. The process can be run continuously in a real¢mironment because
it only interacts with the BOINC server through its databddaus, the flow through the
diagram can be considered a cycle, beginning with the irgmibfs and ending with an
update to the BOINC database. The input factors are passie€ tvapping layer (map-
ping application) to convert the actual BOINC schedulingadand parameters into a
constraint graph. The constraint graph is used as a geepralsentation for a COP and
is passed into the optimization algorithm. The optimizattgorithm determines a new
containing allocation schedules for each volunteer’'sussss to the BOINC projects.
These allocation schedules are then updated in the databdsee used to determine
which jobs to return when a volunteer requests new work. Wedsscribe in detalil
each of these steps in the following sections.
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Fig. 2. Overview of our constraint optimization approach

3.2 Input Factors

The first step in our approach is to define input factors thatwilleconsider for the
optimization. The value of each factor directly affects thutcome of the optimization
procedure. A list of these factors and the actor responsilbl@roviding their value
appears in Table 1. In addition to these definable factopsitimalues are also derived
from the BOINC database about volunteer resources (etgnaed flops) and project
characteristics (e.g., GPU/coprocessor support).



ID |Factor Actor Description
VP |Volunteer Preferences [Volunteer |Set of projects preferences for a vol-
unteer. Volunteers assign 1 to preferied
projects and 0 otherwise.
PTN|Project Throughput NeedScientist A target number of results returned per
project per day. Specified in GFLOPS/s
(or using deadlines on a set of jobs).
AS |Allocation Schedule BOINC-CORThe specific allocation of volunteer re-
sources to different projects. The current
set of allocation schedules is input to the
optimization procedure and a new set|of
allocation schedules is output. Percent
per project per volunteer.
TvP | Throughput vs. Preferenf&cientist Determines whether the optimization
procedure favors increased project
throughput or increased compliante
with volunteer preferences. A weight
between 0 and 1 for each characteristic,
with total weight adding to 1, where
0 means full matching of voluntegr
preferences and 1 complete ignore.

Table 1.Input factors

3.3 Mapping BOINC Schedules to COP

The next step is to map the input factors into a coherent probkpresentation. We
use a constraint optimization representation, so we wikjole a mapping from the
input factors to a constraint graph. A constraint graph aimstvariables as nodes and
constraints as edges. We consider two types of variablesnode

Allocation Schedule (AS) represents the allocated volunteer schedule. The éiSrfa
listed earlier determines the starting value for this \@daPossible assignments
for this variable represent new allocation schedules fewtilunteer.

Project Throughput Need (PTN) represents a level between 0 and 1 to which the
project needs additional volunteer resources. In relatdhe TN factor listed ear-
lier, a value of 1 means that the project needs additionalregs and is currently
short of its target. A value of 0 means that the project hass®efar additional
resources and has already met its throughput target. A raletween means that
a project has met its throughput target but could use additi@sources.

Each volunteer has one AS variable and each project has dNev&Table. We now
create binary constraints between each volunteer (AShiajiand every project (PTN
variable) the volunteer is willing to work for. This condtrareturns a utility value that
represents the utility of a volunteer’s current allocatsmhedule for a given project’s
level of throughput need. The value of this constrala{,N, M) for project N and



volunteer)/ is:

U(N,M):PN(ASA,1)~PTNN-CM(N) @
'(WAT + (1 — WAT) . VPM(N))

Where:

— Pn(AS)) is the percent allocated to projeltin the schedule o/

— PT Ny is the level of throughput need for projest (between 0 and 1)

— Cp(N) is the contribution of volunteel/ to projectN in GFLOP/s

— Wy is the weight given to optimizing project throughput (beéné® and 1)

— V Py (N) is the volunteer preference of voluntedrgiven to projectV as a score
(between 0 and 1)

These variables and constraints form the constraint grgmiesentation of our original
input factors. We now take this general COP representatidrapply our optimization
algorithm to find a high utility scheduling policy.

3.4 Optimization Algorithm

Our optimization algorithm takes as input the constraiajpgrformed in the previous
section, and solves for a new scheduling policy containitarations that optimize
each volunteer’s resources to the BOINC projects. Our dlgaris a modified version
of the stochastic gain algorithm described in [7]. We addosupfor derived variables
and random gain delays. The following steps are performpédiallel for each variable:

1. Get max local gain (best schedule for a volunteer giverectistate of PTN vari-
ables)

2. With probabilityp, change to max assignment (new value for AS variable; gettin
p too high can prevent full convergence)

3. Derive new values from neighbors (new value for PTN vdesibased on all vol-
unteer schedules)

These three local search steps are performed for a numbefclafse at a specified
maximum amount of time the algorithm is terminated and th&t bélity assignment
encountered so far is chosen. The algorithm converges aittehoughp. We imple-
mented a delay in number of cycles between changes to the A8mariable to also
help with convergence. The algorithm can scale to tens afghnds of variables. If we
require optimization of larger sets of volunteers, we camocess the set and cluster
volunteers into groups that share similar preferences asdurce contribution char-
acteristics. Then we simply treat each group as a supente®u with one volunteer
variable which represents an identical allocation scheedabigned to all volunteers in
the group.

3.5 Integration with BOINC server

The output from the optimization algorithm is a set of allibma schedules for each
volunteer. We store these allocation schedules in the BQl&i@base. Modifying the



BOINC server to use our allocation schedules is easily dbimeBOINC scheduler uses
a scoring mechanism to handle each request for work fromumteér. Each unassigned
job receives a score for possible assignment to the reqgestiunteer. The highest
scoring set of jobs that fill the amount of time requested leyblunteer are sent. To
integrate our allocation schedules we simply add a valuledg@tore if the job matches
the volunteer’s allocation schedule. The schedule costaitumber between 0 and 1 for
each project for this volunteer. We generate a random nubgtereen 0 and 1 and if it
is less than the schedule allocation number than that jaiwes a higher score. Thus,
over time the allocation of jobs will match the percentagescsfied in the schedule.
This also involves minimal calculation effort on the BOINErger, so our allocation
policies do not impact the time it takes to process volunteguests for work.

4 Evaluation

To evaluate our approach, we use EmBOINC and consider eliffscenarios matching
the behavior of real BOINC projects.

4.1 Performance Metrics

With EmBOINC it is possible to conduct extensive experimsagatgeting different per-
formance metrics. We measure the following metrics:

Throughput-based metrics include project throughput in terms of total results re-
turned to the scientist or results returned per day.

Preference metrics count the total number of jobs executed by volunteers fdepred
and non-preferred projects.

Deadline-based metricscount the number of job results that completed prior to the
deadline given by the scientist.

4.2 Scenarios

We tested our approach in two orthogonal scenarios withegdp the way jobs are
generated. We considered three projects running simulteshe

Scenario 1 In this scenario we tested the ability of our solution to wyitie throughput
with uniform generation of jobs. Project 1 (uses only CPU) and 3 (uses CPU or
GPU) were given a target of 20% of the overall throughput e®cbject 2 (uses
only CPU) targeted 60% of the throughput. The scenario geeerd000 jobs for
Projects 1 and 3 and 12000 for Project 2. This scenario is&ypor projects with-
out deadlines like SETI@Home (http://setiathome.berketi).

Scenario 2 In this scenario we tested the ability of our solution to wyitie throughput
with irregular generation of jobs. For Project 2 we randomly injected 8 batches of
1500 jobs over 25 days, with a 10 day deadline for each batahPfojects 1 and
3 we kept a uniform generation of 4000 jobs each. This scenssimilar to the
real-world case in Critical Assessment of techniques fotgin Structure Predic-
tion (CASP). During the biennial CASP competition (httprédictioncenter.org/),



new targets (amino acid sequences) are released to theipamts almost every
day with a deadline of 15 days for the target 3D predictiomjéts such as Pre-
dictor@Home and Rosetta@Home belong to this class of sosnar

We ran our simulations using a fixed amount of simulated tigtedays). We used a
base set of 500 volunteers, of which 20% have GPUs. Each teslurandomly chose
1 or 2 preferred projects of the 3 possible. All other hostrabteristics (e.g., CPU
speed, memory) were randomly generated based on tracedatadal-world BOINC
projects.

4.3 Results

Figure 3(a) shows total throughput (number of results)Herthree projects in Scenario
1 using BOINC and different levels of TvP for our constraiptimization (COP) ap-
proach. A low TvP means closer matching to volunteer prefsgs, where TvP equal to
zero means perfect matching. The gray bar is jobs executedlogteers for their pre-
ferred projects, and the white bar is jobs executed for nefiepred projects. If we fully
comply with volunteer preferences (TvP=0), our system hassame performance as
BOINC. As we increase the TvP factor, we increase the totaligjhput of the system,
but we diverge from volunteer preferences. A complete timfaof volunteer prefer-
ences is not needed to achieve high levels of throughputyBsetting of 0.25 already
achieves higher throughputthan BOINC (+12%). Figure 3oys the same metric for
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Fig. 3. Throughput (number of results) for the two different scessr

the project with deadlines in Scenario 2. In this scenaiches of jobs are randomly
injected, with a 10 day deadline for each batch. Throughptité number of results
for Project 2 returned to the BOINC server before their deadlAs in Scenario 1, the
gray bar is jobs executed by volunteers for their preferrejepts, and the white bar is
jobs executed for non-preferred projects. If we fully coylth volunteer preferences
(TvP=0), our system performs slightly better than BOINC.498). As we increase the
TvP factor, the throughput increases significantly. Agaia do not need to completely
violate the volunteer preferences; with a TvP setting 5@ gain 39.6% throughput.



Increasing the TvP factor allows our system to re-allocatenteer resources to jobs
with upcoming deadlines. Note that the percentage of jodepred for non-preferred
projects is minimal (1.6%).

Overall, we see that our approach increases throughputdibr tmiform and ir-
regular job generation scenarios. Increasing the TvP fadimvs us to achieve higher
throughput at a cost of making volunteers execute jobs forpreferred projects. A
TvP trade-off of 0.25 provides maximum throughput with mioim volunteer prefer-
ence violation. The reason for increase in total througigomt due to additional idle
cycles (we had the same amount of resource idle time for treraleruns); it is because
we use the resources more efficiently. For both BOINC and ppraach, we made sure
that we do not have host starvation (i.e., there are alwdysgwailable for the projects
when the volunteer requests new jobs). The results werdatali by repeating each
simulation three times; each time we observed the same lmehav

5 Conclusions and Future Work

We presented a novel optimization procedure based on edmstiptimization tech-
niques that actively allocates volunteer resources to dargproject throughput and,
at the same time, aims to preserve volunteer preferenceshve two scenarios that
exhibit increased project throughput (up to 39.6%) for aimail trade-off in execution
of jobs for non-preferred projects. Our results show thad ppossible to balance the
needs of scientists with the preferences of volunteers irpkects. In the future, we
intend to extend our approach to include optimization of>gra@ded definition of vol-
unteer credit. Currently, volunteer credit is based on timalmer of FLOPS executed by
the volunteer for an project. However, in some scenariangists may want to assign
greater credit per FLOP for one project than another. In¢hge the volunteer would
want to optimize the amount of credit they receive for thegaurce contribution. This
is similar to some scenarios in grid and cloud computing dalieg, and we intend to
examine how our approach can be applied to these relatetepisb
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