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Abstract—Approximate message authentication codes (AMACs)
for binary alphabets have been introduced recently as noise-tol-
erant authenticators. Different from conventional “hard” message
authentications that are designed to detect even the slightest
changes in messages, AMACs are designed to tolerate a small
amount of noise in messages for applications where slight noise
is acceptable, such as in multimedia communications. Binary
AMACs, however, have several limitations. First, they do not
naturally deal with messages having -ary alphabets ( 2).
AMACs are distance-preserving codes; i.e., the distance between
two authentication tags reflects the distance between two messages.
Binary representation of -ary alphabets, however, may destroy
the original distance information between -ary messages.
Second, binary AMACs lack a means to adjust authentication sen-
sitivity. Different applications may require different sensitivities
against noise. AMACs for -ary alphabets are designed as a cryp-
tographic primitive to overcome the limitations of binary AMACs.

-ary AMACs not only directly process messages having -ary
alphabets but also provide sensitivity control on the authentication
of binary and of -ary messages. The generalized -ary AMAC
algorithm and its probabilistic model are developed. A statistical
analysis characterizing the behavior of -ary AMACs is provided
along with the simulations illustrating their properties. Security
analysis under chosen message attack is also developed.

Index Terms—Chosen message attack, hash function, message
authentication code (MAC), multimedia message authentication.

I. INTRODUCTION

MESSAGE authentication codes (MACs) are crypto-
graphic primitives used extensively in the construction of

security services for general digital data. Security services here
include authentication, nonrepudiation, and integrity. Message
digest schemes used in conventional MACs, such as keyed Hash
MAC (HMAC) [1] with Message Digest algorithm 5 (MD5)
or Secure Hash Algorithm (SHA), are “hard” [2], deliberately
constructed to be as unforgiving as possible where modifying a
single message bit would lead to a security check breakdown.
These MACs fit those applications where the security require-
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ment is to reject any message that has been altered to the slightest
extent. Multimedia digital content, however, is continuously
modified and manipulated as a result of compression and format
conversion. In addition, data errors are frequent due to noise in
communication channels and/or packet losses. In many multi-
media applications, incidental noise or admissible modification,
such as watermarking or format conversion, is acceptable as long
as all-out forgeries and substantial modification of content can
be identified. This scenario, incompatible with traditional “hard”
cryptographic mechanisms, motivates the development of “soft”
message authentication by which slight noise or acceptable
modifications can be tolerated by the authenticator.

In the literature, there are several different approaches
working on the authentication of multimedia messages, which
can be basically grouped into two classes [3]. One class is to
generate an authentication tag based on the extraction of the
content or features from a message. The second class is to
generate an authentication tag based on the modified message.
Detailed review of different approaches can be found in Sec-
tion II. The common point of these two classes is that both of
them use traditional cryptographic primitives, such as HMAC
or Digital Signature, as the core of authentication, only with a
modified input.

Different from all these approaches, binary approximate mes-
sage authentication codes (AMACs) [4]–[7] have been devel-
oped as a new cryptographic primitive for noise-tolerant secu-
rity. It is a variant of MACs, whereby “certain,” perhaps im-
perceptible, modifications in the message propagate to “minor”
modifications in the authentication tag, and thus still retain se-
curity against other unacceptable modifications. The codes are
probabilistic in nature and have the property of preserving dis-
tance; i.e., the probability of a given bit change in the authentica-
tion tag varies monotonically as a function of bit changes in the
message. Such distance-preserving tags give users the freedom
to decide the authentication boundaries among tags.

To date, AMACs have been restricted to the messages that are
binary in nature. -ary AMACs presented in this paper gener-
alize the original binary construction of AMACs into the one
that accepts messages with -ary alphabets . The first
motivation is to provide a suitable means of dealing with infor-
mation that does not tend naturally to be a binary representa-
tion such as graphics, multilevel and color halftones, and other
signals such as biological DNA and protein sequences [8], [9].
Given an -ary message, the -ary representation is often con-
verted into a binary one. However, AMACs are distance-pre-
serving codes, which means the distance between AMAC tags
reflects the distance between the messages. Binary representa-
tions usually do not keep the distance information among orig-
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inal -ary messages. For instance, given an 8-ary message on
the alphabet , the distance between 3 (“011”) and
4 (“100”) equals 1 in 8-ary but 3 in binary; contrarily, the dis-
tance between 0 and 4 in 8-ary is 4 but just 1 in binary. Although
Gray codes can keep some distance information, they only pre-
serve distance between adjacent numbers. Hence, AMACs oper-
ating directly in an -ary domain are more effective in keeping
distance information. The second motivation of this work lies
in the fact that binary AMACs cannot be tuned for sensitivity.
Given the same amount of noise, it is desirable that the distances
between authentication tags can be adjusted according to dif-
ferent sensitivity requirements. Binary AMACs, however, lack
a means to adjust the authentication sensitivity. -ary AMACs,
on the other hand, can provide sensitivity control to binary mes-
sages by grouping binary bits into -ary symbols. As it is illus-
trated in Section V, such grouping changes the original distance
information in binary messages and makes the authentication
more sensitive to message variations.

The rest of the paper is organized as follows. Section II states
and compares some related work. Section III gives definitions
and notions of AMACs. Section IV describes the -ary AMAC
algorithm. The probabilistic model and several properties are
developed in Section V. Section VI generalizes the iterated

-ary AMACs with round operations. Section VII gives some
applications using -ary AMACs. Security analysis is pro-
vided in the Section VIII. Section IX concludes the paper.

II. RELATED WORK

Several authentication schemes have been proposed in recent
years for authenticating multimedia messages. Generally, a mul-
timedia message along with a secret key is input into an authen-
ticator generation system to produce an authenticator. The au-
thenticator can be either embedded into the original message,
such as watermarking schemes, or just attached with the mes-
sage as a tag. The latter can be called as an authentication tag
scheme. Reference [2] provides a compact introduction to some
existing approaches of both watermarking schemes and authen-
tication tag schemes. Based on the content of this paper, we only
discuss the approaches belonging to the latter category.

Reference [10] proposed a content based digital signature
scheme for image authentication. Basically, a feature vector that
represents the media content is extracted from the original mes-
sage and hashed into a small digest. The digest is then signed by
a standard digital signature algorithm. Since only the semantic
information is extracted for authentication, the incidental noise
can be tolerated. Although the authors pointed out that different
features could be used to represent the content of the image such
as edge information, DCT coefficients, and color or intensity
histogram, only the histogram feature was used in the paper.
Following the same idea, [11] proposed a similar approach using
average gray values of image blocks as a feature factor; [12] pro-
posed an image authentication scheme by using an extremely
low-bit-rate compression to extract the features.

Since JPEG compression is a popular image compres-
sion method, [13] proposed an image authentication method
designed to accept JPEG compression yet reject other data
manipulations. The feature factor is based on the invariance of
the relationships between any two discrete cosine transform

(DCT) coefficients at the same frequency of different blocks
in an image. These relationships are preserved when DCT
coefficients are quantized in JPEG compression. The extracted
relations are then encrypted by a public key algorithm to form
a digital signature. Similar to the feature extraction from DCT
coefficients, [14] exploited the inter-scale relationships of
wavelet coefficients of an image and picked those pairs whose
magnitude differences were greater than a preset threshold.

All methods above can be referred to as content-based ap-
proaches, where different characteristics of an image are used as
feature vectors. A problem of these approaches is that it is often
hard to devise a succinct yet sufficient set of features that de-
fines a given image. The extracted features are lengthy in terms
of storage volume even after a lossless compression. These ap-
proaches often prefer to encrypt the feature vector into a digital
signature without further hashing. The advantage is that the re-
ceiver can obtain a complete feature vector decrypted from dig-
ital signature and compare the similarity with the feature vector
extracted from the received image. Then a preset threshold can
be used to separate the admissible changes from the inadmis-
sible manipulations. The end result, however, is that the signa-
ture length may be long. For example, the length of the signa-
ture in [13] for a 320 240 size image is 6136 bits, which is
more than order of magnitude longer than a conventional 128 or
256-bit message authentication tag.

Different from the content-based approaches, [15] proposed
an authentication system by first modifying the original mes-
sage in such a way to tolerate some predictable distortion. For
example, in order to tolerate distortion of each pixel, this
scheme quantized the image with a uniform quantization func-
tion with step size equal to and treated the resulting image
as an “original” image which was then authenticated by conven-
tional cryptographic primitives such as HMAC or digital signa-
ture. [3] used a similar idea to modify an image after a DCT
transformation in order to tolerate the admissible changes. A
set of quantization functions are used in this approach to provide
the “smoothness” and tolerate the minor changes. The challenge
with approaches like these is how to modify the original image
in an effective way to accommodate the incidental changes but
reject the malicious data manipulation.

Different from all above approaches, AMACs develop a new
cryptographic primitive that can be used on multimedia mes-
sages. It can be viewed as a new keyed-hash algorithm that
hashes an original message into a small digest. Such digest has
the property of distance preservation. In terms of multimedia
data hashing, the “intermediate” hash in [16], which is a black-
white representation of the original image, has the feature of
distance preservation; but the “final” hash is generated in such a
way as to keep the hashes identical if the two images are similar.
This is quite different from the goal of the AMAC hash that tries
to keep the property of distance preservation in the final tags.

III. DEFINITIONS

In this section, we recall the formal definition of MACs, as
used in the cryptography literature, and we extend this definition
to obtain a definition for AMACs (following the approach used
in [7]). The security requirements of both MACs and AMACs
are defined and studied in Section VIII.
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A. Message Authentication Codes

Let the integer be a security parameter. A message authen-
tication code (MAC) is a triple , where algorithms

run in time polynomial in and satisfy the following
syntax. The key generation algorithm takes as input a random
string and returns a secret key of length . The authenticating
algorithm takes a message and a secret key as inputs and
produces a string tag. The verifying algorithm takes a mes-
sage , a secret key and a string tag as inputs and returns a
value . A MAC has to satisfy a correctness requirement:
after is generated by and tag is generated by , on
input , outputs 1 if .

B. Approximate Message Authentication Codes

We now define approximate MACs (AMACs), using the
above definition for regular MACs as a starting point.

An Approximate Message Authentication Code (AMAC) with
parameters is a triple , where algorithms

run in time polynomial in and satisfy the same syntax
as in the definition of MACs; is a distance function on the
set of messages input to ; and the following -noise-
tolerance requirement holds. After is generated using , if
tag is generated using algorithm on input message , then
algorithm , on input , outputs 1 with probability at
least , if . Here, stands for the acceptable
number of errors. Also, note that the correctness requirement is
a particular case of the -noise-tolerance requirement,
when and .

We will also consider the following requirement. Let be
a distance function on the set of authentication tags ’s. We say
that an AMAC is -distance-preserving if the fol-
lowing is true: for any , such that ,
it holds that the expected value of is , where

, for , and has been generated using algorithm
. (We note that in the rest of the paper the Hamming distance

function is used for both and .)
We now observe that an -distance-preserving

AMAC can be easily modified into a -noise-tolerant
AMAC, for and . Specifically, the receiver
algorithm is modified so that, on input , it computes

and returns 1 if or 0
otherwise. Furthermore, the following modification results in a

-noise-tolerant AMAC, for and ,
for some constant and positive integer . The
key generation algorithm is modified so that it generates
independent pseudo-random keys . The authenti-
cating algorithm is modified so that it generates independent
tags , where and the receiver
algorithm is modified so that, on input , it
computes and returns 1 if the majority of
the tests is satisfied or 0 otherwise. As
a consequence, to show that an AMAC satisfies the noise-tol-
erance requirement, it is enough to show that it satisfies the
distance-preservation requirement.

For any positive integer , an -ary AMAC is an AMAC
where algorithms operate over inputs represented as
sequences of digits in the alphabet .

Fig. 1. TheN -ary AMAC construction algorithm.� denotes the modulo N
sum operation.

IV. THE -ARY AMAC ALGORITHM

The -ary AMAC is a probabilistic checksum calculated by
using pseudo-random permutation, masking via a modulo sum
operation, and MODE function, such that a small difference be-
tween two messages tends to result in a small difference between
their -ary AMACs. For , the -ary AMACs reduces to
the binary AMACs introduced in [5], where modulo sum oper-
ator reduces to XOR operation and MODE function reduces to
MAJORITY function.

Let be the input -ary message of length . The th element
in the message is denoted as . Given
a secret key generated by and a pseudo-random number
generator PRG, the algorithm for constructing -ary AMACs
is given as follows. As with conventional MACs, the length of
AMACs, , is typically chosen in the range .

A. Initialization

Secret key and initialization vector are input to the -ary
pseudo-random generator PRG as a seed. varies the output of
PRG from one instance to another and must be made available
to both sender and receiver. Thereafter, PRG is used repeatedly
as a source of -ary pseudo-random numbers. The construction
of the -ary AMAC is shown in Fig. 1.

B. Formatting and Randomization

First, the -ary message of length , denoted as
, is padded with zeros to the length

if , yielding the padded message

where is the length of the AMAC tag and is the minimum
positive integer satisfying the inequality . The padded
message is then re-formatted into an by matrix, denoted as

:

...
...

. . .
...
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Next, the PRG is used to form a permutation table such that
each element in the message matrix is permutated to the new
position accordingly. Let denote permutation and matrix

denote the message after permutation. Then .
The purpose of the pseudo-random permutation is to not only

destroy any existing spatial correlation within the neighboring
elements but also enhance the security against attack.

Let be the pseudo-random by matrix generated from
PRG. The matrix is then masked by a modulo operator
with the pseudo-random matrix , element by element. Denote
the masked matrix as , where

.
The modulo operation leads to the variables , which

are independent of each other and unbiased whenever the
samples are mutually independent and unbiased. “Unbi-
ased” here means they obey a discrete uniform distribution on

.

C. AMAC MODE Calculation

As shown in Fig. 1, each symbol of the AMAC, , is ob-
tained by computing the MODE of each corresponding column,

, for . The MODE
is defined as the most common value in a set. If a “tie” occurs,
the MODE operation breaks the tie by comparing the adjacent

values. The resultant -ary AMAC tag, , together with the
initialization data are sent along with the message . The re-

ceiver compares the received AMAC and the AMAC con-
structed from the received message . The Hamming distance
between two AMACs is measured. Over an -ary alphabet

, the definition of Hamming distance between two vec-
tors is the number of positions in which they differ. Although
other distance functions like Euclidean distance are also taken
into account here, the Hamming distance between two AMACs
is effective in showing the differences between two messages.

The larger the distance between and , the larger the dif-
ference between and is judged to be.

The algorithm described here only shows one round AMAC
operation. The generalized multi-round algorithm is discussed
in Section VI.

V. PROBABILISTIC PROPERTIES OF -ARY AMACS

A. Probability That One -Ary AMAC Symbol Changes

Given the distance between message and , the prob-
ability that one -ary AMAC symbol changes, denoted as ,
is derived in Appendix A. Fig. 2 shows the curves of versus
the fraction of changes in messages with various length . The
monotonicity of the curves exhibits that AMACs keep the prop-
erty of -distance-preservation, for some value
as a function of . In particular, Fig. 2 shows that the proba-
bility of an AMAC symbol change increases monotonically with
the increase of differences in the message, and therefore the ex-
pected value can be simply computed according to the value
of when the fraction of changes in the message is .
As already observed in Section III, the distance-preservation
property implies a related -noise-tolerance property

Fig. 2. Probability that one AMAC symbol changes versus the fraction of
changes in the 3-ary messages.

for -ary AMACs, where and can be or closer
to 1.

When all elements in the message are altered, the curves in
Fig. 2 show that , which means a given AMAC symbol
still has a small probability not to change. This is due to the fact
that it is possible to have several changing patterns that leave
the MODE unchanged. When , with increasing

tends to 1. At this case, the probability that the MODE
of a column does not change is basically determined by

(1)

where and represent the number of elements belonging
to the unchanged MODE before and after the message changes,
respectively. As gets larger, this probability tends to zero,
which means tends to 1.

B. Distribution of the -Ary AMAC Differences in the
Message Space

An -dimension message space with alphabets is con-
structed from all possible messages of length . One of the
values is assigned to each dimension, such that
the message space contains possible messages. Given a
key and an initialization vector , the -ary AMAC algorithm
maps each message to an AMAC tag of length . The following
theorems hold for the AMACs and the message space.

Theorem V.1: Assume the existence of a pseudo-random1

generator, AMAC symbols are mutually independent.
Proof: When we calculate an AMAC tag of length , a

message is partitioned into nonoverlapping sets after the oper-
ations with the outputs of PRG, the pseudo-random number gen-
erator. Each set contains elements. Each AMAC symbol
is calculated from the corresponding set. Since the permutation

1A sequence fX g is pseudo-random if it is indistinguishable from a uni-
formly distributed sequence fU g by any polynomial-time algorithm.
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and modulo operations eliminate the correlations between sets,
the AMAC symbols are mutually independent.

Theorem V.2: Each -ary AMAC symbol divides the mes-
sage space into equal-size classes. The message space is di-
vided into equal-size classes by AMAC symbols.

Proof: From the Proof of Theorem V.1, we know that
each AMAC symbol is calculated from each set containing

elements, which means there are totally
possible message-segments in this set and mes-
sage-segments out of this set. One -ary AMAC symbol
further divides this set into equivalent classes, each class
has possible message-segments with same AMAC
value from . Combine each class with the
remaining message-segments in the message
space, we have possible
messages corresponding to one AMAC symbol. Therefore,
each -ary AMAC symbol divides the message space into
equal-size classes.

Furthermore, since each AMAC symbol is independent of the
other AMAC symbols, the message space is divided into
equal-size classes by AMAC symbols. Each class contains

messages with same AMACs.
From above discussion, we can derive that, given an -ary

message , the number of messages with different AMAC
symbols from ’s AMAC tag is . Denote
the fraction of such messages in the message space as ,
then

(2)

is thus a binomial distribution with parameters
, which represents the probability that out of sym-

bols change in a AMAC tag. The probability that each AMAC
symbol changes is .

To verify the correctness of the calculation of , we use
to calculate and denote the result as . Assuming
each element in the message space is equally likely to be one
of the values in can be calculated as
follows:

(3)

where denotes , given that there are different
elements between the messages. Fig. 3 shows the comparison
between and , where 3-ary AMACs of length

are obtained from messages with different lengths. It
can be seen that and are very close when
gets larger, which verifies the computation of .

C. Distance Measure in -Ary AMAC Symbols

Authenticity decisions do not rely on AMAC symbol indi-
vidually but as a group on the distance between AMACs. The
statistical analysis of the distance between AMAC tags, , is

Fig. 3. Fraction of the messages versus the distance of AMACs. Different
curves are computed by (2) and by (3), as indicated in the legend.

TABLE I
RESULTS FROM ANALYSIS AND SIMULATIONS, 3-ARY AMACs

thus important. As mentioned before, Hamming distance is suf-
ficient to measure the difference here. Table I shows the distance
of AMACs between the original 3-ary message and its modi-
fied version with . The length of
AMAC is 128, and the message length is 512 K. According to
the table, when , the average of the observed dis-
tance between AMACs obtained by simulations, equals 0.906,
which means about 1 of the 128 symbols is affected. Similarly,
when equals 10.004, which means about ten
of the 128 symbols are changed. Assume AMAC symbols are
mutually independent, then , the distance between AMACs
with length , follows a binomial distribution with parameters

. Denote the expected value of as and the vari-
ance as , then

(4)

The comparisons of the results between simulations and anal-
ysis are also shown in Table I, where is the observed variance
from simulations. It can be observed that the results from the
probabilistic model are consistent with those of the simulations.

D. Impact of the Size of Alphabets

The sensitivity of -ary AMACs varies according to the dif-
ferent alphabets . Fig. 4 shows how the value of influences
the sensitivity of AMAC symbols. All three probability curves,
binary and 3-ary as well as 4-ary AMACs, increase gradually
in concert with the increasing changes in messages. When half
of the message is changed, the probability of binary AMAC
reaches 0.5; whereas, probabilities of 3-ary and 4-ary AMACs
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Fig. 4. Probability of one AMAC symbol changing for different alphabetsN .

are greater than 0.5. It can be concluded that the larger the al-
phabets , the higher the sensitivity of the resultant AMACs.
This result also provides a method to control the sensitivity of
binary AMACs. Certain number of bits can be grouped together
into an -ary symbol and the -ary AMAC can be computed
based on the -ary representation of original message. Thus,
authentication can be adjusted to different levels of sensitivity.
The reason is that the original distance information in the mes-
sage is reorganized when bits are grouped into -ary symbols.
The resultant -ary AMACs then reflect the new distance in-
formation and provide higher levels of sensitivity.

To illustrate this concept, consider an AMAC computation of
a 256 gray-level image with each pixel represented by 8 bits.
The binary AMAC can be computed directly from the bit image
representation. A 4-ary AMAC can be computed by grouping
every two binary bits into a 4-ary symbol to form a 4-ary mes-
sage. Similarly, 8-ary, 16-ary, and even 256-ary AMACs can be
computed by grouping the appropriate number of bits. Fig. 5
shows how the size of the alphabet influences the sensitivity of
AMAC symbols. The original image is the uncompressed ver-
sion of Fig. 9. The image is contaminated by different densities
of salt-and-pepper noise generated by Matlab’s imnoise func-
tion. At each level of noise density, the sensitivity of AMACs
increases with an increasing value of . It can be concluded
that for the same input message, the larger the alphabets , the
higher the sensitivity of the AMACs.

VI. ITERATED -ARY AMACS

As seen in Fig. 2, , the probability that an AMAC symbol
changes is a function of , the fraction of changes in the
message. If is fixed, the value of can be still tuned
by using iterated round operations described as follows.

Let the message length be , where is the length
of the AMAC, is the number of rounds. The generalized algo-
rithm is depicted in Fig. 6. Similar to the algorithm described in
Section IV, the -ary message is pseudo-randomly permuted
and formatted into a matrix of rows and columns.

Fig. 5. Various densities of salt-and-pepper noise in the original image versus
the normalized distances between N -ary AMACs generated from the original
and the contaminated images. For the fair comparison, all these AMACs have
same 512 bit-length but vary in symbol-lengthL: 512 in binary, 256 in 4-ary, 128
in 16-ary, 64 in 256-ary. Y-coordinate represents d ( ~A; ~A )=L. d ( � ): distance
function.

The matrix elements are fed into a modulo operator along with
the pseudo-random elements generated by PRG and split into

sub-matrices with rows and columns each. In
the first round, the MODE of every column in each sub-matrix is
computed, and the message is reduced to elements.
As the round operation goes on, the message matrix continues to
reduce. After rounds are processed, an AMAC of length is
the final tag. Note a “Modulo N” step with fresh pseudo-random
numbers is performed in each round prior to the MODE calcu-
lation to further secure the process.

The previous probabilistic model for one round operation can
be extended to generalize the rounds algorithm. Let be the
probability of the MODE changing in the th round calculation

and be the probability that out of
elements change in a column. Then, equals

(5)

Hence, is as follows:

(6)

where is calculated by (11) in Appendix A.
and are calculated recursively given the value

of , which is obtained from (8) by replacing with and
with . After rounds, is the probability that

a given AMAC symbol changes.
is now a function of besides . Its

value can be fine tuned by choosing different values of these
parameters. To show the impact of different number of rounds
on the authentication, a 3-ary message of length with
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Fig. 6. MAC obtained by U rounds of MODE calculation. MODULO N operation is performed in each round prior to the MODE calculation but is not shown
in the figure due to space limitation.

Fig. 7. Impact of different number of rounds. Alphabet N = 3. The fraction
(� =l ) from 0 to 0.4 is shown.

and is investigated. In each
. The result is shown in Fig. 7, where versus

is plotted. The line of is also plotted
as a reference. With the increasing of the number of rounds, the

curves deviate further from the reference line.

Therefore, in the generalized AMAC scheme, the prob-
abilistic property of the AMAC is tunable by adjusting the
number of rounds. The sensitivity to the small amount of
changes increases quickly when the number of rounds in-
creases. For larger amount of changes, however, the curves
with more rounds become flatter and thus less sensitive to the
increasing changes.

VII. APPLICATION OF -ARY AMACS

To illustrate the attributes of -ary AMACs, consider the
example shown in Fig. 8. The original graphics image in
Fig. 8(a) has eight different gray values. Fig. 8(b) and (c) depict
the graphics images distorted by salt and pepper noise. The
noise density is 3% and 5%, respectively. The AMAC tags from
the original image and the noisy versions are computed. The
normalized distance2 between the original tag and the tag of the
noisy version is measured to judge the authenticity between the
original message and the distorted image. The binary AMAC
tag is computed from the binary representation of the 8-ary
graphics. The 8-ary AMAC tag is computed directly from the
image. It can be seen that the binary AMAC is less sensitive than
the 8-ary AMAC. When the noise density is increased from 3%
to 5%, the quality of the image downgrades significantly; but
the normalized distance between binary AMACs only increases

2Hamming distance divided by the length of the vectors.
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Fig. 8. AMACs computed from the 8-ary graphics images versus the AMACs computed from the binary representations. All the authentication tags are 384 bits
long.

Fig. 9. Distances between authentication tags are listed including HMAC-MD5 and binary AMACs as well as 4-ary AMACs. All the authentication codes are 128
bits long. A quaternary message is constructed by converting each two binary bits into one quaternary symbol. All distances of authentication codes are normalized
by their lengths.

from 0.042 to 0.069, representing about 7% change of tag bits.
This low sensitivity may mislead the receiver to believe that the
noise level is still low. Meanwhile, the distance between 8-ary
AMACs increases from 0.185 to 0.258, representing more than
25% change in the tag. This indicates a clear degradation in
image quality. As stated before, binary AMACs are less sensi-
tive in this example in that the binary representation changes
the distance information in the original 8-ary graphics image.
In particular, the normalized Hamming distance between the
noise-free image and the noisy image with 5% noise density is
0.043 in 8-ary but only 0.025 in their binary representations.

The following example further illustrates the characteristics
of -ary AMACs. There are three JPEG representations of an
“airport terminal” image shown in Fig. 9. The left, center, and
right images are the representations having quality factors of

and , respectively. As indicated by

the normalized mean absolute error (MAE), the distortion of the
image increases when the quality factor decreases. For each of
these images, and for the original uncompressed image, a con-
ventional MAC (using MD5) and a binary AMAC as well as a
4-ary AMAC tag are computed. Quaternary AMACs are com-
puted by converting the images into 4-ary representations first.
The distances of tags between source image and compressed im-
ages are measured. For the image with severe compression ar-
tifacts , or for the slightly modified image ,
about 50% of the MD5 tag bits differ from those of the original
image. It is the goal of MD5 that each tag bit has a 0.5 proba-
bility to change no matter how many errors occur. Both binary
AMACs and quaternary AMACs, on the other hand, show that
the distance of the tags between the original and the distorted
images gradually increases in concert with the distortion in the
images. In all three different quality settings, the distances of
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quaternary AMACs are larger than their binary counterparts. It
is also interesting to see how fast the distance increases. When
the image quality factor decreases from to ,
the distance of 4-ary AMACs increases from 0.141 to 0.516;
whereas, the distance of binary AMACs only increases from
0.109 to 0.37. For large amount of distortion, such as when the
quality factor decreases from to , the increasing
rate of the distance of 4-ary AMACs becomes smaller than the
binary AMACs, only increasing from 0.516 to 0.609. Such char-
acteristics show that -ary AMACs are more suitable for slight
message differences, which is exactly the desired “tuning” fea-
ture we sought.

Although not elaborated in this paper, another application of
-ary AMACs can be the noise-tolerant message authentication

in a wireless multicast group. Imagine that one node in a mul-
ticast group wants to send a multimedia message to all other
nodes in the group. Since the originator has different wireless
paths reaching different receivers, the copies of the message
received by different destinations may have different levels of
interference. The challenge of authentication in such scenario
is not only the message being contaminated by noise but also
the message experiencing different amounts of noise in different
paths. Traditional MACs cannot tolerate any errors that may be
acceptable. Any premeasures taken at the sender side to tolerate
the noise are not sufficient due to the different paths. AMACs
thus are a good solution for such application. Although the mul-
ticast message copy at a given receiver may contain a different
number of errors than the copies received by other receivers,
the copy still can be accepted as long as , where

is an acceptable number of errors. This is also an example
of group authentication. The group secret session key should
be agreed before computing AMACs. Any authenticated group
Diffie–Hellman key exchange can be applied in the AMAC key
generation phase.

VIII. SECURITY ANALYSIS OF -ARY AMACs

First note that the AMAC construction in Section IV already
satisfies some kind of security property. Specifically, assume
that the construction is proved -distance-pre-
serving, for some distance functions and parameters

. (We showed this fact in Section V). Then consider an
adversary trying to produce two messages such that

and , where ,
for , and has been generated using the key-generation
algorithm . (Such an adversary could convince a verifier
that the same tag is valid for both and .) Then the
monotonicity of the probability that a given symbol in the
AMAC tag changes as a function of the differences between

and , implies that there exists a constant for which
this adversary can only succeed with probability at most .
Precisely, can be chosen as the constant such that at value

is at least twice as large as at value . Furthermore,
this probability can be decreased by modifying the construction
so that multiple independently generated tags are returned by
the authenticated algorithm. Finally, we note a particular case

that will be of interest later; that is, the adversary is
able to compute such that and

only with probability , where is the
probability that a given symbol in the AMAC tag changes when

and differ by at least symbols, is the tag length.
While this security property can be satisfactory for some ap-

plications, in order to further investigate the applicability of
AMACs, we now define a stronger type of security require-
ment, security against a chosen message attack, by adapting
the strongest known type of security for conventional MACs in
the cryptography literature. We show that the AMAC construc-
tion of Section IV does not fully satisfy this stronger definition
(a similar claim can be seen to hold for several content-based
multimedia authentication techniques in the literature). How-
ever, we show how to use standard cryptographic algorithms to
modify our construction so that it satisfies this stronger defini-
tion as well.

A. Insecurity of the -Ary AMAC Against Chosen Message
Attacks

Let be an arbitrary message authentication
scheme. A chosen message attack against message authentica-
tion codes, MACs, is performed in two phases. The first is adver-
sary’s “learning” phase in which she is given the oracle access
to , where the key was a priori chosen by (thus, is
fixed during the attack). “Oracle access” means that the adver-
sary can choose whatever message she wants as input and
ask to return the corresponding tag ; but the key and
other randomness of are kept unknown to her. She can
query the oracle up to times. Then she enters “forgery” phase
to output a pair of a message and its tag . The adversary
succeeds if . Note that is not necessarily a given
one, but was never a query in adversary’s “learning” phase.

Then, we say that an AMAC is -secure against
chosen message attack if the following holds: for any efficient
adversary algorithm, Adv, if Adv queries algorithm
times with adaptively chosen messages, thus obtaining pairs

, and then returns a pair , the
probability that , where , for

, is at most .
Since AMACs are noise-tolerant, the distance between query

message and forgery message should exceed some noise-
tolerant boundary , i.e., . Indeed, when ,
this definition is identical to the known definition for MACs of

-security against chosen message attack. If by we denote
the security parameter, as for MACs, the most desirable security
level for AMACs is -security against chosen attack for
any polynomial in and any negligible in . (A function

is negligible if for all positive constants , there
exists a positive integer such that, for all , it holds
that . Intuitively, a negligible probability event is so
unlikely that is not expected to be observed.)

We first show that the one-round -ary AMAC construc-
tion in Section IV is not secure against a chosen message at-
tack where the adversary is allowed to query a large enough (but
polynomial in the security parameter) number of queries.

Theorem VIII.1: Consider the -ary AMAC algo-
rithm in Section IV, taking as input messages of length

and returning tags of length , and assume that it is
-distance preserving, where . Then,
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for any , there exists an efficient adversary, Adv,
performing queries to oracle

and returning with probability at least a pair
such that and , for .

This analysis is compatible with the binary case, and, when
, it is essentially the same as in [7]. Furthermore, it ex-

tends to the -round AMAC construction, where the number
of queries is still poly-
nomial in the security parameter, which is considered insecure
from a cryptographic point of view simply because in practical
applications, an adversary can make either zero queries (no ac-
cess to oracle) or any polynomial number of them.

This theorem is proved by exhibiting a specific Adv that
makes queries and output a valid pair . The strategy of
Adv is that of guessing both permutation, , and pseudo-random
sequence, rs, using the answers of her queries to , which
are computed as so that each AMAC tag symbol will help Adv
reduce the set of possible by a factor of on average.
The detailed proof is shown in Appendix B.

B. Securing the -Ary AMAC Against Chosen Message
Attacks

We stress that it should not come as a surprise that for
some polynomially large value , the presented AMAC is not

-secure under chosen message attack, since this construc-
tion only uses a polynomially large amount of pseudo-ran-
domness, contrarily to other MAC constructions that assume,
for instance, the existence of a pseudo-random function (that
can provide an exponential amount of pseudo-randomness).
We now show how, using standard cryptographic algorithms
such as a symmetric encryption scheme and a conventional
MAC algorithm, the AMAC presented in Section IV can be
modified so that it satisfies the stronger definition of security
against chosen message attack (even if the adversary can make
an arbitrary polynomial number of queries). Our main result
here is the following.

Theorem VIII.2: Consider the -ary AMAC algorithm
in Section IV, taking as input messages of length , and
assume that it is -distance preserving, where

. Also, assume the existence of a symmetric encryp-
tion scheme and a conventional MAC secure against chosen
message attack. Then there exists and an -ary AMAC
construction that is -secure against chosen message
attack, for any polynomial and any negligible .

In summary, Theorem VIII.2 indicates that there exists a
scheme to make a previous distance-preserving
AMAC that is not secure against chosen message attack with
an arbitrary polynomial number of queries into a secure one
against such attack.

Let denote the AMAC algorithm discussed in
previous sections; let denote a symmetric encryp-
tion scheme; and let denote a conventional MAC
scheme secure again chosen message attack. The modification
of our AMAC goes as follows.

The key-generation algorithm returns three random keys
, generated using algorithms , respec-

tively.

The tagging algorithm first computes an AMAC tag for the
input message exactly as before using and key ; then it
computes an encryption of using the encryption algorithm

and key ; finally, it computes a conventional MAC tag
of using algorithm and key . The final tag is the pair

.
The receiving algorithm, on input , and keys

, first verifies that is a valid MAC tag for by
running the conventional MAC receiver algorithm using key

; if so, it decrypts as using the decryption algorithm
and key ; then, it runs the AMAC receiver algorithm on
input and key .

Appendix C sketches the proof that the resulting AMAC is
secure against chosen message attack for an arbitrary (polyno-
mial) number of queries from the adversary.

IX. DISCUSSION AND CONCLUSION

In this paper, we proposed a new noise-tolerant AMACs for
-ary alphabets. The codes are probabilistic in nature and have

the property of distance preservation. The theoretical analysis
was performed on the probabilistic properties of -ary AMACs
along with the simulations. Some application examples were
presented to show the potential application areas of such codes.
As discussed in Section II, our approach takes a different per-
spective from other approaches in the literature to authenticate
messages that may have been affected with admissible changes.
AMACs can be viewed as a new keyed-hash algorithm that
hashes the original message into a small digest. Such digest has
the property to reflect the differences between messages; i.e.,
small differences between messages lead to small differences
between AMAC tags, and vice versa. One argument of such
distance preservation is that it might be hard to determine the
boundary between admissible changes and inadmissible manip-
ulations based on the authentication tags. Such distance preser-
vation, however, brings the flexibility of authenticating mes-
sages with different levels of sensitivity, such as tightening the
boundary for high sensitive messages.

We also adopt rigorous security analysis commonly used in
cryptography literature to perform the security analysis on the
AMAC scheme. We believe that such security analysis is impor-
tant for multimedia message authentication.

APPENDIX

A. Derivation of the Probability That One -Ary AMAC
Symbol Changes

Let be the length of the padded message and assume that

elements in are changed. Let be a column in that

contains elements and let be the MODE of . We next
derive the probability that changes given that elements in

are changed. For simplicity, we compute the case of
as starting point, then generalize the results to .

Let be the event that changes. Denote as

the th possible combination in , where elements are of
value 0, elements are of value 1, and elements are of
value 2, and . Denote as the th
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possible combination in which elements change their
values from , respectively. Denote as the event
of the th possible combination in which elements
change their original values into , respectively. Clearly,

. Subscripts represent the in-
dices referring to each of all the possible combinations in events

, respectively. Let be the probability that

changes given that there are errors in column . Then, we
have

(7)

where represent
in short. How elements change from their original values to
the new values can be regarded as a Markov Chain. Then is
the transition probability of such Markov Chain. Assume each
element has equal probability to change to one of the other two
values, then is the number of
possible changes from one pattern to the other.

If the new MODE
is different from the original ,

then , otherwise 0.
Next, we calculate the probability that one AMAC symbol

changes given that elements change in message , denoted
as

(8)

where is the probability of differences in one column
given differences in whole message and computed by

(9)

Note that when and are large in relation to ,
can be approximated by a binomial distribution with parameters

where . Therefore

(10)

From the probability equations derived for the 3-ary case, we
can generalize the calculation to the -ary case. Equation (8)
still holds for calculating , where

(11)

and is as same as in (9), as well as
. is the transition proba-

bility, is the number of possible changes from one pattern to
the other.

B. Proof of Theorem VIII.1

We define two message spaces: and . The
former is defined as the space induced by the random choices
after running oracle in the chosen message attack by Adv; the
latter is defined as the former except that the pseudo-random
numbers generated by generator PRG are replaced with
uniformly and independently distributed random numbers.
Due to the pseudo-randomness properties of and

are indistinguishable between polynomial time compu-
tation. Then, in order to prove that Adv’s probability of success
is at least , it is enough to show that in space
can perform adaptive queries to oracle

and return with probability at least a pair such
that and , for . Thus,
the proof is performed in space . (Note that we are
showing a stronger claim since construction of AMACs can
only be more secure in than in .)

We now prove that Adv is successful with queries as
claimed. As proved in Section V, each -ary AMAC symbol
partitions the message space into equal size subsets, we
observe that each symbol of AMAC tag for message
restricts the values of possible used by at Adv’s
point of view. We define as the largest set of pairs
possibly used by before the first query by Adv, and
define as the largest possible set of pairs consistent
with the transcript obtained by Adv,
for . Now we observe that, since Adv uniformly
and independently chooses all queries, on average it holds that

. Then, since , we obtain that
queries are enough, on

average, to obtain , from which it follows that with
probability at least , the pair returned by Adv satisfies

.

C. Proof of Theorem VIII.2

We start the proof of this theorem by recalling the definition
of a symmetric encryption scheme. Let be a triple
of probabilistic polynomial-time algorithms with the following
syntax. On input an -bit security parameter, the key-genera-
tion algorithm Kg returns a random -bit key . On input and
a message , the encryption algorithm returns a ciphertext
. On input and a ciphertext , the decryption algorithm re-

turns a message or a failure symbol . The triple
is a secure symmetric encryption scheme if the following two
requirements of correctness and security are satisfied. Correct-
ness requires that if is generated by Kg and is returned by
on input , then the output of on input , is equal to .
Security (in the “real-or-random” sense) requires that an adver-
sary (not knowing ) who is given access to an oracle , and
after making a polynomial number of queries, can distinguish
if is equal to or equal to a random function with the
same length parameters only with negligible probability.

Also, we use a conventional MAC scheme se-
cure under chosen message attack.
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We now sketch the proof that the resulting AMAC is se-
cure under chosen message attack for an arbitrary (polynomial)
number of queries from the adversary. Recall that the adver-
sary is successful only if, given several , for any

and any polynomially large , and for adaptively chosen
, she can generate with probability at least a pair

, where has distance at least from all and
is a valid tag for according to the modified AMAC.

Then note that after each query , the adversary only obtains
an encryption of the -ary AMAC tag and a conven-
tional MAC tag of , and therefore obtains no information about
the randomness used to generate AMAC tags. Because of the
latter fact, and using the fact that has large distance from all

, with very high probability, it holds that for all ,
where is the decryption, using , of , or otherwise we can
use the adversary to break the encryption scheme . Therefore,
the adversary needs to use a value different from all asso-
ciated with the queried ; but for this , the adversary cannot
produce a valid tag as she does not have key . Specifically,
if she did that, she would violate the security under chosen mes-
sage attack of the conventional MAC used here.
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