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Compressive spectral imaging systems can reliably capture multispectral data using far fewer measurements than
traditional scanning techniques. In this paper, a thin-film patterned filter array-based compressive spectral imager
is demonstrated, including its optical design and implementation. The use of a patterned filter array entails a
single-step three-dimensional spatial-spectral coding on the input data cube, which provides higher flexibility on
the selection of voxels being multiplexed on the sensor. The patterned filter array is designed and fabricated with
micrometer pitch size thin films, referred to as pixelated filters, with three different wavelengths. The performance
of the system is evaluated in terms of references measured by a commercially available spectrometer and the
visual quality of the reconstructed images. Different distributions of the pixelated filters, including random
and optimized structures, are explored. © 2016 Optical Society of America

OCIS codes: (110.4234) Multispectral and hyperspectral imaging; (110.0110) Imaging systems; (170.1630) Coded aperture imaging;

(230.7408) Wavelength filtering devices; (110.4155) Multiframe image processing.

http://dx.doi.org/10.1364/AO.55.009584

1. INTRODUCTION

Compressive spectral imaging (CSI) techniques capture multi-
plexed and coded projections of a scene. The three-dimensional
(3D) underlying data cube is then estimated by exploiting the fact
that spectral images are highly correlated and admit sparse repre-
sentations [1]. Different CSI architectures have been proposed to
date [2–5]. All use block-unblock binary-coded apertures and one
or two dispersive elements to modulate the optical field from the
scene. These coded apertures have been fabricated using materials
such as chrome-on-quartz, rendering coded aperture elements that
are either opaque or translucent to the whole wavelengths of in-
terest, as illustrated in Fig. 1(a). These coded apertures are referred
to as photomasks. Recent coating technologies have allowed the
design of patterned arrays of pixelated optical filters [6,7]. Since
each pixelated filter attains spatial and spectral coding in a single
step, as presented in Fig. 1(b), coding elements based on patterned
optical coatings have led to more efficient 3D coding strategies
and more compact imaging systems.

There are several fabrication approaches to attain pixelated
optical filters: color-dye gels [8,9], Fabry–Perot microstructures
[10,11], and thin films [12,13]. Dye gels have been widely used
on CCD cameras due to their low cost, while Fabry–Perot and
thin-film technology offer much higher filter precision but at an
initial higher cost compared to dye gels. The principal difference
between these technologies, apart from the cost and fabrication

procedure, is the extinction ratio. Dye gels yield broad transition
bands, whereas Fabry–Perot and thin films provide a sharper
transition that, in turn, enables purer color filtering.

Recently, we have proposed and numerically demonstrated
the use of patterned filter arrays, also referred as colored coded
apertures, in compressive spectral imaging systems [14,15]. In
this paper, we report on the development and fabrication of a
thin-film-based patterned filter array and its implementation in
a CSI testbed architecture. Moreover, an analysis on the impact
of the distribution of the pixelated filters on the quality of
the reconstructed 3D spectral images is presented, comparing
random against optimized distributions. To evaluate the quality
of the reconstructed images, the results are presented in terms
of monochromatic spectral images, and also mapped to RGB
profiles for spatial resolution and visual inspection. To evaluate
the spectral fidelity, spectral profiles of selected representative
points in the scenes are compared against references measured
by a spectrometer. The attained results show improved quality
on the images obtained by the optimized distribution of the
pixelated filters over the ones with random distributions.

2. COMPRESSIVE OPTICAL SENSING IMAGE
MODEL

We focus on the single-disperser coded aperture snapshot spec-
tral imager (SD-CASSI), which typically uses a photomask to
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encode the input data. A dispersive element is then used to
decompose the coded spectrum and a monochrome sensor
captures the multiplexed data [1,2]. In contrast, a 3D patterned
filter array is used as the coding element in the proposed optical
system, replacing the commonly used photomask, as depicted
in Fig. 1. The 3D coding is enabled by the 2D array of micro-
optical pixelated filters, each of which may be a low-pass,
high-pass, band-pass, stop-band or dichroic filter. The dispersive
element can be a reflective element, such as a grating, or a trans-
missive element, such as a prism. The detection element can be a
grayscale 2D detector, a line-detector, or even a single-pixel detec-
tor. In particular, the optical system described here uses a custom
double Amici prism and a 2D grayscale focal plane array (FPA).

The compressive coded projections of the spectral compo-
nents of the scene are captured as follows. Denote the continu-
ous spatio-spectral scene as f 0�x; y; λ�, the patterned filter
transfer function as T �x; y; λ�, and the Amici prism dispersion
function as S�λ�. Coding is realized at the image plane of the
field focused by an imaging lens, thus creating the 3D-coded
field f 1�x; y; λ� � T �x; y; λ�f 0�x; y; λ�. After coding, a relay
lens transmits the coded scene through the Amici prism, dis-
persing the field along the horizontal axis, forming the image on
the FPA detector. The integrated coded and sheared spectral
field along the spectral range sensitivity of the detector �Λ�
can be expressed as

g�x;y��
Z
Λ
T �x;y;λ�f 0�x;y;λ�h�x−x 0−S�λ�;y−y 0�dλ; (1)

where h�x − x 0 − S�λ�; y − y 0� accounts for the optical impulse
response of the system and the shifting entailed by the prism
along the x axis. The coding transfer function of the patterned
filter array can be modeled as
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where T i;j;k ∈ �0; 1� represents the filtering operation to be per-
formed on the �i; j; k�th data cube voxel; i; j ∈ f0;…; N − 1g
and k ∈ f0;…; L − 1g index the coordinates of an N × N × L
spectral data cube; and Δc , Δd account for the pixel sizes of the
pixelated filters and the FPA detector, respectively. Notice that
the spatial resolution of the resolvable scene is determined by
the pitch size of the pixelated filters (Δc), while the spectral
resolution depends on the pitch size of the FPA pixels (Δd )
and the dispersion efficiency of the prism S�λ� [14].

Let each voxel of the spectral scene be expressed as
F i;j;k � ∭ Ωi;j;k

f 0�x; y; λ�dxdydλ � wijkf 0�xi; yj; λk�, where
Ωi;j;k represents the �i; j; k�th voxel boundaries, and wi;j;k the
voxel mass center weight. Assuming that the response of the
dispersive element is linear over the spectral range of the system,
and that ideal optical elements are used, the measurement
attained on the �n; m�th pixel of the proposed system is given
in discrete form by

gnm �
X
k

Fn;m−k;kT n;m−k;k; (3)

where n ∈ f0;…; N − 1g and m ∈ f0;…; N � L − 1g index
the pixels on the rows and columns of the detector, respectively.

A. Multiple-snapshot Matrix Model
A single snapshot may not be enough to attain a certain re-
quired quality in the reconstructed data cubes. The proposed
system is then extended to include multiple snapshots.
Multiple-snapshot sensing leads to less ill-posed inverse prob-
lems and consequently improved signal recovery [1]. In such a
case, the patterned filter array must change its coding pattern
with every new snapshot. As we will describe later, we used
a wafer with numerous patterned filter arrays, contiguously
placed to each other, so that a new coding pattern is attained
by mechanically shifting the wafer. Multiple-snapshot
sensing can be modeled by gln;m � ΣkF n;m−k;kT l

n;m−k;k, where
l � 0;…; K − 1 accounts for K snapshots, attained by K
spatial translations of the patterned filter array wafer.

Fig. 1. Comparison of the coding strategies. (a) Photomask coding. (b) Patterned filter array coding. Filter array enables 3D coding due to the
spectral response of the pixelated filters, whereas the photomask performs 2D coding over the data cube.
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Denote the kth spectral band of the input spectral data cube
as fk ∈ RN 2

, and let each lth patterned filter array in vectorial
form as tlk ∈ RN 2

, such that �fk�z � F �z−⌊ z
N⌋N �;⌊ z

N⌋;k
, and

�tlk �z � T l
�z−⌊ z

N⌋N �;⌊ z
N⌋;k

, respectively, for z � 0; 1;…; N 2.

Also, let gl be a column vector holding all of the recorded pixel
values, gln;m. Given the lateral dispersion of light, the length of
each compressive measurement gl is N �N � L − 1� such that
all light is accounted for on the sensor. Thus, while the pat-
terned filter array is an N × N pixel array, the sensor has an
extra set of L pixel columns. Assuming that f stays constant
over the K snapshots, we can relate gl to f in matrix form as

gl � Hlf � PTlf ; (4)

where f � �fT0 fT1 …fTL−1�T , and Hl is the system transfer func-
tion of the lth snapshot, which accounts for the coding pattern
Tl and the dispersion function of the prism P, which remain
constant for all the snapshots. Let Q � N 2L be the total num-
ber of data cube voxels, and U � N �N � L − 1� be the total
number of FPA pixels. Therefore, Hl ∈ RU×Q , P is an U × Q
rectangular matrix accounting for the shearing of the prism and
the integration performed by the FPA. The structure of the
matrix P is given by

P �

2
6664
diag�1N 2� 0N×N 2 � � � 0N×N 2

0N×N 2 diag�1N 2� � � � 0N×N 2

..

. ..
. . .

. ..
.

0N×N 2 0N×N 2 � � � diag�1N 2�

3
7775
U×Q

; (5)

where 0N×N 2 is a 0-valued N × N 2 matrix, and diag�1N 2� is a
1-valued N 2 × N 2 diagonal matrix. Notice that the number of
0N×N 2 sub-matrices in each row or column of Eq. (5) is L − 1,
and there is just one diag�1N 2� sub-matrix per row or column.
Similarly, Tl is a Q × Q block-diagonal matrix, where each
N 2 × N 2 diagonal sub-matrix accounts for the effect of the lth
patterned filter array on the kth data cube spectral band, as

Tl �

2
6664
diag�tl0� 0N 2×N 2 � � � 0N 2×N 2

0N 2×N 2 diag�tl1� � � � 0N 2×N 2

..

. ..
. . .

. ..
.

0N 2×N 2 0N 2×N 2 � � � diag�tlL−1�

3
7775
Q×Q

; (6)

where diag�tlk � is an N 2 × N 2 diagonal matrix, with diagonal
elements tlk .

The complete set of K snapshots in Eq. (4) can be
assembled into a single vector by concatenating each gl

vector, end to end, to create the KU × 1 vector g �
��g0�T ;…; �gK −1�T �T , such that g � Hf , where H �
��H0�T ;…; �HK −1�T �T is a KU × Q matrix. Figure 2 shows
a sketch of the H matrix for an N × N � 4 × 4 spectral data
cube with L bands, using K � 2 snapshots, and a patterned
filter array with L optical filters. The colored diagonals corre-
spond to the filter array applied to each kth waveband, while
the black entries correspond to blocking elements. The yellow
circles in the figure highlight the variation of the coding
elements along the spectral bands, satisfying the wavelength
dependency of the filters within the coded pattern. Note that
the two snapshots are vertically stacked, each one with size U ,
and the dispersion function is modeled by off-setting the

diagonal structure of the patterned filters as the wavelength
increases from left to right.

B. Input Data Cube Reconstruction
Compressive sensing (CS) states that the sensing process can be
alternatively expressed as g � Hf � HΨθ � Aθ, such that A
is called the compressive sensing matrix, and θ � ΨT f is a
vector coordinate of f in a Q dimensional space Ψ. This trans-
formation assumes f to be S-sparse on Ψ, so that only a small
subset, S ≪ Q , of the basis vectors Ψ can accurately recon-
struct f with little or no distortion. Formally, f is S-sparse
or has sparsity S in a basis Ψ if ‖θ‖0 � S, where ‖ · ‖0 denotes
the l0 pseudo-norm, which simply counts the number of
nonzero entries in the vector. In this way, an estimation of the
spatio-spectral input data cube can be attained by solving the
regularization problem

f̂ � Ψ�argmin
θ 0

‖g − Aθ 0‖22 � τ‖θ 0‖1�; (7)

where θ 0 is the estimation of the vector coordinate of f̂ in Ψ,
‖ · ‖22 represents the l2 norm, ‖ · ‖1 the l1 norm, and τ is a
regularization parameter that penalizes the fact of θ 0 being
sparse, while reducing the error between the estimated Aθ 0,
and the captured set of compressive measurements g. To solve
the optimization problem in Eq. (7), different algorithms
have been proposed, including the gradient projection for
sparse reconstruction (GPSR) [16], the GPSR-based but faster
block-processing approach proposed in [17], the two-step iter-
ative shrinkage/thresholding (TwIST) using the total-variation
(TV) as the regularization function [18], Gaussian mixture
models (GMM) [19], or the hyperspectral denosing algorithms
based on approximate message passing (AMP) [20]. This paper

Fig. 2. Sketch of transfer function matrix H for a 4 × 4 × L spectral
data cube, using K � 2 snapshots and a patterned filter array with L
filters. Q � N 2L is the total number of data cube voxels, and
U � N �N � L − 1� is the total number of FPA pixels. Note that
the coding pattern is wavelength-dependent, and a different distribu-
tion of its entries is used in each snapshot.
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uses the method in [16], but any of the other methods could
also be used.

3. DESIGN AND FABRICATION OF A
PATTERNED FILTER ARRAY WAFER

A. Patterned Filter Array Design
The number of different filters to be used, the filters’ spectral
profile, and the way these filters are spatially distributed have
to be carefully designed. First, if the filter array has N × N pixels
of spatial resolution, then it is possible to have at most a different
optical filter per pixel; that is, up to N 2 pixelated filters with
different cut-off wavelengths. The higher the number of different
filters, however, the higher the fabrication cost. Furthermore, we
have observed in practice that the gains gradually decrease as the
number of filters increases [15]. In fact, only a few different type
of optical filters are typically needed to obtain significant
improvement over imaging that uses conventional photomask
technology. For example [15], only three filters are necessary
to improve image reconstruction quality of an eight spectral band
data cube by four decibels, in terms of peak signal-to-noise-ratio
(PSNR). It is expected, however, that the number of filters used
for improved performance should be larger as the spectral bands
increase. Based on these results, and taking into account the
fabrication costs, we used three filters: a low-pass (denoted by
L�λ�), a high-pass (denoted by H�λ�) complementary filters
with cut-off wavelength λc � 550 nm, and a blocking (all-stop,
denoted by B�λ�) filter, represented in Fig. 3 with colors blue,
green, and black, respectively.

Second, the pixelated filters, or coded aperture entries in
previous photomasks implementations, have been usually placed
in an N × N grid using simply random spatial distributions.
However, we have shown in previous publications that the spatial
distribution of the entries in a coded aperture plays an important
role in the quality of the reconstructions [1,21,22]. Therefore,
in addition to the random distribution of the filters, in this
paper we also test and analyze the performance of another two
distributions called Boolean and optimized [14] distributions,
as explained below.

A.1. Random Distributed Filters
Random distributions of block-unblock filters have been widely
used in CASSI. These are justified if high incoherence is attained
with the signal representation basis Ψ such as Fourier, wavelet,
or cosine [23]. The entries of a coded aperture with random
distributions can be modeled as

T l
i;j �

8<
:

B�λ�; p ≤ 1
3

L�λ�; 1
3 < p ≤ 2

3

H�λ�; p > 2
3

; (8)

where p is a random variable with the distribution function
U �0; 1�. Notice that T l1

i;j and T l2
i;j (l1 ≠ l2) are independently

generated from each other.

A.2. Boolean Distributed Filters
Boolean distributions keep the properties of random distribu-
tions for a single snapshot. However, in multiple-shot sensing
each realization is mutually complementary to the previous
realizations, thus guaranteeing that each voxel of the data cube
is captured only once by the FPA. This characteristic is not
guaranteed by random distributions, where each realization
is generated independently of the others; therefore, a single
voxel could be sensed more than once, or even worse, a single
voxel may be always filtered out. Boolean distributions can be
modeled as in Eq. (8), but satisfying the mutually complemen-
tary constraint ΣK −1

l�0T
l
i;j � A�λ�, where A�λ� is an all-pass fil-

ter, which represents the full spectrum of interest. For instance,
in a K � 3 snapshot sensing, if the �i; j�th filter in the first
snapshot is a low-pass (T 0

i;j � L�λ�), then to satisfy the con-
straint, the second snapshot must use a high-pass filter, and the
third snapshot a blocking filter, or vice versa (T 1

i;j � H�λ� and
T 2

i;j � B�λ�; or T 1
i;j � B�λ� and T 2

i;j � H�λ�).

A.3. Optimized Spatial Distribution of the Filters
We recently proposed and demonstrated an optimization of the
distribution of the entries of a patterned filter array [14]. This
optimization extracts the benefits of Boolean distributions, but
in addition, it exploits the correlations created by the structure
of the CS matrix A, such that the restricted isometry property
(RIP) is better satisfied. In particular, the optimization of the
distribution of the entries can be expressed as

argmin
T l

i;0 ;T
l
i;1…;T l

i;L−1

XL
k�1

ckγk � τ1U

subject to
XK −1

l�0

T l
i;j � A�λ�; (9)

for i � 1;…; N , where, ck are the entries of a penalty cost
vector, τ1 is a regularization constant, γk forces it to reduce
the correlations along the spectral domain, U attempts to re-
duce the correlations along the spatial domain, and the con-
straint guarantees the mutual-complementariness along the K
multiple-snapshots. Intuitively, the optimization problem seeks
to spread as far as possible the passing bands of the pixelated
filters along the spectral and the spatial domains, exploiting
the correlations entailed by the sensing structure of the optical
system. For further detailed information, refer to [14].

Figure 3 shows a single realization of the three spatial
distributions as seen in the final design of the wafer, which was
developed using AutoCAD. Notice that the random and the
Boolean realizations present a pure random distribution of the
entries, whereas the optimized realization exhibits a pseudo-
random structure since just a single L-long section is designed
per row and then horizontally replicated.

Fig. 3. Three-color patterned filter array design using three different
spatial distributions. Blue pixels are low-pass filters, the green are high-
pass filters, and the black are all-stop filters.
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B. Thin-film-based Patterned Filter Array Fabrication
The fabrication process was realized by Pixelteq Inc., and it
mainly consisted on deposition and lithographic patterning
cycles of the three filters, in a random, Boolean, or optimized
fashion [6]. The low-pass filter has an average transmittance of
93% between 350 and 540 nm, and 0.25% between 560 and
750 nm. The high-pass filter has an average transmittance of
0.04% between 350 and 540 nm, and 96% between 560 and
750 nm, as shown in Fig. 4(b). The blocking pixel has a 0.04%
transmittance in the entire domain between 350 and 750 nm.
The array was fabricated on a 150 mm diameter wafer of Eagle
XG substrate, with a 1.1 mm thickness. Each patterned filter
array in the wafer was designed to exhibit N × N � 256 × 256
pixels of spatial resolution, where each pixelated filter has a
pixel-pitch size of Δc � 20 μm. Due to the micrometer size
of the pixelated filters, they are created by multilayer stacks
of high- and low-index materials via plasma-assisted deposition
or magnetron sputtering [6].

The final product is shown in Fig. 4(a). It contains 210 pat-
terned filter arrays, and zoomed versions show the fine details
within the full wafer. The 210 patterned arrays are different real-
izations of the spatial distributions for a different number of snap-
shots. Note that the pixelated filters exhibit sloped edges, since
the lift-off fabrication process requires the lithography to be re-
moved and the coating in the pixel to remain. These sloped edges
cause areas of non-uniformity in the transmission properties of

the coatings. Consequently, fine striped chrome areas are used
around the pixelated filters, so that only the uniform portion
is projected. If these opaque areas are not used, the effective pixel
performance will suffer. To analyze the transition band of the
pixelated filters, Fig. 4(b) shows three images of a portion from
a single patterned filter array illuminated with three different
wavelengths (510 nm, 550 nm, and 578 nm). It can be seen that
when the pattern is illuminated with monochromatic light at
510 nm, just the low-pass pixelated filters let the light pass;
similarly, when it is illuminated with monochromatic light at
578 nm, just the high-pass pixelated filters let the light propagate.
Note that when the patterned array is illuminated with mono-
chrome light at the cutoff wavelength of the filters
(λc � 550 nm), both high- and low-pass filters let light go
through the system, but its intensity is attenuated around 40%,
agreeing with the given transition characteristics.

4. OPTICAL TESTBED IMPLEMENTATION AND
EXPERIMENTS

To test the performance of the patterned filter array wafer, the
CSI testbed setup presented in Fig. 5 was assembled in our lab-
oratory. A colorful target object was attached to a black surface
and illuminated by a broadband Xenon lamp playing the role of
ambient light. The wafer of patterned filter arrays was placed at
the image plane of the objective lens (Canon EF 50 mm f/1.8 II).

(a)

(b)

µ

Fig. 4. Fabricated wafer of thin-film patterned filter arrays. (a) Microscope was used to capture zoomed versions of the wafer shown from left to
right. (b) Analysis of the transition band of the filters. Due to the cutoff wavelength of the filters (λc � 550 nm), both HP and LP filters show up
attenuated when the patterned filter is illuminated at that wavelength.
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Two Thorlabs LTS300 linear translation stages with integrated
stepper motor controller were used to precisely move the wafer
along the x–y axis, to capture different patterned filter arrays.
Each independent linear stage exhibits a velocity of 50 mm/s,
on-axis accuracy of 5 μm, and a bidirectional repeatability of
2 μm. A matched achromatic doublet pair lens with 100 mm
focal length was used to relay the 3D coded field through the
custom designed double Amici prism, which horizontally spreads
a single voxel of the data cube into 42 different columns of the
FPA. The FPA sensor is a Bobcat B2021 CCD GigE Vision

(with PoE), exhibiting a pixel pitch of Δd � 7.4 μm and a res-
olution of 2048 × 2048. A 3 × 3 macro-pixel windowing was
realized on the FPA to have an one-to-one correspondence with
each pixelated filter; that is, Δd ≈ 3Δc . Therefore, the attainable
resolution in the reconstructions is N × N � 256 × 256 pixels
in the space, and L � 14 spectral bands.

To obtain the estimations of the input data cubes, the gra-
dient projection for the sparse reconstruction (GPSR) algorithm
[16] was used to solve the optimization problem in Eq. (7). It is
important to notice, however, that different strategies exist to do

Fig. 5. Thin-film-based compressive spectral imaging testbed. The objective lens images the captured scene onto the thin-film patterned filter
wafer, then the relay lens transmits the coded light through the Amici prism before it is integrated by the CCD sensor. The X–Y motion system
moves the wafer precisely to access different coding patterns.

Fig. 6. Full data cube reconstructions when random, Boolean, and
optimized patterned filter arrays are used, and K � 2 snapshots are cap-
tured. The 14-band data cubes are mapped to false-colored RGB profiles
to visually compare the color fidelity with the original target scene.

Fig. 7. Full data cube reconstructions when random, Boolean, and
optimized patterned filter arrays are used, and K � 8 snapshots are cap-
tured. The 14-band data cubes are mapped to false-colored RGB profile
to visually compare the color fidelity with the original target scene.
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this estimation, as mentioned in Section 2.2. GPSR has
been broadly used with traditional basis functions Ψ such as
the wavelet (ΨW 2D) and discrete cosine transforms (ΨDCT),

as well as pre-trained dictionaries [1,17,19]. However, it is also
possible to simultaneously exploit the sparsity properties of the
input data cube along each of its dimensions to provide a

Fig. 8. Comparison of the spectrum reconstructions when K � 2 snapshots are captured. Six different points (P1, P2, P3, P4, P5, and P6) from
the target scene (Fig. 5) were measured by a spectrometer and compared against the reconstructed data cubes.

Fig. 9. Comparison of the spectrum reconstructions when K � 8 snapshots are captured. Six different points (P1, P2, P3, P4, P5, and P6) from
the target scene (Fig. 5) were measured by a spectrometer and compared against the reconstructed data cubes.
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new representation for their structure. Doing so, a single sparsity
transform for the entire data cube is obtained as the Kronecker
product of the bases used for each of its dimensions [4,15,24].
Particularly, we used the basis expressed as the Kronecker prod-
uct between ΨW 2D and ΨDCT, where ΨDCT is used to sparsify
the spectral axis while ΨW 2D sparsifies the spatial coordinates.

A single reconstruction with GPSR takes around 90 s to run
300 iterations for K � 1, and up to 210 s for K � 8 snapshots,
when the data is processed in Matlab R2015b on an Intel
Xeon CPU E5-1660 v3 at 3.00 GHz and 80GB of RAM.
Figures 6–11 summarize the reconstruction results. In these fig-
ures, reconstruction results for K � 2 (compression ratio of 1∕7 )
and K � 8 (compression ratio of 4∕7 ) snapshots are shown, for
the random, Boolean, and optimized spatial filter distributions.

First, in Figs. 6 and 7 the quality of the spatial reconstruc-
tions is evaluated by mapping the set of 14 reconstructed spec-
tral bands to an RGB profile. It can be noticed that the Boolean
distribution of the filters attains better quality than the random
generated filters, and the optimized reconstructions exhibit the
best quality between the three, for both K � 2 and K � 8
snapshots.

Second, to evaluate the reconstruction results at each wave-
length level, Figs. 8 and 9 present the spectral footprint of six
different points of the target scene, denoted as P1, P2, P3, P4,
P5, and P6 in Fig. 5, which are compared against a reference
spectrum measured with an Ocean Optics USB2000+ spec-
trometer, assumed to be the ground truth. All spectra are aver-
aged in a 5 × 5 window corresponding to the same color and
normalized to the maximum value in their respective curves.
The rms errors between the reconstructed and the reference
spectra are included in each subplot for ease of interpretation.
The curves attained with the optimal (Opt) distribution present
a better fit to the reference spectrum than the Boolean (Bool)
and random (Rand) reconstructions, and there is an even better
fit when the number of captured snapshots increases.

Finally, Figs. 10 and 11 show seven out of the 14 recon-
structed spectral bands, false-colored with the respective wave-
length, for K � 2 and K � 8, respectively. Notice in these
figures that with only two snapshots the reconstructions lack
details. When eight snapshots are captured, however, the qual-
ity of the reconstructions is quite improved and improves even
more when either the Boolean or the optimized distribution of
the pixelated filters is employed. The corresponding band/color
discrimination of the monochrome wavelengths can be con-
trasted with the RGB target scene on Fig. 5, where the red cloak
of the top toy is well characterized by the 662 nm wavelength,
the blue fish fins are well resolved at 486 nm, and the green
body of the right toy is well reconstructed at 525 nm.

5. DISCUSSION

This paper focuses on the implementation and analysis of pat-
terned filter arrays into a compressive spectral imaging architec-
ture. We did not include comparisons against the use of
photomasks in our setup since we already demonstrated in
our previous results that the use of patterned filter arrays offers
better reconstruction results even just from simply randomly gen-
erated pixelated filter patterns [14,15]. In addition, we preferred
to compare different distributions of the pixelated filters to

evaluate their impact on the reconstruction quality. It was shown
that either Boolean or optimized distributions attained better
reconstruction results than simply using random distributions.
Note that further optimization on the distribution of the entries

Fig. 10. Comparison of the reconstructions at monochrome level.
The 2nd, 4th, 6th, 8th, 12th, and 14th spectral bands for the three
different distributions are shown for K � 2 snapshots. (First column)
random, (Second column) Boolean, and (Third column) optimized
distribution.
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can be still performed, and a higher-order precision model of the
continuous sensing model [25] can be used to achieve even better
quality results.

We believe we have shown that thin-film technology
opens a door to higher-quality and higher-compression-sensing

methodologies. Our group has recently demonstrated the use
of patterned filter arrays attached to FPAs [26]. Although this
approach entails a more compact architecture in terms of size,
weight, and power, it only permits single snapshot sensing
since the filter array is glued to the FPA surface. However,
it can be considered a first step toward the use of conventional
dyed-gel-based technology, which has been demonstrated to be
both low cost and widely used [27].

In future work, it would be useful to perform a comparison
of the use of dyed-gel filters, which are less costly but exhibit a
wider extinction ratio, and the impact of their use in coded
apertures in compressive spectral imaging. We expect that
dyed-gel-based filter arrays will cause a rougher filtering due
to the wide response of the gels, and the spectral results, there-
fore, will not be as good (sharp) as the ones shown here. That is,
the wider the response of the filter, the closer the behavior to
black-and-white (photomasks) coded apertures. However, the
use of dyed gels could help expand the use of this technology
because of the cheaper cost. An alternative solution is to use
spatial light modulators (SLMs) such as liquid-crystal-based
modulators, which can be exploited to perform spatio-spectral
coding by tuning each mirror with a different voltage, thus per-
mitting researchers to attain infinite patterns of higher number
of filters just by tuning different voltages [3]. This will entail a
compromise between no moving parts and the power required
to manipulate the SLM.

6. CONCLUSIONS

This paper experimentally demonstrated and analyzed a thin-
film-based patterned filter array compressive spectral imaging
system. The use of a patterned filter array entailed a greater
flexibility in the coding step of the imaging system, allowing
us to independently encode the space and the spectrum of
the input data cube. This flexibility offered a higher degree
of freedom in the design of the sensing operator H. This ap-
proach, in turn, better satisfied the conditions of the compressive
sensing theory, such as the RIP, therefore attaining higher-
quality reconstructions.

The spatial distribution of the thin-film filters affects the qual-
ity of the attained reconstructions since the optimized distribution
outperformed the simply random and Boolean distributions. The
experimental results support the promising imaging capabilities
introduced in our previous work [14,15], where imaging condi-
tions, such as the variability of the cutoff wavelengths of the color
filters and the measurement noise, have also been discussed.
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