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Abstract—We consider a compressive hyperspectral imaging
reconstruction problem, where three-dimensional spatio-spec-
tral information about a scene is sensed by a coded aperture
snapshot spectral imager (CASSI). The CASSI imaging process
can be modeled as suppressing three-dimensional coded and
shifted voxels and projecting these onto a two-dimensional plane,
such that the number of acquired measurements is greatly re-
duced. On the other hand, because the measurements are highly
compressive, the reconstruction process becomes challenging.
We previously proposed a compressive imaging reconstruction
algorithm that is applied to two-dimensional images based on
the approximate message passing (AMP) framework. AMP is an
iterative algorithm that can be used in signal and image recon-
struction by performing denoising at each iteration. We employed
an adaptive Wiener filter as the image denoiser, and called our
algorithm “AMP-Wiener.” In this paper, we extend AMP-Wiener
to three-dimensional hyperspectral image reconstruction, and
call it “AMP-3D-Wiener.” Applying the AMP framework to the
CASSI system is challenging, because the matrix that models the
CASSI system is highly sparse, and such a matrix is not suitable
to AMP and makes it difficult for AMP to converge. Therefore, we
modify the adaptive Wiener filter and employ a technique called
damping to solve for the divergence issue of AMP. Our approach
is applied in nature, and the numerical experiments show that
AMP-3D-Wiener outperforms existing widely-used algorithms
such as gradient projection for sparse reconstruction (GPSR) and
two-step iterative shrinkage/thresholding (TwIST) given a similar
amount of runtime. Moreover, in contrast to GPSR and TwIST,
AMP-3D-Wiener need not tune any parameters, which simplifies
the reconstruction process.

Index Terms—Approximate message passing, CASSI, compres-
sive hyperspectral imaging, gradient projection for sparse recon-
struction, image denoising, two-step iterative shrinkage/thresh-
olding, Wiener filtering.
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I. INTRODUCTION

A. Motivation

HYPERSPECTRAL image is a three-dimensional (3D)

image cube comprised of a collection of two-dimensional
(2D) images (slices), where each 2D image is captured at a
specific wavelength. Hyperspectral images allow us to analyze
spectral information about each spatial point in a scene, and thus
can help us identify different materials that appear in the scene
[1]. Therefore, hyperspectral imaging has applications to areas
such as medical imaging [2], [3], remote sensing [4], geology
[5], and astronomy [6].

Conventional spectral imagers include whisk broom scan-
ners, push broom scanners [7], [8], and spectrometers [9]. In
whisk broom scanners, a mirror reflects light onto a single de-
tector, so that one pixel of data is collected at a time; in push
broom scanners, an image cube is captured with one focal plane
array (FPA) measurement per spatial line of the scene; and in
spectrometers, a set of optical bandpass filters are tuned in steps
in order to scan the scene. The disadvantages of these techniques
are that (7) data acquisition takes a long time, because they re-
quire scanning a number of zones linearly in proportion to the
desired spatial and spectral resolution; and (if) large amounts
of data are acquired and must be stored and transmitted. For
example, for a megapixel camera (10 pixels) that captures a
few hundred spectral bands (>>100 spectral channels) at 8 or 16
bits per frame, conventional spectral imagers demand roughly
10 megabytes per raw spectral image, and thus require space
on the order of gigabytes for transmission or storage, which ex-
ceeds existing streaming capabilities.

To address the limitations of conventional spectral imaging
techniques, many spectral imager sampling schemes based on
compressive sensing [10]-[12] have been proposed [13]-[15].
The coded aperture snapshot spectral imager (CASSI) [13],
[16]-[19] is a popular compressive spectral imager and acquires
image data from different wavelengths simultaneously. In
CASSI, the voxels of a scene are first coded by an aperture, then
dispersed by a dispersive element, and finally detected by a 2D
FPA. That is, a 3D image cube is suppressed and measured by
a 2D array, and thus CASSI acquires far fewer measurements
than those acquired by conventional spectral imagers, which
significantly accelerates the imaging process. In particular, for
a data cube with spatial resolution of V x A and L spectral
bands, conventional spectral imagers collect M N L measure-
ments. In contrast, CASSI collects measurements on the order
of M(N + L — 1). Therefore, the acquisition time, storage
space, and required bandwidth for transmission in CASSI are
reduced. On the other hand, because the measurements from
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CASSI are highly compressive, reconstructing 3D image cubes
from CASSI measurements becomes challenging. Moreover,
because of the massive size of 3D image data, it is desirable to
develop fast reconstruction algorithms in order to realize real
time acquisition and processing.

Fortunately, it is possible to reconstruct the 3D cube from
the 2D measurements according to the theory of compressive
sensing [10]-[12], because the 2D images from different
wavelengths are highly correlated, and the 3D image cube
is sparse in an appropriate transform domain, meaning that
only a small portion of the transform coefficients have large
values. Approximate message passing (AMP) [20] has recently
become a popular algorithm that solves compressive sensing
problems, owing to its promising performance and efficiency.
Therefore, we are motivated to investigate how to apply AMP
to the CASSI system.

B. Related Work

Several algorithms have been proposed to reconstruct image
cubes from measurements acquired by CASSI. First, the re-
construction problem for the CASSI system can be solved by
£1-minimization. In Arguello and Arce [21], gradient projection
for sparse reconstruction (GPSR) [22] is utilized to solve for
the £;-minimization problem, where the sparsifying transform
is the Kronecker product of a 2D wavelet transform and a 1D
discrete cosine transform (DCT). Besides using £;-norm as the
regularizer, total variation is a popular alternative,; Wagadarikar
et al. [16] employed total variation [23], [24] as the regularizer
in the two-step iterative shrinkage/thresholding (TwIST) frame-
work [25], a modified and fast version of standard iterative
shrinkage/thresholding. Apart from using the wavelet-DCT
basis, one can sparsify image cubes by dictionary learning [14],
or using Gaussian mixture models [26]. An interesting idea to
improve the reconstruction quality of the dictionary learning
based approach is to use a standard image with red, green, and
blue (RGB) components of the same scene as side information
[14]. That is, a coupled dictionary is learned from the joint
datasets of the CASSI measurements and the corresponding
RGB image. We note in passing that using color sensitive
RGB detectors directly as the FPA of CASSI is another way to
improve the sensing of spectral images, because spatio-spectral
coding can be attained in a single snapshot without requiring
extra optical elements [27].

Despite the good results attained with the algorithms men-
tioned above, they all need manual tuning of some parameters,
which may be time consuming. In GPSR and TwIST, the optimal
regularization parameter could be different in reconstructing
different image cubes. In dictionary learning methods, although
the parameters can be learned automatically by methods such
as Markov Chain Monte Carlo, the learning process is usually
time consuming. Moreover, the patch size and the number of
dictionary atoms in dictionary learning methods must be chosen
carefully.

C. Contributions

In this paper, we develop a robust and fast reconstruction
algorithm for the CASSI system using approximate message

passing (AMP) [20]. AMP is an iterative algorithm that can
apply image denoising at each iteration. Previously, we pro-
posed a 2D compressive imaging reconstruction algorithm,
AMP-Wiener [28], where an adaptive Wiener filter was applied
as the image denoiser within AMP. Our numerical results
showed that AMP-Wiener outperformed the prior art in terms
of both reconstruction quality and runtime. The current paper
extends AMP-Wiener to reconstruct 3D hyperspectral im-
ages from the CASSI system, and we call the new approach
“AMP-3D-Wiener.” Because the matrix that models the CASSI
system is highly sparse, structured, and ill-conditioned, ap-
plying AMP to the CASSI system becomes challenging. For
example, (i) the noisy image cube that is obtained at each AMP
iteration contains non-Gaussian noise; and (ii) AMP encoun-
ters divergence problems, i.e., the reconstruction error may
increase with more iterations. Although it is favorable to use a
high-quality denoiser within AMP, so that the reconstruction
error may decrease faster as the number of iteration increases,
we have found that in such an ill-conditioned imaging system,
applying aggressive denoisers within AMP causes divergence
problems. Therefore, besides using standard techniques such
as damping [29], [30] to encourage the convergence of AMP,
we modify the adaptive Wiener filter and make it robust to
the ill-conditioned system model. There are existing denoisers
that may outperform the modified adaptive Wiener filter in a
single step denoising problem. However, the modified adaptive
Wiener filter fits into the AMP framework and allows AMP to
improve over successive iterations.

Our approach is applied in nature, and the convergence
of AMP-3D-Wiener is tested numerically. We simulate
AMP-3D-Wiener on several settings where complementary
random coded apertures (see details in Section IV-A) are
employed. The numerical results show that AMP-3D-Wiener
reconstructs 3D image cubes with less runtime and higher
quality than other compressive hyperspectral imaging recon-
struction algorithms such as GPSR [22] and TwWIST [16], [25]
(Fig. 3), even when the regularization parameters in GPSR
and TwIST have already been tuned. These favorable results
provide AMP-3D-Wiener major advantages over GPSR and
TwlIST. First, when the bottleneck is the time required to run
the reconstruction algorithm, AMP-3D-Wiener can provide
the same reconstruction quality in 100 seconds that the other
algorithms provide in 450 seconds (Fig. 3). Second, when the
bottleneck is the time required for signal acquisition by CASSI
hardware, the improved reconstruction quality could allow to
reduce the number of shots taken by CASSI by as much as a
factor of 2 (Fig. 8). Finally, the reconstructed image cube can
be obtained by running AMP-3D-Wiener only once, because
AMP-3D-Wiener does not need to tune any parameters. In
contrast, the regularization parameters in GPSR and TwIST
need to be tuned carefully, because the optimal values of these
parameters may vary for different test image cubes. In order to
tune the parameters for each test image cube, we run GPSR and
TwIST many times with different parameter values, and then
select the ones that provide the best results.

The remainder of the paper is arranged as follows. We
review CASSI in Section II, and describe our AMP based
compressive hyperspectral imaging reconstruction algorithm
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in Section III. Numerical results are presented in Section IV,
while Section V concludes.

II. CODED APERTURE SNAPSHOT SPECTRAL IMAGER (CASSI)

A. Mathematical Representation of CASSI

The coded aperture snapshot spectral imager (CASSI) [18],
[19] is a compressive spectral imaging system that collects far
fewer measurements than traditional spectrometers. In CASSI,
(i) the 2D spatial information of a scene is coded by an aper-
ture, (if) the coded spatial projections are spectrally shifted by
a dispersive element, and (iif) the coded and shifted projections
are detected by a 2D FPA. That is, in each coordinate of the
FPA, the received projection is an integration of the coded and
shifted voxels over all spectral bands at the same spatial coor-
dinate. More specifically, let fo(z, y, ) denote the voxel inten-
sity of a scene at spatial coordinate (x,y) and at wavelength
A, and let T'(z, y) denote the coded aperture. The coded density
T(x,y)fo(z,y, A) is then spectrally shifted by the dispersive el-
ement along one of the spatial dimensions. The energy received
by the FPA at coordinate (x,y) is therefore

oey) = A T(e,y — SO folasy — SO NI, (1)

where S(A) is the dispersion function induced by the prism at
wavelength A. Suppose we take a scene of spatial dimension M
by N and spectral dimension L, i.e., the dimension of the image
cubeis M x N x L, and the dispersion is along the second spatial
dimension y, then the number of measurements captured by the
FPA will be M(N + L — 1). If we approximate the integral in
(1) by a discrete summation and vectorize the 3D image cube
and the 2D measurements, then we obtain a matrix-vector form
of (1),

g = Hfy +z, )

where fy is the vectorized 3D image cube of dimension n =
M NL, vectors g and z are the measurements and the additive
noise, respectively, and the matrix H is an equivalent linear
operator that models the integral in (1). In this paper, we as-
sume that the additive noise z is independent and identically
distributed (i.i.d.) Gaussian. With a single shot of CASSI, the
number of measurements is m = M (N + L — 1), whereas K
shots will yield m = KM(N + L — 1) measurements. The
matrix H in (2) accounts for the effects of the coded aperture
and the dispersive element. A sketch of this matrix is depicted
in Fig. 1(a) when K = 2 shots are used. It consists of a set
of diagonal patterns that repeat in the horizontal direction, each
time with a unit downward shift, as many times as the number
of spectral bands. Each diagonal pattern is the coded aperture it-
self after being column-wise vectorized. Just below, the next set
of diagonal patterns are determined by the coded aperture pat-
tern used in the subsequent shot. The matrix H will thus have as
many sets of diagonal patterns as FPA measurements. Although
H is sparse and highly structured, the restricted isometry prop-
erty [31] still holds, as shown by Arguello and Arce [32].
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Fig. 1. The matrix H is presented for X = 2,M = N = 8, and L = 4.
The circled diagonal patterns that repeat horizontally correspond to the coded
aperture pattern used in the first FPA shot. The second coded aperture pattern
determines the next set of diagonals. In (a) standard CASSI, each FPA shot
captures M (N + L — 1) = 88 measurements; in (b) higher order CASSI, each
FPA shot captures M (N + L + 1) = 104 measurements. (a) The matrix H
for standard CASSI, (b) The matrix H for higher order CASSI.

B. Higher Order CASSI

Recently, Arguello et al. [33] proposed a higher order model
to characterize the CASSI system with greater precision, and
improved the quality of the reconstructed 3D image cubes. In
the standard CASSI system model, each cubic voxel in the 3D
cube contributes to exactly one measurement in the FPA. In the
higher order CASSI model, however, each cubic voxel is shifted
to an oblique voxel because of the continuous nature of the dis-
persion, and therefore the oblique voxel contributes to more than
one measurement in the FPA. As a result, the matrix H in (2)
will have multiple diagonals as shown in Fig. 1(b), where there
are sets of 3 diagonals for each FPA shot, accounting for the
voxel energy impinging into the neighboring FPA pixels. In this
case, the number of measurements with K = 1 shot of CASSI
will be m = M (N + L 4 1), because each diagonal entails the
use of M more pixels (we refer readers to [33] for details).

In Section IV, we will provide promising image reconstruc-
tion results for this higher order CASSI system. Using the stan-
dard CASSI model, our proposed algorithm produces similar
advantageous results over other competing algorithms.
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III. PROPOSED ALGORITHM

The goal of our proposed algorithm is to reconstruct the
image cube fy from its compressive measurements g, where the
matrix H is known. In this section, we describe our algorithm in
detail. The algorithm employs (7) approximate message passing
(AMP) [20], an iterative algorithm for compressive sensing
problems, and (ii) adaptive Wiener filtering, a hyperspectral
image denoiser that can be applied within each iteration of
AMP.

A. Image Denoising in Scalar Channels

Below we describe that the linear imaging system model in
(2) can be converted to a 3D image denoising problem in scalar
channels. Therefore, we begin by defining scalar channels,
where the noisy observations q of the image cube fy obey

q="fo+v, )

and v is the additive noise vector. Recovering fg from q is
known as a 3D image denoising problem.

B. Approximate Message Passing

Algorithm framework: AMP [20] has recently become a
popular algorithm for solving signal reconstruction problems in
linear systems as defined in (2). The AMP algorithm proceeds
iteratively according to

£l =p, (H r' +£), 4)

rf=g— HE' + %rtfl <"7;,71 (HTrtfl + ft71)> . (5
where HT is the transpose of H, R = m/n represents the mea-
surement rate, 7;( - ) is a denoising function at the ¢-th itera-
tion, nj(s) = Zm(s), and (u) = 23" | w; for some vector
u = (uq,u2,...,%,). We will explain in Section III-E how
f* and r! are initialized. The last term in (5) is called the “On-
sager reaction term” [20], [34] in statistical physics. This On-
sager reaction term helps improve the phase transition (trade-off
between the measurement rate and signal sparsity) of the recon-
struction process over existing iterative thresholding algorithms
[20]. In the ¢-th iteration, we obtain the estimated image cube
f* and the residual r*. We highlight that the vector H” ¢ + f*
in (4) can be regarded as a noise-corrupted version of fg in the
t-th iteration with noise variance o7, and therefore n;( - ) isa 3D
image denoising function that is performed on a scalar channel
as in (3). Let us denote the equivalent scalar channel at iteration
t by

gt =HTr! £t =y + v, (6)
where the noise level o2 is estimated by [35],
N 1 m )
7i=—> ()" (M

i=1

and r! denotes the i-th component of the vector r* in (5).
Theoretical properties: AMP can be interpreted as mini-
mizing a Gaussian approximation of the Kullback-Leibler di-
vergence [36] between the estimated and the true posteriors sub-
ject to first order and second order moment matching constraints

between fo and Hf [37]. If the measurement matrix H is i.i.d.
Gaussian and the empirical distribution of fy converges to some
distribution on R, then the sequence of the mean square error
achieved by AMP at each iteration converges to the information
theoretical minimum mean square error asymptotically [38].

Moreover, if the matrix is i.i.d. random, then the noise in
the scalar channel (3) can be viewed as asymptotically i.i.d.
Gaussian [20], [35], [39].

C. Damping

We have discussed in Section III-B that many mathematical
properties of AMP hold for the setting where the measurement
matrix is i.i.d. Gaussian. When the measurement matrix is not
i.i.d. Gaussian, such as the highly structured matrix H defined
in (2), AMP may encounter divergence issues. A standard tech-
nique called “damping” [29], [30] is frequently employed to
solve for the divergence problems of AMP, because it only in-
creases the runtime modestly.

Specifically, damping is an extra step within AMP iterations.
In (4), instead of updating the value of f+1 by the output of
the denoiser 1, (H”r? + £*), we assign a weighted average of
n:(HTr" + £*) and £* to £*7! as follows,

F = o (HTr +£9) + (1 - ) - ®)
for some constant 0 < « < 1. Similarly, after obtaining r? in
(5), we add an extra damping step that updates the value of r?
tobe a-rt + (1 — a) - rt~1, where the value of « is the same
as that in (8).

AMP has been proved [29] to converge with sufficient
damping, under the assumption that the prior of fy is i.i.d.
Gaussian with fixed means and variances throughout all iter-
ations, and the amount of damping depends on the condition
number of the matrix H. Note that other AMP variants [30],
[40], [41] have also been proposed in order to encourage
convergence for a broader class of measurement matrices.

D. Adaptive Wiener Filter

We are now ready to describe our 3D image denoiser, which
is the function 73 ( - ) in the first step of AMP iterations in (4).

Sparsifying transform: Recall that in 2D image denoising
problems, a 2D wavelet transform is often performed, and some
shrinkage function is applied to the wavelet coefficients in order
to suppress noise [42], [43]. The wavelet transform based image
denoising method is effective, because natural images are usu-
ally sparse in the wavelet transform domain, i.e., there are only
a few large wavelet coefficients and the rest of the coefficients
are small. Therefore, large wavelet coefficients are likely to con-
tain information about the image, whereas small coefficients are
usually comprised mostly of noise, and so it is effective to de-
noise by shrinking the small coefficients toward zero and sup-
pressing the large coefficients according to the noise variance.
Similarly, in hyperspectral image denoising, we want to find a
sparsifying transform such that hyperspectral images have only
a few large coefficients in this transform domain. Inspired by
Arguello and Arce [21], we apply a wavelet transform to each
of the 2D images in a 3D cube, and then apply a discrete cosine
transform (DCT) along the spectral dimension, because the 2D
slices from different wavelengths are highly correlated. That is,
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the sparsifying transform ¥ can be expressed as a Kronecker
product of a DCT transform @ and a 2D wavelet transform W,
ie, ¥ = ® W, and it can be shown that ¥ is an orthonormal
transform. Let 0; denote the coefficients of q* in this transform
domain, i.e., 02 = ¥q'. Our 3D image denoising procedure
will be applied to the coefficients 02. Besides 2D wavelet trans-
form and 1D DCT, it is also possible to sparsify 3D image cubes
by dictionary learning [14] or Gaussian mixture models [26].
Moreover, using an endmember mixing matrix [44] is an alter-
native to DCT for characterizing the spectral correlation of 3D
image cubes. In this work, we focus on a 2D wavelet transform
and 1D DCT as the sparsifying transform, because it is an effi-
cient transform that does not depend on any particular types of
image cubes, and an orthonormal transform that is suitable for
the AMP framework.

Parameter estimation in the Wiener filter: In our previous
work [28] on compressive imaging reconstruction problems for
2D images, one of the image denoisers we employed was an
adaptive Wiener filter in the wavelet domain, where the vari-
ance of each wavelet coefficient was estimated from its neigh-
boring coefficients within a 5 x 5 window, i.e., the variance was
estimated locally.

As an initial attempt, we applied the previously proposed
AMP-Wiener to the reconstruction problem in the CASSI
system defined in (2). More specifically, the previously pro-
posed adaptive Wiener filter is applied to the noisy coefficients
Hfl. Unfortunately, AMP-Wiener encounters divergence issues
for the CASSI system even with significant damping such as «
= 0.01 in (8). AMP-Wiener diverges, because it is designed
for the setting where the measurement matrix is i.i.d. Gaussian,
whereas the measurement matrix H defined in (2) is highly
structured and not i.i.d., and we found in our numerical ex-
periments that the scalar channel noise v* in (6) is not i.i.d.
Gaussian. On the other hand, because the Wiener filter allows
to conveniently calculate the Onsager term in (5), we are
motivated to keep the Wiener filter strategy, although the scalar
channel (6) does not contain i.i.d. Gaussian noise. Seeing that
estimating the coefficient variance from its neighboring coeffi-
cients (a 3 x 3 or 5 X 5 neighboring window) does not produce
reasonable reconstruction for the CASSI system, we modify
the local variance estimation to a global estimation within

each wavelet subband. The coefficients 5: of the estimated
(denoised) image cube f' are obtained by Wiener filtering,
which can be interpreted as the conditional expectation of ¢
given 021 under the assumption of Gaussian prior and Gaussian
noise,

~t max {0, U7 'y — O 2}
- = (0%, — i) s,
fi (7/12,5 — O_tz) I O_tz ( ,ul,t) Hit
max {0,072, - & N N
= { 7,\21 LR dl (Hf — M) + Pit, ©)
v
1,

where 0q ; 18 the i-th element of 0 and fi;; and U}, are the

empirical mean and variance of Oqi within an appropriate
wavelet subband, respectively. Taking the maximum between 0
and (77 '+ G?%) ensures that if the empirical variance u 4 of the
noisy coefficients is smaller than the noise variance o2, then the
corresponding noisy coefficients are set to 0. After obtaining
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~t

the denoised coefficients 8¢, the estimated image cube in the
e ~t

t-th iteration satisfies f* = ¥ 18y = ®7@;. Therefore, the

adaptive Wiener filter as a denoiser function #;(-) can be

written as

=n(a’)
=wT (maX{O,\A/} — 331} \A/';l (‘Ilqt — ﬁ.f) +ﬁt> )
(10)

where 0 is a zero matrix, Viisa diagonal matrix with 7/\1-2775 on
its diagonal, I is the identify matrix, g, is a vector that contains
Hi 1, and max{-, -} is operating entry-wise.

We apply this modified adaptive Wiener filter within AMP,
and call the algorithm “AMP-3D-Wiener.” We will show in
Section IV that only a moderate amount of damping is needed
for AMP-3D-Wiener to converge.

ft+1

E. Derivative of Adaptive Wiener Filter

The adaptive Wiener filter described in Section III-D is
applied in (4) as the 3D image denoising function 7;( - ). The
following step in (5) requires 7, - ), i.e., the derivative of 7 ( - ).
We now show how to obtain 7;( - ). It has been discussed [28]
that when the sparsifying transform is orthonormal, the deriva-
tive calculated in the transform domain is equivalent to the
derivative in the image domain. According to (9), the derivatitve
of the Wlener filter in the transform domain with respect to 8,
is max{0,77, — 57}/77,. Because the sparsifying transform
W is orthonormal, the Onsager term in (5) can be calculated
efficiently as

max{0, 77 B o2
<77£(qt)>:%z ax{ A2t }’

icT l i

(11)

where Z is the index set of all image cube elements, and the
cardinality of Z ism = M NL.

We focus on image denoising in an orthonormal transform do-
main and apply Wiener filtering to suppress noise, because it is
convenient to obtain the Onsager correction term in (5). On the
other hand, other denoisers that are not wavelet-DCT based can
also be applied within the AMP framework. Metzler et al. [45],
for example, proposed to utilize a block matching and 3D fil-
tering denoising scheme (BM3D) [46] within AMP for 2D com-
pressive imaging reconstruction, and run Monte Carlo [47] to
approximate the Onsager correction term. However, the Monte
Carlo technique is accurate only when the scalar channel (6) is
Gaussian. In the CASSI system model (2), BM4D [48] may be
an option for the 3D image denoising procedure. However, be-
cause the matrix H is ill-conditioned, the scalar channel (6) that
is produced by AMP iterations (4, 5) is not Gaussian, and thus
the Monte Carlo technique fails to approximate the Onsager cor-
rection term.

Having completed the description of AMP-3D-Wiener, we
summarize AMP-3D-Wiener in Algorithm 1, where fapp de-
notes the image cube reconstructed by AMP-3D-Wiener. Note
that in the first iteration of Algorithm 1, initialization of q* and
&3 may not be necessary, because r’ is an all-zero vector, and
the Onsager term is 0 at iteration 1.
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Algorithm 1 AMP-3D-Wiener

Inputs: g, H, o, maxlter
Outputs: /f\AMP

Initialization: f* = 0,r° = 0
for £ = 1 : maxIter dto
Dr = g - Hf +
- n max{Ovi, o7 ,}
%r 1121'71 . ™ 11 *
Drt=a-ri+(1—qa) !
3) g = Hix! + £
4) 05 = Ezt:j(rg-)z
5) 0, = ¥q

s max ;/\2 —a o~ ~
6) B = —{%—} (8L, — Fing) + i

7) ft+1:a-\I:T¢9f+(1—a)~ft

end for

/f\AI\/IP — fmaxlter+ 1

IV. NUMERICAL RESULTS

In this section, we provide numerical results where we com-
pare the reconstruction quality and runtime of AMP-3D-Wiener,
gradient projection for sparse reconstruction (GPSR) [22], and
two-step iterative shrinkage/thresholding (TwIST) [16], [25]. In
all experiments, we use the same coded aperture pattern for
AMP-3D-Wiener, GPSR, and TwIST. In order to quantify the
reconstruction quality of each algorithm, the peak signal to noise
ratio (PSNR) of each 2D slice in the reconstructed cubes is mea-
sured. The PSNR is defined as the ratio between the maximum
squared value of the ground truth image cube fo and the mean
square error of the estimation f, i.c.,

2
maXg y,A (f07(w,y7)\))

PSNR = 10 - log,, - 3
217%)\ (f(xy,)\) - fO,(r,y,)\))

?

where f(, , 1) denotes the element in the cube f at spatial coor-
dinate (z, y) and spectral coordinate A.

In AMP, the damping parameter « is set to be 0.2. Recall that
increasing the amount of damping helps prevent the divergence
of AMP-3D-Wiener, and that the divergence issue can be iden-
tified by evaluating the values of 57 from (7). We select 0.2
as the damping parameter value, because 0.2 is the maximum
damping value such that AMP-3D-Wiener converges in all the
image cubes we test. The divergence issues of AMP-3D-Wiener
can be detected by evaluating the value of 2 obtained by (7)
as a function of iteration number ¢. Recall that 7 estimates
the amount of noise in the noisy image cube q° at iteration ¢.
If AMP-3D-Wiener converges, then we expect the value of 77
to decrease as ¢ increases. Otherwise, we know that AMP-3D-
Wiener diverges. The choice of damping mainly depends on the

IAs an example, we simulate GPSR with many different values for 8, and
obtain that for 3 =1-10"%,2-1075,3-1075,4-10°3,5-107%,6- 1073,
and 7-10~%, the corresponding PSNRs of the reconstructed cubes are 31.25 dB,
32.30dB, 32.82dB, 32.99 dB, 33.02 dB, 33.09 dB, and 33.06 dB. Therefore, we
select 3 = 610 ~5 for this specific image cube. We follow the same procedure
to select the optimal 3 values for each test image cube.

structure of the imaging model in (2) but not on the character-
istics of the image cubes, and thus the value of the damping
parameter o need not be tuned in our experiments.

To reconstruct the image cube fy, GPSR and TwIST minimize
objective functions of the form

F=argmin g~ HEZ+5-0(6), (1)
where ¢(-) is a regularization function that characterizes the
structure of the image cube fy, and 5 is a regularization param-
eter that balances the weights of the two terms in the objective
function. In GPSR, ¢(f) = || ¥f||;; in TWIST, the total varia-
tion regularizer is employed,

=3 YN ((Fa+1y N — fzy )
A=lz=1y=1

F(f @y + L) — fa )2 (13)

Note that the role of the ¢;-norm of the sparsifying co-
efficients in GPSR is to impose the overall sparsity of
the sparsifying coefficients, whereas the total variation
in TwIST encourages spatial smoothness in the recon-
structed image cubes. The implementation of GPSR
is downloaded from  “http:/www.Ix.it.pt/mt{/GPSR/,”
and the implementation of TwIST is downloaded from
“http://www.disp.duke.edu/projects/CASSI/experimental-

data/index.ptml.” The value of the regularization parameter
B in (12) greatly affects the reconstruction results of GPSR
and TwIST, and must be tuned carefully. We select the op-
timal values of 8 for GPSR and TwIST manually, i.e., we run
GPSR and TwIST with 5-10 different values of 3, and select
the results with the highest PSNR.! The typical value of the
regularization parameter for GPSR is between 10~° and 1074,
and the value for TwIST is around 0.1. We note in passing
that the ground truth image cube is not known in practice, and
estimating the PSNR obtained using different 5 may be quite
involved and require oracle-like information when using GPSR
and TwIST. Reweighted ¢;-minimization [49] does not need
regularization parameter tuning, and has been shown to out-
perform ¢;-minimization by Candes et al. [49]. However, the
existing reweighted £;-minimization implementations require
either QR decomposition [50] of the measurement matrix H
or the null space of H, which requires H to be expressed as a
matrix. That said, H is a very large matrix, and we implement
it as a linear operator. Therefore, implementing the reweighted
{1-minimization that is applicable to the system model in (2)
is beyond the scope of this paper, and the reweighted ¢; -mini-
mization is not included in our simulation results. There exist
other hyperspectral image reconstruction algorithms based on
dictionary learning [14], [26]. In order to learn a dictionary
that represents a 3D image, the image cube needs to be divided
into small patches, and the measurement matrix H also needs
to be divided accordingly. Dividing the measurement matrix
into smaller patches is convenient for the standard CASSI
model (Fig. 1(a)), because there is a one-to-one correspondence
between the measurement matrix and the image cube, i.e.,
each measurement is a linear combination of only one voxel
in each spectral band. In higher order CASSI, however, each
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““

Fig. 2. The Lego scene. (The target object presented in the experimental results was not endorsed by the trademark owners and it is used here as fair use to
illustrate the quality of reconstruction of compressive spectral image measurements. LEGO is a trademark of the LEGO Group, which does not sponsor, authorize,

or endorse the images in this paper. The LEGO Group. All Rights Reserved. http://aboutus.lego.com/en-us/legal-notice/fair-play/).
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Fig. 3. Runtime versus average PSNR comparison of AMP-3D-Wiener,
GPSR, and TwIST for the Lego image cube. Cube size is M = N = 256,
and L = 24. The measurements are captured with K = 2 shots using
complementary random coded apertures, and the number of measurements is
m = 143, 872. Random Gaussian noise is added to the measurements such

that the SNR is 20 dB.

measurement is a linear combination of multiple voxels in each
spectral band. Therefore, it is not straightforward to modify
these dictionary learning methods to the higher order CASSI

¥
i
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Fig. 4. Spectral band versus PSNR comparison of AMP-3D-Wiener, GPSR,
and TwIST for the Lego image cube. Cube sizeis M = N = 256,and L = 24.
The measurements are captured with ' = 2 shots using complementary
random coded apertures, and the number of measurements is m = 143, 872.
Random Gaussian noise is added to the measurements such that the SNR is

20 dB.

model described in Section II-B, and we do not include these
algorithms in the comparison.
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Fig. 5. 2D slices at wavelengths 488 nm, 533 nm, and 578 nm in the image cubes reconstructed by AMP-3D-Wiener, GPSR, and TWIST for the Lego image cube.
Cube size is M = N = 256, and L = 24. The measurements are captured with X = 2 shots using complementary random coded apertures, and the number
of measurements is m = 143, 872. Random Gaussian noise is added to the measurements such that the SNR is 20 dB. First row: ground truth; second row: the
reconstruction result by AMP-3D-Wiener; third row: the reconstruction result by GPSR; last row: the reconstruction result by TwIST. Columns 1-3: upper-left
part of the scene of size 128 x 128; columns 4—6: upper-right part of the scene of size 128 x 128.

A. Test on “Lego” Image Cube

The first set of simulations is performed for the scene shown
in Fig. 2. This data cube was acquired using a wide-band
Xenon lamp as the illumination source, modulated by a visible
monochromator spanning the spectral range between 448 nm
and 664 nm, and each spectral band has 9 nm width. The image
intensity was captured using a grayscale CCD camera, with
pixel size 9.9 pm, and 8 bits of intensity levels. The resulting
test data cube has M X N = 256 x 256 pixels of spatial
resolution and L. = 24 spectral bands.

Setting 1: The measurements g are captured with K = 2
shots. The coded aperture in the first shot is generated randomly
with 50% of the aperture being opaque, and the coded aperture
in the second shot is the complement of the aperture in the first
shot. The measurement rate with two shots is m/n = KM (N
+ L +1)/(MNL) ~ 0.09. Moreover, we add Gaussian noise
with zero mean to the measurements. The signal to noise ratio
(SNR) is defined as 101og;o(1t4/Tnoise) [21], Where p, is the
mean value of the measurements Hf g and ¢,,;sc 1s the standard
deviation of the additive noise z. In Setting 1, we add measure-
ment noise such that the SNR is 20 dB.

We note in passing that the complementary random coded
apertures are binary, and can be implemented through pho-
tomask technology or emulated by a digital micromirror device
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(DMD). Therefore, the complementary random coded apertures
are feasible in practice [21]. Moreover, the complementary
random coded apertures ensure that in the matrix H in (2),
the norm of each column is similar, which is suitable for the
AMP framework. However, it is a limitation of the current
AMP-3D-Wiener that the complementary random coded aper-
tures must be employed, otherwise, AMP-3D-Wiener may
diverge.

Let us now evaluate the numerical results for Setting 1.
Fig. 3 compares the reconstruction quality of AMP-3D-Wiener,
GPSR, and TwIST within a certain amount of runtime. Runtime
is measured on a Dell OPTIPLEX 9010 running an Intel(R)
CoreTM 17-860 with 16 GB RAM, and the environment is
Matlab R2013a. In Fig. 3, the horizontal axis represents runtime
in seconds, and the vertical axis is the averaged PSNR over
the 24 spectral bands. Although the PSNR of AMP-3D-Wiener
oscillates during the first few iterations, which may be because
the matrix H is ill-conditioned, it becomes stable after 50 sec-
onds and reaches a higher level when compared to the PSNRs
of GPSR and TwIST at 50 seconds. After 450 seconds, the
average PSNR of the cube reconstructed by AMP-3D-Wiener
(solid curve with triangle markers) is 26.16 dB, while the
average PSNRs of GPSR (dash curve with circle markers) and
TwIST (dash-dotted curve with cross markers) are 23.46 dB
and 25.10 dB, respectively. Note that in 450 seconds, TwIST
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Fig. 6. Comparison of AMP-3D-Wiener, GPSR, and TwIST on reconstruction along the spectral dimension of three spatial pixel locations as indicated in (a). The
estimated pixel values are illustrated for (b) the pixel B, (c) the pixel C, and (d) the pixel D. (a) Original image, (b) z = 190,y = 50, (c) & = 176,y = 123,

(d)z = 63,y = 55.
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Fig. 7. Measurement noise versus average PSNR comparison of AMP-3D-
Wiener, GPSR, and TwIST for the Lego image cube. Cube size is M = N
= 256, and L = 24. The measurements are captured with K = 2 shots using
complementary random coded apertures, and the number of measurements is
m = 143, 872.

runs roughly 200 iterations, while AMP-3D-Wiener and GPSR
run 400 iterations.
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Fig. 8. Number of shots versus average PSNR comparison of AMP-3D-
Wiener, GPSR, and TwIST for the Lego image cube. Cube size is M = N
= 256, and L = 24. The measurements are captured using pairwise
complementary random coded apertures. Random Gaussian noise is added to
the measurements such that the SNR is 20 dB.

Fig. 4 complements Fig. 3 by illustrating the PSNR of each
2D slice in the reconstructed cube separately. It is shown that
the cube reconstructed by AMP-3D-Wiener has 2—4 dB higher
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Fig. 9. Comparison of selected image cubes reconstructed by AMP-3D-Wiener, GPSR, and TwIST for the datasets “natural scene 2002” and “natural scene 2004.”
The 2D RGB images shown in this figure are converted from their corresponding 3D image cubes. Cube size is M = N = 512, and L = 31 for images in
columns 1-2 or L = 33 for images in columns 3—6. Random Gaussian noise is added to the measurements such that the SNR is 20 dB. First row: ground truth;
second row: the reconstruction result by AMP-3D-Wiener; third row: the reconstruction result by GPSR; last row: the reconstruction result by TwIST.

PSNR than the cubes reconstructed by GPSR and 0.4-3 dB
higher than those of TWIST for all 24 slices.

In Fig. 5, we plot the 2D slices at wavelengths 488 nm,
533 nm, and 578 nm in the actual image cubes reconstructed by
AMP-3D-Wiener, GPSR, and TwIST. The images in these four
rows are slices from the ground truth image cube fy, the cubes
reconstructed by AMP-3D-Wiener, GPSR, and TwIST, respec-
tively. The images in columns 1-3 show the upper-left part of
the scene, whereas images in columns 4—6 show the upper-right
part of the scene. All images are of size 128 x 128. It is clear
from Fig. 4 that the 2D slices reconstructed by AMP-3D-Wiener
have better visual quality; the slices reconstructed by GPSR
have blurry edges, and the slices reconstructed by TwIST
lack details, because the total variation regularization tends to
constrain the images to be piecewise constant.

Furthermore, a spectral signature plot analyzes how the pixel
values change along the spectral dimension at a fixed spatial
location, and we present such spectral signature plots for the
image cubes reconstructed by AMP-3D-Wiener, GPSR, and
TwlIST in Fig. 6. Three spatial locations are selected as shown
in Fig. 6(a), and the spectral signature plots for locations B,
C, and D are shown in Figs. 6(b)—(d), respectively. It can be
seen that the spectral signatures of the cube reconstructed by
AMP-3D-Wiener closely resemble those of the ground truth
image cube (dotted curve with square markers), whereas there
are discrepancies between the spectral signatures of the cube
reconstructed by GPSR or TWIST and those of the ground truth
cube.

According to the runtime experiment from Setting 1, we run
AMP-3D-Wiener with 400 iterations, GPSR with 400 iterations,
and TwIST with 200 iterations for the rest of the simulations, so
that all algorithms complete within a similar amount of time.

Setting 2: In this experiment, we add measurement noise
such that the SNR varies from 15 dB to 40 dB, which is the same
setting as in Arguello and Arce [21], and the result is shown in
Fig. 7. Again, AMP-3D-Wiener achieves more than 2 dB higher
PSNR than GPSR, and about 1 dB higher PSNR than TwIST,
overall.

Setting 3: In Settings 1 and 2, the measurements are captured
with K = 2 shots. We now test our algorithm on the setting
where the number of shots varies from K = 2 to K = 12 with
pairwise complementary random coded apertures. Specifically,
we randomly generate the coded aperture for the k-th shot for
k = 1,3,5,7,9,11, and the coded aperture in the (k + 1)-th
shot is the complement of the aperture in the k-th shot. In this
setting, a moderate amount of noise (20 dB) is added to the mea-
surements. Fig. 8 presents the PSNR of the reconstructed cubes
as a function of the number of shots, and AMP-3D-Wiener con-
sistently beats GPSR and TwIST.

B. Test on Natural Scenes

Besides the Lego image cube, we have also tested our algo-
rithm on image cubes of natural scenes [51].2 There are two

2The cubes are downloaded from http://personalpages.manchester.ac.
uk/staff/d.h.foster/Hyperspectral _images of natural scenes_04.html and
http://personalpages.manchester.ac.uk/staff/d.h.foster/Hyperspectral images
of natural \crscenes_02.html.
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TABLE 1
AVERAGE PSNR COMPARISON OF AMP-3D-WIENER, GPSR, AND TWIST
FOR THE DATASET “NATURAL SCENE 2002” DOWNLOADED FrROM [51].
THE SPATIAL DIMENSIONS OF THE CUBES ARE CROPPED TO M = N
= 512, AND EACH CUBE HAS I = 31 SPECTRAL BANDS. THE
MEASUREMENTS ARE CAPTURED WITH K = 2 SHOTS, AND THE NUMBER
OF MEASUREMENTS IS m = 557, 056. RANDOM GAUSSIAN NOISE IS
ADDED TO THE MEASUREMENTS SUCH THAT THE SNR IS 15 OR 20 dB.
BECAUSE THE SPATIAL DIMENSIONS OF THE CUBES “SCENE 6” AND “SCENE7”
IN “NATURAL SCENES 2002” ARE SMALLER THAN 512 x 512, WE Do
NOT INCLUDE RESULTS FOR THESE TWO CUBES

SNR 15 dB 20 dB
Algorithm AMP | GPSR | TwIST AMP | GPSR | TwIST
Scene 1 32.69 | 28.10 31.05 33.29 | 28.09 31.16
Scene 2 26.52 | 24.32 26.25 26.65 | 24.40 26.41
Scene 3 32.05 | 29.33 31.21 3245 | 29.55 31.54
Scene 4 27.57 | 25.19 27.17 27.76 | 25.47 27.70
Scene 5 29.68 | 27.09 29.07 29.80 | 27.29 29.42
Scene 8 28.72 | 25.53 26.24 29.33 | 25.77 26.46

datasets, “natural scenes 2002” and “natural scenes 2004,” each
one with 8 image data cubes. The cubes in the first dataset
have L = 31 spectral bands with spatial resolution of around
700 x 700, whereas the cubes in the second dataset have L = 33
spectral bands with spatial resolution of around 1000 x 1000.
To satisfy the dyadic constraint of the 2D wavelet, we crop their
spatial resolution to be M = N = 512. Because the spatial di-
mensions of the cubes “scene 6 and “scene7” in the first dataset
are smaller than 512 x 512, we do not include results for these
two cubes.

The measurements are captured with K = 2 shots, and the
measurement rate is m/n = KM(N + L + 1)/(MNL) =~
0.069 for “natural scene 2002” and 0.065 for “natural scene
2004.” We test for measurement noise levels such that the SNRs
are 15 dB and 20 dB. The typical runtimes for AMP with 400
iterations, GPSR with 400 iterations, and TwIST with 200 it-
erations are approximately 2,800 seconds. The average PSNR
over all spectral bands for each reconstructed cube is shown in
Tables I and II. We highlight the highest PSNR among AMP-
3D-Wiener, GPSR, and TwIST using bold fonts. It can be seen
from Tables I and II that AMP-3D-Wiener usually outperforms
GPSR by 2—-5 dB in terms of the PSNR, and outperforms TwIST
by 0.2-4 dB, while TWIST outperforms GPSR by up to 3 dB for
most of the scenes. Additionally, the results of 6 selected image
cubes are displayed in Fig. 9 in the form of 2D RGB images.3
The four rows of images correspond to ground truth, results by
AMP-3D-Wiener, results by GPSR, and results by TwIST, re-
spectively. We can see from Fig. 9 that the test datasets con-
tain both smooth scenes and scenes with large gradients, and
AMP-3D-Wiener consistently reconstructs better than GPSR
and TwIST, which suggests that AMP-3D-Wiener is adaptive
to various types of scenes.

V. CONCLUSION

In this paper, we considered the compressive hyperspectral
imaging reconstruction problem for the coded aperture snapshot
spectral imager (CASSI) system. Considering that the CASSI
system is a great improvement in terms of imaging quality
and acquisition speed over conventional spectral imaging

3We refer to the tutorial from http://personalpages.manchester.ac.uk/staft/
david.foster/Tutorial HSI2RGB/Tutorial HSI2RGB.html and convert 3D
image cubes to 2D RGB images.
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TABLE II
AVERAGE PSNR COMPARISON OF AMP-3D-WIENER, GPSR, AND TWIST
FOR THE DATASET “NATURAL SCENE 2004” DOWNLOADED FROM [51]. THE
SPATIAL DIMENSIONS OF THE CUBES ARE CROPPED TO M = N = 512,
AND EACH CUBE HAS L = 33 SPECTRAL BANDS. THE MEASUREMENTS ARE
CAPTURED WITH K = 2 SHOTS, AND THE NUMBER OF MEASUREMENTS IS
m = 559, 104. RANDOM GAUSSIAN NOISE IS ADDED TO THE MEASUREMENTS
SUCH THAT THE SNR Is 15 or 20 dB

SNR 15 dB 20 dB
Algorithm AMP | GPSR | TwIST AMP | GPSR | TwIST
Scene 1 3048 | 2843 30.17 30.37 | 28.53 30.31
Scene 2 27.34 | 2471 27.03 27.81 24.87 27.35
Scene 3 33.13 | 29.38 31.69 3312 | 29.44 31.75
Scene 4 32.07 | 26.99 31.69 32.14 | 2725 32.08
Scene 5 27.44 | 2425 26.48 27.83 | 24.60 26.85
Scene 6 29.15 | 24.99 25.74 30.00 | 25.53 26.15
Scene 7 36.35 33.09 33.59 37.11 33.55 34.05
Scene 8 32.12 | 28.14 28.22 32.93 | 28.82 28.69

techniques, it is desirable to further improve CASSI by acceler-
ating the 3D image cube reconstruction process. Our proposed
AMP-3D-Wiener used an adaptive Wiener filter as a 3D image
denoiser within the approximate message passing (AMP) [20]
framework. AMP-3D-Wiener was faster than existing image
cube reconstruction algorithms, and also achieved better recon-
struction quality.

In AMP, the derivative of the image denoiser is required, and
the adaptive Wiener filter can be expressed in closed form using
a simple formula, and so its derivative is easy to compute. Al-
though the matrix that models the CASSI system is ill-condi-
tioned and may cause AMP to diverge, we helped AMP con-
verge using damping, and reconstructed 3D image cubes suc-
cessfully. Numerical results showed that AMP-3D-Wiener is
robust and fast, and outperforms gradient projection for sparse
reconstruction (GPSR) and two-step iterative shrinkage/thresh-
olding (TwIST) even when the regularization parameters for
GPSR and TwIST are optimally tuned. Moreover, a significant
advantage over GPSR and TwIST is that AMP-3D-Wiener need
not tune any parameters, and thus an image cube can be recon-
structed by running AMP-3D-Wiener only once, which is crit-
ical in real-world scenarios. In contrast, GPSR and TwIST must
be run multiple times in order to find the optimal regularization
parameters.

Future improvements: In our current AMP-3D-Wiener al-
gorithm for compressive hyperspectral imaging reconstruction,
we estimated the noise variance of the noisy image cube within
each AMP iteration using (7). In order to denoise the noisy
image cube in the sparsifying transform domain, we applied
the estimated noise variance value to all wavelet subbands. The
noise variance estimation and 3D image denoising method were
effective, and helped produce promising reconstruction. How-
ever, both the noise variance estimation and the 3D image de-
noising method may be sub-optimal, because the noisy image
cube within each AMP iteration does not contain i.i.d. Gaussian
noise, and so the coefficients in the different wavelet subbands
may contain different amounts of noise. On the other hand, in
the proposed adaptive Wiener filter, the variances of the coeffi-
cients in the sparsifying transform domain were estimated em-
pirically within each wavelet subband, whereas it is also pos-
sible to apply Wiener filtering via marginal likelihood or gener-
alized cross validation [52]. Therefore, it is possible that the de-
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noising part of the proposed algorithm can be further improved.
The study of such denoising methods is left for future work.

In our current AMP-3D-Wiener, the coded apertures must
be complementary, because complementary coded apertures en-
sure that the norm of each column in the matrix H in (2) is sim-
ilar, otherwise, AMP-3D-Wiener may diverge. Although using
complementary coded aperture has practical importance, it pro-
vides more flexibility in coded aperture design when such a
complementary constraint can be removed, and the develop-
ment for AMP-based algorithms without such constraints is left
for future work.

Finally, besides reconstructing image cubes from compres-
sive hyperspectral imaging systems, it would also be interesting
to investigate problems such as target detection [53] and un-
mixing [54] using compressive measurements from hyperspec-
tral imaging systems. We leave these problems for future work.
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