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A.BSTRACT 
In this paper we introlduce a robust and nonlinear filter- 

ing framework: Weighted Myriad Filtering. Much like the 
Gaussian assumption has motivated the development of lin- 
ear filtering theory, the formulation of myriad filters is mo- 
tivated by the statistical properties of a-stable processes. 
Weighted Myriad Fi1ter.s have a solid theoretical basis, are 
inherently more powerful than weighted median filters, and 
are very general subsuming traditional linear FIR filters. 
The foundation of the proposed filtering algorithms lies in 
the definition of the sample myriad as the location estimate 
for a class of a-stable distributions. In turn, the myriad 
has been discovered as the location parameter estimated by 
the sample myriad. This paper addresses some theoretical 
properties of myriad filters. The superior performance of 
myriad filters in impulsive environments is illustrated in the 
problem of robust synchronization by means of a “myriad 
phase lock loop”. 

1. INTRODUCTION 
A large number of algorithms used in signal processing and 
communications rely on the fundamental assumption that 
the underlying signals and noise obey a Gaussian distri- 
bution. TLis assumption is often justified in practice due 
to the central limit theorem. The Gaussian assumption, 
however, often proves invalid as the noise encountered in 
practice frequently exhibits impulsive behavior. It is wide- 
ly recognized that the performance of linear filters rapidly 
degrade in the presence of outliers. 

Many approaches to the robust filtering problem have 
been formulated recently. Among these, the approach that 
has received considerable attention is that of weighted me- 
dian filters [5]. Today, due to its sound underlying theory, 
weighted median filters me increasingly being used - soft- 
ware and hardware implementation of WMF filters are now 
common in image processing commercial products. The 
applications of weighted median filters, however, have not 
significantly spread beyond the field of image processing. 
This can be explained from the fact that median-based al- 
gorithms can be derived as optimal estimators in the pres- 
ence of Laplacian noise, which is not a good model for the 
processes found in practice. An important shortcoming of 
the sample median is that its output value is constrained to 
be the same as that of one of the input samples. In effect, 
when compared to the mean, it is well known that the me- 
dian loses as much as 40% efficiency as a location estimator 

In this paper we introduce a robust and nonlinear filter- 
ing framework derived from a-stable distributions. Alpha- 
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stable random variables form an important class of process- 
es, impulsive in nature, that obey a Generalized Central 
Limit Theorem.’ Thus, like Gaussian random processes, a- 
stable processes can arise in practice as a result of physical 
principles. 

Recently, considerable research efforts have been given 
to several problems in communications, within the frame- 
work of a-stable distributions [3, 41. The filtering problem, 
however, has only been superficially addressed [I, 31. 

Much like the Gaussian assumption has motivated the de- 
velopment of h e a r  filtering theory, myriad filtering theory 
is motivated by the statistical properties of a-stable process- 
es. Weighted Myriad Filters have a solid theoretical basis, 
are inherently more powerful than weighted median filters, 
and arc very general subsuming traditional linear FIR fil- 
ters. The foundation of the proposed filtering algorithms 
lies in the definition of the sample myriad as the location 
estimate of a class of a-stable distributions. In turn, the 
myriad has been discovered as the location parameter esti- 
mated by the sample myriad. 

2. THE MYRIAD: A “NATURAL” LOCATION 
PARAMETER 

To begin, it is crucial to look at the fundamentals of pa- 
rameter estimation and at the characteristics of stochastic 
processes which may arise in real world applications. The 
processes we are mostly concerned are those that are impul- 
sive in nature. These processes can be natural, as well as 
man-made, and include lighting in the atmosphere, motor 
ignitions, switching transients in power lines, and multi- 
ple access interference signals. While Gaussian models are 
clearly inappropriate, the class of a-stable distributions has 
been proven to accurately model impulsive-type processes 
[3]. On a first-order analysis, symmetric a-stable processes 
are characterized by their distribution having a character- 
istic function 

cp(w) = e v ( j D w  - fw4a), (1) 
where a is the characteristic exponent restricted in the 
range 0 < a 5 2, /3 is the real-valued location parame- 
ter, and k is the dispersion of the distribution 31. TWO 

and a = 2, namely the Cauchy and Gaussian distributions 
respectively. Unfortunately, there are no closed form ex- 
pressions for general a-stable symmetric distributions oth- 
er than the Cauchy and the Gaussian. The parameter a 
determines how impulsive the process is. The smaller the 
parameter a is, the heavier the tails of the distribution. 
Alpha-stable processes are very useful in modeling signal- 
s encountered in practice since these obey two important 
properties: 

Alpha-stable distributions are the only class of distribution- 
s that can be the limit for sums of continuous i.i.d. random 
variables. 

important cases of a-stable distributions emerge E or a = 1 
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Stability: ~ 1 ~ x 2 , .  . . , zn are independent a-stable ran- 
dom variables if and only if, for any constants 
al, . . , a,, the linear combination E, a,z,  is also an 
a-stable random variable. 
Generalized central limit theorem: The family of sta- 
ble distributions contains all limiting distributions of 
sums of independent and identically distributed ran- 
dom variables. 

The class of a-stable processes, obeying the above proper- 
ties, can thus arise in practice as a result of physical prin- 
ciples. Laplacian impulsive models exploited by WME‘, on 
the other hand, cannot be equally justified. 

In order to develop robust and computationally tractable 
algorithms, it is logical to consider the maximum likelihood 
(ML) location estimation of a heavy-tailed a-stable distri- 
bution for which we have a closed form expression, name- 
ly the Cauchy distribution. Given a set of i.i.d. samples 
5 1 ,  x2,. . . , X N  obeying the Cauchy distribution with scal- 
ing factor k 

k 1 
T k 2  + ( X  - /3)z ’ f( . ;P) = - 

the ML location estimator is the value f i k  which maximizes 
the likelihood function 

This is equivalent to minimizing nLl [k2  + ( x ;  -P ) ’ ] .  Thus, 
given k > 0, the ML location estimate, hereafter referred to 
as the sample myriad, is given by 

jjk = myr iad{k ;  z1, . . . , zN) = arg min 
N 

(A? + (xi - p)’) I 

(3) 
i=l 

B 

The parameter k determines the scale variability of the da- 
ta, and for the Cauchy distribution it is equal to the in- 
terquartile range. If k is set to be very large, this implies 
that all the data are within the interquartile range of the 
Cauchy distribution model. As a result, the estimator con- 
siders the data to be “well behaved” (no outliers), in which 
case a desirable estimator of location would be the sample 
mean. Notably, the myriad satisfies: 

Property I (Linear Property): 

lim P k  = lim myriad{k; ~ 1 , .  . . , ZN} = mean(z1,. . I ,  ZN} 
k-+m k-+m 

(4) 
Proof: See Appendix A. 

The structure of the sample myriad when k tends to zero, 
is also very interesting. In this case, the estimator considers 
practically all the data as unreliable, where most of the 
observations are modeled as lying outside the interquartile 
range. In this sense the most repeated value, if unique, 
will be considered as the most reliable indicator of location, 
and )O becomes a mode-like estimator, which is expected 
to be highly resistive to the presence of outliers. When the 
most repeated value is not unique, it can be shown that the 
sample myriad bo, hereafter referred to as the mode-myriad, 
reduces to 

N 

(5) 

where M is the set of most repeated values. 
Although the mode-myriad always lies on the most re- 

peated values or most crowded neighborhood, it can be 
shown that it does not necessarily converge to the mode 
when the underlying distribution is not symmetric. The 
mode-myriad has several properties of interest. For in- 
stance, it is always equal to one of the input samples. This 
makes it very appropriate for image processing applications 
since it has the nice edge and detail preserving properties 
of selection-type filters [6]. The mode-myriad is also a shift 
and scale invariant estimate. 

It is important to note that, for a general myriad, the 
availability of k as a tunable parameter allows the estima- 
tor to acquire some “intelligence”, in the sense that the 
degree of linear (large k )  or robust behavior (small k )  can 
be inferred from the data by estimating an adequate value 
for k .  To illustrate this, it is instructive to look at the be- 
havior of the sample myriad shown in Fig. l. The solid line 
shows the values of the myriad as a function of k for the 
data set = (0, 1, 3,6,7,8,9}. It can be appreciated that as 
k increases, the myriad tends asymptotically to the sample 
average. On the other hand, as k is decreased, the myr- 
iad favors the value 7 which indicates the location of the 
cluster formed by the samples 6,7,8,9.  This is a typical 
behavior of the myriad for small k :  It tends to favor values 
where samples are more likely to occur or cluster. The term 
“myriad” was coined as a result of this characteristic of the 
parameter. 

The dotted line shows how the sample myriad is affected 
by an additional observation of value 100. For large values 
of k ,  the estimator is very sensitive to this new observation. 
On the contrary, for small k ,  the data variability is assumed 
to be very small, and the new observation is considered as an 
outlier, not influencing significantly the value of the myriad. 

More interestingly, if the additional observations are the 
very large data 800, -500,700, (dashed curve), the myriad 
is practically unchanged for moderate values of k .  This 
behavior exhibits a very desirable outlier rejection property, 
not found in median-type estimators. 

io 

Figure 1. Values of the myriad as a function of k 
for the following data sets: (so1id:)Original data set 
= 0,1,3,6,7,8,9;  (dash-dot:)Original set plus an ad- 
ditional observation at 20; (d0tted:)Additional ob- 
servation at 100; (dashed:)Additional observations 
at 800, -500 and 700. 

2.1. The Myriad As A Location Parameter 
Much like the sample mean and sample median are the esti- 

mates of the mean and median parameters, the limiting case 
of the sample myriad defines the myriad as a new location 
parameter. It turns out that the myriad of a probability 
distribution function is the value ,& which minimizes the 
expectation E{Zog [k2  + ( X  - P k ) ’ ] ) ,  where k E [O, CO] is a 
tunable parameter. For the case k = 0, the mode-myriad 
parameter takes on the value that minimizes E{Zoglz-/?ol). 
It can be shown that the myriad is always in the center 
of symmetry, whenever the underlying distribution is sym- 
metric. Thus, for any k ,  /& is an adequate indicator of 
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location. For non-symmetric distributions, the value of the 
myriad depends on k as illustrated next. Figure 2(a) and 
(b) depict the location of the myriad for different values of 
k ,  in the case of a bimodal distribution. For IC = 0, the 
myriad cautiously localizes the distribution close to 8.5, the 
center of the dominant mode. As k increases the myriad is 
pulled to the value 8. Notice, however, that at k = 1 the 
value of the myriad suddenly jumps to 4. This is due to 
the fact that k is large enough so that both modes of the 
distribution are considered jointly reliable. For large k ,  the 
myriad is confident of all data and the location approaches 
the mean of the density function, close to the middle of the 
two modes. 

84 
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Figure 2. (a) A density function and the location of 
the myriad for several values of IC.  (b) The myriad 
as a function of k for this pdf. 

2.2. Geometrical Interpretation 
Myriad estimation, defined in (3), can be interpreted in a 
more intuitive manner. As depicted in Fig.S(a), it can be 
shown that the sample myriad, $k, is the value which min- 
imizes the product of distances from point A to the sample 
points XI, 2 2 ,  . + + , 2 6 .  Any other value, such as x = p’, pro- 
duces a higher product of distances. As k is reduced, the 
myriad searches clusters as shown in Fig. 3(b). If k is made 
large, all distances become close and it can be shown that 
the myriad tends to the sample mean. This geometrical 
interpretation can lead to computationally efficient algo- 
rithms to find the value of the myriad. 

( a )  (b) 

Figure 3. (a) The saimple myriad, p ,  minimizes the 
product of distances from point A to all samples. 
Any other value, such as x = p’, .produces a higher 
product of distances; (b) the myriad as k is reduced. 

3. WEIGHTED MYRIAD FILTERS 
The formulation of weighted myriad filters is motivated by 
applications where certain samples used in forming an esti- 
mate are more reliable tlhan others. Intuitively, an estimate 
should be modified taking into account the credibility level 
of each sample. The standard method to accomplish this 
is to, somehow, assign more weight to the most reliable 
samples. Thus a set of N weights, WI , . . . , W N ,  must be 
defined, one for each input sample used in the estimate. 

A very sound way to define these weights is intimately 
related to the maximum likelihood estimation procedure. 
Instead of considering the samples identically distributed, 

we can assume that our more reliable samples have a small- 
er dispersion around the center of the distribution. Thus, 
an observation assigned to a large weight Wi, can be relat- 
ed to a highly localized den2jty function Wif Wi(xi - p) ] ,  
where f(.) is the primitive unweighted” pdf! The limit- 
ing case in which Wi = co relates the observation to an 
impulse density, which means that the sample is 100% reli- 
able. On the other hand, a very small value of Wi indicates 
a large spread in the density function (almost flat), which 
implies a very poor chance of this observation to be close 
to the center of the distribution. The weighted likelihood 
function for independent samples with the same primitive 
pdf f(.) results in ni Wi f[Wi(xi - p)] .  For the Cauchy 
case, maximizing this function is equivalent to minimizing 
n L l [ k 2  + W:(zi - p)’]]. Letting wi = Wi2 for convenience 
of notation, the weighted myriad is then defined as 

,&,w = myriad { k ;  w1 0 XI,”’,WN 0 XN} (6) 
N 

where w1 ,.. . , WN 2 0, and wi o xi represents the weighting 
operation in (6). Since $,,,zW = $k/c,W, it is clear that 
finding the optimal myriad filter weights will implicitly find 
the best k .  As in the unweighted case, it can be shown 
that the linear property also holds for the weighted myriad. 
This is, as IC tends to infinity, the weighted myriad tends to 
the weighted mean xLl wixi/ ELl wi.  Thus, the myriad 
filtering framework includes that of linear filters. 

The design of the optimal coefficients for a weighted myr- 
iad filter is an important problem that we do not address 
here due to space limitations. A suboptimal and simpler ap- 
proach, which we call myriadization, is described and tested 
in the following section. 

4. FILTER DESIGN: MYRIADIZATION 
The linear property indicates that for very large values of 
k ,  the weighted myriad filter reduces to a linear FIR filter. 
Since robust behavior is obtained whenever the value of k is 
small, a very simple method to design robust myriad filters 
is to use the weights of a linear filter ( k  = co), designed for 
Gaussian or noiseless environments, and to subsequently 
reduce IC to a finite value, attaining the level of robustness 
desired. We refer t o  this method as “myriadization”, in 
contrast to the well known “linearization” approaches used 
in engineering. 

The myriaditation idea was tested in the phase syn- 
chronization problem of the first order Phase-Locked Loop 
(PLL) depicted in Fig. 4. 

Inromiw 
Signal and 

Phase Detector 
(Product) 

Controlled t 0.pcillator 

Figure 4. Block diagram of the Phase-Locked Loop 
analyzed in the paper. 

Simulations were run in which the PLL had to track the 
carrier phase in an additive white Gaussian noise environ- 
ment. The signal-to-noise ratio was set to 30 db, and the 
parameters of the system were adjusted so that the PLL was 
critically damped. A linear low-pass FIR filter was designed 
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with 13 coefficients. Fig. 5 shows a typical phase error plot 
in which random noise bursts were present. During these 
short noisy intervals (from 4 to 10 sampling times), the 
signal-to-noise ratio was decreased to  -10 db. It is evident 
from the figure that the system, when operating with the 
linear filter, is very likely to lose synchronism after one of 
these bursts. Fig. 6 shows the phase error under the same 
noise conditions for a PLL in which a weighted median filter 
has been optimally designed to imitate the low-pass char- 
acteristics of the original linear filter. Although the short 
noise bursts do not affect the estimate of the phase, the 
variance of the estimate is very large. Fig. 7 shows the 
phase error of the system with the same noise conditions, 
after the low-pass filter has been myriadized using a param- 
eter k equal to half the carrier amplitude. Although phase 
error is increased during the bursts, the performance of the 
rnyriadized PLL is not degraded, and the system does not 
lose synchronism. More interesting is the fact that even 
with the normal low-amplitude Gaussian noise, the myri- 
adized system shows a smaller steady-state variance, while 
maintaining the same synchronization responsivity. 

oe' 

Figure 5 .  Phase error plot for the PLL wi th  a linear 
FIR filter. Synchronism is lost due to small  dura- 
t ion high ampl i tude  noise bursts. 

Figure 6. Phase e r ro r  plot for the P L L  with an op- 
t imal  weighted median filter. Al though the system 
is immune  to the noise bursts, the error variance is 
significantly large. 

f - 7  
:: t I 

Figure 7. Phase error af ter  the linear filter has been 
myriadized. Noise bursts do not degrade the system 
performance. 

5.  CONCLUSIONS 
We have introduced weighted myriad filtering as a nonlin- 
ear framework that derives important robustness proper- 

ties from the impulsive characteristics of symmetric a-stable 
distributions. In order to develop computationally tractable 
algorithms, the sample myriad has been introduced as the 
maximum likelihood location estimator for the Cauchy dis- 
tribution, (the only non-Gaussian symmetric a-stable dis- 
tribution for which a closed solution is known). The defi- 
nition of the sample myriad as a location estimator implies 
the discovery of the myriad as a location parameter of sta- 
tistical distributions. 

When weights are considered in the definition, the weight- 
ed myriad filter appears as a very rich and flexible class of 
filters that can range, by only varying a tuning parameter 
k ,  from highly robust mode-like operations to simple and 
efficient linear FIR filters. 

We have shown in a single example applied to the prob- 
lem of robust synchronization, that weighted myriad filters 
have the potential to perform significantly better than both, 
linear and median filters in Gaussian and non-Gaussian en- 
vironments. 

This new field of research opens many interesting and 
important questions. Some of them, such as optimal filter 
optimization, adaptive design, as well as the extension of 
the myriad filters to bandpass types (negative weights) and 
vector operations, are subject of current research by the 
authors, and results are expected to be published soon. 

P R O O F  OF THE L I N E A R  P R O P E R T Y  A 
First note that f i k  5 E ( N )  = max(z1,. . , E N }  by checking 
that for p > ~ ( ~ 1 ,  k 2  + (xi - /3)2 > k 2  + (xi - E ( N ) ) ' .  In the 
same way, ,& 2 ~ ( 1 )  = min(s1,. . . , E N } .  Hence, 

N 

Letting k -+ 00, the term becomes negligible, and 
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