| B142 Vol. 56, No. 3 / January 20 2017 / Applied Optics

Research Article

applied optics

Compressive imaging via a rotating coded

aperture

MicHAEL L. Don,"* CHEN Fu,? AND GonzaLo R. ARce?

"United States Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
2Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA

*Corresponding author: michael.l.don2.civ@mail.mil

Received 30 August 2016; revised 27 October 2016; accepted 3 November 2016; posted 3 November 2016 (Doc. ID 274823);

published 1 December 2016

Compressive sensing has been used to increase the resolution of sensor arrays, allowing high-resolution images to

be obtained from low-resolution or even single pixel sensors. This paper introduces a rotating coded aperture for

compressive imaging that has advantages over other sensing strategies. The design of the code geometry is mo-
tivated by constraints imposed by the imager’s rotation. The block—unblock code pattern is optimized by min-
imizing the mutual coherence of the sensing matrix. Simulation results are presented, using the final code design

to successfully recover high-resolution images from a very small sensor array.
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1. INTRODUCTION

Image sensors in the visual spectrum have been following a
trend of growing resolution accompanied by decreasing costs.
Sensors sensitive in other regions of the electromagnetic spec-
trum, such as some infrared imagers, have not shared this trend,
and their cost remains prohibitively high for many low-cost ap-
plications. Compressive sensing (CS) has been used to increase
the resolution of low-resolution sensors, or even to produce
high-resolution images from a single sensor, thus reducing sen-
sor cost [1,2]. Additionally, each compressive measurement
captures more light than in typical imaging, which can reduce
system noise. Images are compressed during the measurement
process, leading to fewer measurements and shorter acquisition
times than other super-resolution techniques, such as raster
scanning.

Compressive sensing produces measurements by projecting
the image onto a pseudo-random code. This can be accom-
plished in a variety of ways, including the use of traditional coded
apertures. Coded aperture compressive imaging typically uses
one or a small number of aperture codes, due to the practical
difficulty of swapping the codes during the imaging process.
This results in only a few compressed measurements for each
sensor, which supports only a modest increase in resolution
[3,4]. Researchers at Rice University circumvented this problem
by developing a single pixel camera based on a digital micromir-
ror device (DMD) [1]. This programmable array of micromirrors
can quickly change its pattern to produce many compressed mea-
surements, allowing the creation of high-resolution images from
a single sensor. The DMD, however, is itself an intricate device
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that complicates the camera design and has limited transmission
below near-infrared wavelengths. If a simple method could be
found to create many measurements using a coded aperture,
it would be an ideal solution.

Work has been performed using a translating motion, moving
a coded aperture side-to-side to create multiple measurements,
but this motion has undesirable nonlinearities [5]. The design
also suffers from the added complexity of the necessary transla-
tion equipment. This paper presents a coded aperture design that
produces multiple measurements through rotation. Figure 1
shows an example camera architecture consisting of an objective
lens, the coded aperture, an imaging lens, and a low-resolution
sensor array. The coded aperture and the sensor array are as-
sumed to be the same size, leading to a spacing of twice the focal
length to the imaging lens. When mounted on a rotating plat-
form, such as a spinning projectile, it uses the natural rotation to
produce the compressed samples. The sensor array moves to-
gether with the coded aperture, leading to an extremely simple
design with no moving parts. When mounted on a stationary
platform, a rotary actuator must be employed to effect rotation,
thus complicating the design. Cost-effective rotary actuators have
been used in imaging before [6], still retaining the advantage of
continuous motion in contrast to the linear motion design. The
idea to rotate a coded aperture to produce compressive measure-
ments has been proposed before [7], but this is the first time
a coded aperture has been designed specifically for compressive
sensing through rotation.

First, a brief introduction to compressive sensing theory is pre-
sented. For those unfamiliar with compressive sensing, several
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Fig. 1. Architecture of a rotating compressive imager.

longer tutorials can be found in Refs. [8—13]. Next, an initial
coded aperture geometry is introduced with the aim of producing
a high-resolution image from a single sensor. This design is evalu-
ated, developed, and ultimately rejected. A second geometry is
then proposed and evaluated. The initial goal of using a single
sensor is abandoned in favor of using a small sensor array.
This leads to a final system design and optimized coded aperture
geometry. Once the geometry is determined, a further optimiza-
tion of the code pattern is presented. A list of nomenclature is
provided in Appendix B. Note that only rotational motion is
modeled in this paper. Use on a spinning projectile will require
further research to model all projectile motion [14,15].

2. COMPRESSIVE SENSING

Compressive sensing is a relatively new field that seeks to re-
duce the number of samples needed to reconstruct sparse data
[16,17]. Given a data vector f € RV and sensing matrix
H € RV, a measurement vector g € RX is calculated as

g = Hf. (1)
With a sparse representation @ of f in basis W, this becomes
g = HY0 = A9, (2

with the system matrix A = HW. Since K’ < N, the system is
under-determined, leading to an infinite number of solutions
for @ given measurements g. Compressive sensing theory states
[18], however, that if the number of measurements satisfies

K> C-pu*-10ll - log N, @)

the sparsest solution satisfying Eq. (2) will recover 0. C is a

positive constant. |||y is the LO-norm, which counts the num-

ber of nonzero values in 0. y is the mutual coherence of A,
which is the maximum coherence value y;; defined as
|a/ aj| .. L

Hij = 1<ij<N and i#j (4)

lla,|l - [layll

In other words, p is the largest absolute and normalized inner

product between the columns in A. The sparsest solution to
Eq. (2) can be found through L1-norm minimization:

main||0||1 subject to g = HW0. (5)

Since the number of measurements required for data recovery is
related to p, sensing matrices exhibiting low values of y increase
CS performance. y, then, can be considered a useful metric for
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evaluating the performance of a sensing matrix given a chosen
sparse basis. We will see that coherence has limited value in
designing the coded aperture geometry, but will prove useful
in optimizing the block—unblock code pattern once the geom-
etry has been determined.

3. APERTURE CODE DESIGN

A. Initial Geometry
The initial aperture code was designed based on three criteria: the
geometry should simplify calculations, preserve sparsity, and pro-
mote image quality. Based on these criteria, the initial design
with two rings displayed is shown in Fig. 2(a). The polar geom-
etry serves to simplify calculations during rotation. The code sec-
tions can be mapped to a matrix as shown in Fig. 2(b), with
indices (s, ) denoting spoke s and ring . This also serves to
simplify calculations by allowing algorithms to employ conven-
tional matrix theory. Since the image geometry is typically the
same as the code geometry, the code design will directly deter-
mine image quality. The matrix mapping preserves contiguous
regions of the image, thereby retaining the image’s sparsity. All
code sections have an equal area, and every ring has an equal
height. This leads to fairly uniform pixel shapes that promote
image quality. Given these constraints, the number of spokes
in ring r is

S, =81@2r-1), (6)

where S| = 4 is the number of spokes in the innermost ring.
Instances where S| # 4 serve as code examples that do not di-
rectly map to a matrix. Figure 2(c) shows an example image in
the polar code geometry, with a visualization of the associated
matrix in Fig. 2(d). Polar formatted images have been proposed
before for various purposes [19-21], but the design here differs
in that it will be optimized specifically for compressive sensing.

The code sections are assigned a random block—unblock
pattern as in Fig. 1. Using a single sensor, one measurement
is taken at each incremental rotation of the code. Each rotation

52 | 42 | 3,2 | 2,2

62 | 2,1 1,1 | 1,2

7,2 | 31 4,1 | 12,2

82 (92 |10,2 | 11,2

(d)
Fig. 2. (a) Initial coded aperture design and (b) matrix mapping. An

example 256 x 256 image is shown in (c), with a visualization of the
associated matrix in (d).
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provides a “new” code in relation to the scene, which is assumed
to be stationary. Using this sensing scheme, a problem arises.
In typical compressive sensing scenarios, the code can be
completely changed between measurements. For example,
when using a DMD, a completely new pattern can be pro-
grammed for each compressive sample. When acquiring sam-
ples through code rotation, the situation is more complicated.
Even if the code is rotated the arc length of a section of the
outer most ring, thereby completely changing the code sections
for that ring, the inner sections will be only partially rotated
since they contain fewer sections than the outer ring.
Figure 3 illustrates this phenomenon. Moreover, it is likely that
even the outer code sections will not be fully rotated between
measurements. There are only a limited number of rotations
possible before the code is rotated 360 deg and the measure-
ments begin to repeat themselves. In this situation, the rotation
between measurements must be decreased to increase the total
number of samples. This will typically result in rotations
smaller than the arc length of even the outer code sections.

For example, a polar code with 128 rings has a total of about
65K sections, with an outer ring of 1020 sections. Even if the
number of compressive samples is only 10% of the total num-
ber of pixels, requiring about 6.5K samples, the code can be
rotated only about one-sixth of an outer section arc length be-
tween samples. It seems likely that this small rotation angle will
create a large correlation between samples, degrading the com-
pressing sensing performance.

To understand the effect of small rotations on compressive
sensing, the experiment can be simplified to a one-dimensional
(1D) example of a single ring, as illustrated in Fig. 4. First, the
case of rotating the arc length of a whole code section between
each measurement is considered. A ring of /N image pixels is rep-
resented as a continuous function f(p, @), with 0 <p <A,
A vector of discrete image pixels can then be defined as
f € RY, with element f, on spoke s given by

=/ | Feondody M

where
Q(f) ={p@l0<p <A
27(s-1)/N < ¢ < 2ns/N}. (8)

Refer to the dimension annotations in Fig. 4(a) for an illustration
of these pixel boundaries. #(p, @) denotes a code ring at mea-
surement £ with the same geometry as £(p, ¢). t’ is then defined

with elements
o = / / (o, D)pdapdy. @)
)

AR

Fig. 3. Rotating the initial code geometry by the arc length of one
code section in the outer ring results in only the partial rotation of
inner code sections.
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The clockwise rotation of an arc length of a whole code section
between measurements becomes an upward circular shift of t,

where
[
ty = tf—l
s+1°

Figure 4 shows this rotation, with the initial code #!(p, @) in
Fig. 4(a) rotated by a full code section to become #*(p, @) in
Fig. 4(b). The spoke numbering in Fig. 4(a) index t', while
the those in Fig. 4(b) index t?, illustrating the rotation in
Eq. (10). Each measurement can now be represented as

¢ =) (1)

with K measurements forming

— [, KT
g=[¢,...g"]". (12)
t’ becomes the corresponding K rows of sensing matrix
H e RSV with a partial and-circulant structure:

if s=N

otherwise.

(10)

(tH’ 1oty e Nty
(tZ)T If% Ifé ...... tjl\] t%

= . |=]. | (13)
(97" 7 SRR VI SR o

Simulations were performed with H constructed from rotat-
ing a randomly generated code with 64 unit area sections.
A random 1D image vector was generated with 5% of its co-
efficients @ non-zero. In general, the example data in this paper
were limited to a 5% sparsity. The data was recovered using a
primal-dual algorithm [22] and compared to the original data,
with a mean squared error below 1 x 1073 considered a success-
ful recovery. Multiple simulations were repeated with newly
generated random code patterns and image vectors for a given
CS ratio, k = K /N, with the percent of successful recoveries
recorded as the recovery rate. Figure 5 shows the results of four
cases. Results using a non-circulant, completely random
Bernoulli sensing matrix and a standard basis, ie., ¥ =1,
are shown as a baseline. Three circularly shifting simulation
results are shown for standard, discrete cosine transform
(DCT), and wavelet base representations. The standard basis
results closely match the baseline case. The wavelet basis
shows a small degradation in performance, while the DCT

(b)

Fig. 4. Example of a single ring with V = 8 sections. The block—
unblock code is shown is black and white, with the pixel boundaries out-
lined. Panel (a) shows the code at the first measurement, while (b) shows
the code rotated clockwise by one full section for the second measurement.
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Fig.5. Recovery rate versus CS ratio K /N for a completely random
Bernoulli sensing matrix using the standard basis, and anti-circulant
sensing matrices in the standard, DCT, and wavelet bases.

is significantly affected. Previous work has shown similar results
for circulant sensing matrices [23].

Figure 6 shows the largest 100 coherence values, defined in
Eq. (4), sorted in descending order for the 16 measurement
case. It is clear that the DCT has the highest coherence values,
which correspond to its inferior recovery results. The other co-
herence values, however, do not correlate well to CS perfor-
mance. The coherence values of the completely random
sensing matrix are higher than those of the rotating wavelet
case, and yet the random case performed better in the recovery
simulations. Surprisingly, it appears that CS performance is not
always directly related to coherence. Therefore, we will discon-
tinue further analysis of coherence during the design of the
code geometry, returning to it in Section 4, dealing with code
pattern optimization.

The results for the wavelet basis are encouraging, but as men-
tioned previously, in order to produce enough measurements the
code rotations will have to be less than a single section. Figures 7 (a)
and 7(b) show an example of rotation by 1/2 of a code section.
After the code’s first rotation, shown in Fig. 7(b), the code no
longer is aligned to the outlined pixel boundaries. This prevents
the rotations in #(p, ¢) from being modeled as a rotation in the
discrete vector t as in Eq. (10). Instead, #(p, @) is used to model
rotation directly, with a rotation of 1/4 of a section given by

“(p, ) =t p, @ + 2n/dN). (14)

All else remains the same, including the calculation of discrete
code elements # by integrating #* (p, ¢) over the pixel area as in
Eq. (9). This results in intermediate values in the sensing matrix,

1 ' ' ' ' ' ' ' ' '
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< 0.9 - . T
> Nee. e Circulant, Wavelet
8
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<
o
o
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Fig. 6. Largest 100 coherence values, sorted in descending order,
for the simulations in Fig. 5 using 16 measurements.
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Fig. 7. Example partial rotation of an eight-section code with
d = 2. (a) The original code, with (b) rotated by 1/2 of a section.
The outlined pixel boundaries remain stationary as the code rotates.
(e) The resulting sensing matrix with four measurements. (c) An ex-
ample of a divided code with 4 = 2, giving two code sections per im-
age pixel. The code is rotated by one code section to produce (d). The
resulting sensing matrix is shown in (f) with four measurements.

which is no longer anti-circulant. Figure 7(e) shows a visualization
of a sensing matrix generated from the code in Figs. 7(a) and 7(b).
The first row corresponds to the initial code [Fig. 7(a)], with the
next three rows resulting from 1/2 section rotations. The inter-
mediate values occur when a pixel region contains both block and
unblock code sections.

The simulations displayed in Fig. 5 were repeated for partial
rotations, with the results shown in Fig. 8. These and all further
simulations are exclusively in the wavelet basis, where natural
images exhibit significant sparsity [24]. A clear decrease of per-
formance is observed as the rotation step size becomes smaller.
Obviously, producing more measurements by reducing the ro-
tation step size alone is not a practical solution.

When the code is rotated by partial sections, there is a strong
correlation between measurements, which reduces CS perfor-
mance. A new scheme is required to decrease this correlation.
One method is to divide the coded aperture into sections that
are smaller than the image pixels. The number of spokes in the
code ring becomes &N, with a rotation step size 1/4 of a code
section. This transforms the partial section rotation in Eq. (14)

100 T T — =
o Random /’f R =
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& 8o = = d=1 |7 o 1
—— - -
_% d=2 ’,-
T B0 | =ereraen d=4 '/ 4
= / ’/‘, R
Q40 7 W ]
o) !
8 Y
& 20 - 1
4" --.--""""‘ "
""“'I'"""“ N

0.1 0.2 0.3 0.4 0.5 0.6
Compressive Sensing Ratio

Fig. 8. Recovery rate versus the CS ratio for the baseline completely
random Bernoulli sensing matrix, a circulant sensing matrix that ro-
tates by one code section for each measurement, and sensing matrices
formed using partial rotations. All simulations use the wavelet basis.
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into a full code section rotation. Figures 7(b) and 7(c) illustrate
this scheme, with code sections half the size of the image pixels.
Figure 7(f) shows the resulting sensing matrix, with intermedi-
ate values occurring when a pixel area contains both block and
unblock code sections. Simulation results using the divided
codes are shown in Fig. 9, indicating that the rotation step size
now has a negligible effect on performance.

Now that a workable 1D code has been found, the two-
dimensional (2D) case can be readdressed. Just as the single
ring required the code to be divided to obtain more measure-
ments, so too the 2D code will have to be divided. This leads to
a modified code with sections smaller than the image pixels, as
shown in the example in Fig. 10(b). The code has the same
number of spokes in every ring, with enough spokes so that
each rotation step encompasses a whole code section. The pixel
geometry remains the same, as shown in Fig. 10(a). Note that
since arc lengths of the inner pixels are greater than those of the
outer pixels, the inner pixels contain more code sections than
the outer pixels.

Once again, an image with R rings is denoted as f(p, @),
with a discrete image pixel in ring r and spoke s given by

o= / A | Fo oo (15)
where

Q(f,) ={pe|A(r-1) <p < Ar,
27(s-1)/S, <@ < 2rs5/S,}. (16)

A is the ring height, and the number of spokes in ring r is given
by S,, as defined in Eq. (6). The total number of pixels is now

100 o R PR P
& 80f P
o ,’
© L
T 60 /
>
E 40 F Y/, —
8 = = d=4
(0] r ====:d =100
o 20 .3 A d = 1000

> =

0 4 . . . . n n n
005 0.1 015 02 025 03 035 04 045
Compressive Sensing Ratio

Fig. 9. Recovery rate versus CS ratio for sensing matrices formed
using divided code sections.

(@) (b)
Fig. 10. (a) Initial pixel geometry with S, spokes in ring 7, and (b) up-

dated code geometry, with an equal amount of S spokes in every ring.
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N = 4R, (s, 7) are ma}:y_ed to indices (% j) to create element
f i of matrix F € RYN*VN 45 shown in Fig. 2(b) and formally
described in Appendix A. #“ (p, ¢) is the coded aperture at mea-
surement £ with discrete sections

£ = / / # (p, )pdepdp, (17)
Q(f,)

which become elements tf} of T¢ using the same mapping as F.
Code rotation is modeled as

“(p, ) = 1" (p, g + 21/ S), (18)

with § denoting the number of spokes of the code. A single
measurement is then represented by

g~ = vec(T)TH, (19)

where f = vec(F). This leads to the complete sensing formu-
lation in Eq. (1) with

g=[¢"...g"", (20)
and H € RX*V given by
H = [vec(T?), ..., vec(TX)]. (21)

Figure 11 shows the results of a simulation using a code with
eight rings. The original image [Fig. 11(a)] is shown together
with the successfully recovered image [Fig. 11(b)]. The CS ratio
was 0.4, with the code rings divided into 102 spokes corre-
sponding to the 102 measurements. This results in code sec-
tions smaller than even the pixels in the outer ring, which
contains only 60 pixels. The performance here is not as good
as the 1D case, where data was recovered reliably with a CS
ratio of 0.3. The situation gets worse for larger simulations.
Figure 11(c) shows a 16-ring image with a recovery attempt
in Fig. 11(d). Here, even using 512 measurements, which is
a CS ratio of 0.5, reconstruction remained elusive. Even though
the 1D code had positive results, the 2D code performed

(b)

(c) (d)
Fig. 11. (a) Eight-ring polar image using the initial pixel geometry
with (b) recovery results; and (c) a 16-ring polar image with (d) recov-
ery results.
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poorly. One notable difference between these cases is that the
number of code divisions for each pixel grows from the outer to
inner rings, whereas the number of code divisions remains con-
stant in the 1D case. In order to make the 2D case closer to the
1D case, a new code and pixel geometry is proposed.

B. New Geometry
Figure 12(a) shows the new spoke-ring pixel geometry. Now
that all of the R rings have the same number of spokes, the
number of spokes per ring S, becomes a constant S, which
more closely mimics the 1D case. The original geometry
was chosen to create equal size pixels, which promotes image
quality. In this new geometry, the image quality is sacrificed to
some extent in order to improve recovery performance. The
image quality can still be high, however, when a sufficient num-
ber of pixels are used, as demonstrated in the 256 x 256 image
in Fig 12(c). This new geometry leads to a direct matrix map-
ping where the spokes are the rows and the rings are the col-
umns, as shown in Fig. 12(b). Any additional index mapping to
(4,7) is now extraneous and can be dispensed with. The height
of each ring is now varied in order to keep the image pixel area
constant. A now denotes only the height of the first ring, with
the outer radius of ring » given by A/~

Given this geometry, discrete pixels elements of image ma-
rix F € RSK are

o= / /Q | Fo 0o (22)

where
Q(f:r) = {(p)q))lAV r—1 SP < A\/;)
27s/S, < @ < 2x(s-1)/S,}. (23)

The code sections are divided, making the total number
of spokes in the code § > S,. Elements of the code matrix

11 | 1,2 | 1,3 | 14

2,1 2,2 2,3 24

34 | @32 | 33 | 34

41 | 42 | 43 | 44

(d)

Fig. 12. (a) New polar pixel pattern with an equal number of sections
for each ring and (b) the matrix mapping. An example high-resolution
image is shown in (c) with a visualization of the matrix mapping in (d).
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T € R5*R can then be formed by integrating #(p, @) over
an image pixel area:

t = / / #(p, p)pdedp. (24)
Q)

The rest of the sensing process is the same as before, with the
code rotation and formulation of the sensing process given by
Egs. (18)-(21).

Unfortunately, this geometry also produces poor reconstruc-
tions for larger images, with results for a 32 x 32 image similar to
those shown in Fig. 11(d). It seems that the performance results
seen in the 1D case of divided code sections cannot be translated
to a 2D code. A method is required for obtaining more measure-
ments during rotation without dividing the code sections. To
accomplish this, the single sensor can be enlarged to a small M x
M sensor array. Although this will somewhat increase sensor cost,
it is necessary to improve recovery performance. In addition,
multiple measurements can now be obtained simultaneously, de-
creasing acquisition time or alternatively allowing for a greater
sensor integration period. A sufficient number of sensors are re-
quired to ensure that enough measurements can be obtained
through rotating the code at least one whole code section be-
tween measurements. For a desired CS ratio «, the minimum
sensor array size is given by

M >, (25)

S
where NV = SR is the total number of code sections. Since the
code sections are no longer divided, /V also represents the total
number of image pixels. S and R do not have to be equal. In fact,
increasing the ratio of spokes to rings not only decreases the
number of sensors required, but also improves image quality
by creating more evenly shaped pixels. Figure 13 shows a com-
parison between using four times the number of spokes as rings
on the left, and an equal number of spokes and rings on the right.
Both polar images have the same number of total pixels, but the
image with more spokes is clearer. Using a spoke-to-ring ratio of
4:1 for a few example image resolutions, Fig. 14 shows the ob-
tainable CS ratio for a given sensor size. Other variables, such as
spin rate and sensor integration time, may affect the final choice

of sensor size in a practical system.
Figure 15(b) shows an example 8 x 8 polar code overlaid by
a 4 x 4 square sensor array in dashed lines. Although a square
array is the practical configuration that will be used, we will first
consider the simpler case of the polar sensor array in Fig. 15(a),

128 Spokes x 32 Rings

64 Spokes x 64 Rings

Fig. 13. Dolar images using more spokes than rings exhibit higher
image quality.
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Fig. 15. M x M = 4 x 4 rectangular and polar sensor grids overlaid
on a coded aperture centered at the origin with R = 8 rings. In (a),
R/M = 2 indicating that each sensor ring contains two code rings.

In (b), 2A+/R/M is the width of one sensor.

where the sensor boundaries align with code boundaries.
Sensors are modeled by a mask function w,,,(p, ), indicating
the field of view (FOV) of the sensor on spoke 7 and ring 7 of
the polar sensor array. 0 < w,,,,(p, @) < 1, with 0 indicating the
point is completely outside the sensor’s FOV while 1 indicates
it is completely inside the FOV. For simplicity, assume only the
area directly in front of the sensor is within the FOV giving

wmn(p«p)={1’ ™ e

0, otherwise
where
Qw,,) = {(0.9)|8/(r = DRIM) < p < A/n(RIM),

x (= D)2r/M) < g < m(2/M) }, 27)

for a code centered at the origin. Refer to the dimension an-
notations in Fig. 15(a) for an illustration of these polar sensor
boundaries. The sensor mask matrix W,,, € R%*X can then be
defined with elements w,,,, indexed by (s, 7), indicating the
proportion of code section #, in the FOV of sensor (7, 1) as

JJ. o) Wan(p> @)pdedp
w =
srmn A 3 /S

(28)
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Note that the code and image pixel patterns are now identical,
making Q(z,,) = Q(f ).

T,,, can now be defined as the effective code matrix for sen-
sor (m, n), in which everything is masked except for the portion
of T within the sensor’s FOV. This is represented by the
element-wise product of T with the sensor mask matrix
W,,,, given by

T,,=T-W,,. (29)

Since the code is rotated a whole code section between mea-
surements, rotation ¢ can now be modeled as an upward cir-
cular rotation of T, denoted as T? and defined by elements

-1 : _
i’ {tlr B if s =2, (30)

s t(f;;l 1y otherwise.

The rotation of W,,,,, can similarly be defined as W%,,, making
the effective code for sensor (s, 1) at rotation £

TS, =T « W5, (31)

Alternatively, since the code and sensors rotate together, T,
can be calculated first, and then rotated to form T%,.
Equation (19) representing one measurement in the single sen-
sor case now becomes

& = vee(T5,) 71, (32)

where g/ is the measurement in snapshot £ of sensor (7, 7).
Note that £ now represents snapshot £ of the whole sensor
array, with each snapshot producing A/? measurements. The
total number of snapshots is denoted as XK', making the total
number of measurements K = K'M?. The measurement vec-
tor for sensor (m, 7) is

€ =g\, gl 17 (33)
H,,, € RN denotes the corresponding sensing matrix for
sensor (m, n) given by
H, = [vec(T.,), ..., vec(TX )", (34)
Concatenating g,,, for all the sensors into a single vector
g € RX gives
g=[gl,...eh e ...el e oel)t,  (35)

with the corresponding full sensing matrix H € RV

H=[H,...H!, HI, . HI, . H, . . H, . (36)

The full sensing process g = Hf of an example 2 x 2 sensor
array with two snapshots is written in an expanded form as

given by

[gii ] [vec(TH e WipT]

£h vec(T? e Wi "

giz VeC(T; ° WiZ)i

& | — vec(T* o Wi,) f 37
e | = et owi7 | 57
& vec(T? o W3,)”

géz vec(T' o W%z)T

_giz_ _VCC(TZ ° W%z)T_

Figure 16 illustrates the construction of the H matrix in
Eq. (37) using a 4 x 4 coded aperture. A visualization of the
continuous code function #(p, ¢) with the corresponding T
matrix is shown in the upper left. A real coded aperture would
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Fig. 16. Example code and FOV functions for a polar sensor array
with visualizations of their corresponding matrices.

have a random pattern of block—unblock sections, but here a
gradated pattern is used for illustration purposes. A 2 x 2 polar
sensor array is superimposed on the code with a dashed line.
Next, wy1(p, ¢) and Wy, are shown, which mask everything
outside the FOV of sensor (1, 1). T; = T o Wy, is displayed
next, along with its the continuous equivalent #(p, @)w, (p, ).
Finally, the code and T,; matrix rotated for the second snap-
shot are shown. The complete sensing matrix H is shown
beneath for K’ = 2 snapshots, with the submatrices H,,, in-
dicated on the left, and the rows corresponding to snapshot ¢
shown on the right. Note that the first row of H is vec(T},),
and the next row is vec(T%,), with the upward rotation of T,,,
creating a leftward rotation of the corresponding elements in
the rows of H,,,

For a square sensor array, 72 and 7 now index the rows and
columns of the sensors, respectively. All of the previous calcu-
lations remain the same, except that w,,,(p, @) is now expressed
in Cartesian coordinates as

1, if (X,)/) € Q(wmn)

W (%, ) = {0) otherwise ’ (38)

where

Q(w,,) = {(wﬂ

((n-1) —M/Z)(%ﬁ) <x< (n—M/Z)(

2AM\/1'2>’

(M)2 - (m-1)) <¥) <y<(M/2-m) (mMﬁ) }

(39)

Refer to the dimension annotations in Fig. 15(b) for an exam-
ple of these boundaries. All of the other equations remain the
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W13 W13

Fig. 17. Visualization of FOV matrices for a 16 x 8 polar code with
a 4 x 4 square sensor array. The resulting sensing matrix for two snap-
shots, and an all unblocked code is shown on the bottom.

same, with Eq. (28) used again to determine the sensor mask
matrix W,,,,, and the effective code matrix for sensor (s, ) at
snapshot # once again given by T%,, = T? o W’ .

Figure 17 illustrates an example code with 16 spokes and
eight rings with a 4 x 4 square sensor array. In the upper left,
W3 is visualized in the polar geometry with the sensor boun-
daries overlaid with a dashed line. Recall that matrix element
w3 is the proportion of code section z,, in the FOV of sensor
(1, 3), producing intermediate values for those sections only
partially within the sensor. Matrix W3 is also shown visualized
in a rectangular matrix format, with (s, 7) indexing rows and
columns. On the right, W% is shown for the second snapshot,
with the corresponding polar and rectangular visualizations.
On the bottom, the sensing matrix is displayed for K" = 2
snapshots. For illustration purposes, an all unblock code was
used, making H dependent on the W,,, matrices alone. The
rows of H are vectorizations of the W,,, matrices, with the same
structure as illustrated for H in Fig, 16.

Figure 18 compares the recovery performance of an 8 x 8
polar sensor array to the square sensor configuration for an
example 256 x 64 image. Unlike previous simulation results,
the sparsity of the image was not limited to 5%. In addition,
the gradient projection for the sparse reconstruction (GPSR)

30 T T T T T T T
~ 251
m
z
T 20 Polar Sensors ]
=z == === Square Sensors
[
o R
157 1
10

01 015 02 025 03 035 04 045 05
Compressive Sensing Ratio

Fig. 18. Comparison between the recovery performance of polar
and square sensor arrays.
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algorithm was employed for recovery which performed better
for larger images [25]. Now that multiple sensors are being used
and full code sections are completely rotated, image recovery is
possible, with an average peak signal-to-noise ratio (PSNR) of
28 dB obtained for the polar sensors, and 27 dB for the square
sensors using a CS ratio of 0.5. Figure 19 shows simulation
results using a 8 x 8 square sensor array with a 512 x 128 image
and a CS ratio of 0.5. The recovered image has an improved
PSNR of 31.5 dB due to the increased sparsity of the larger
image. Use of this coded aperture design in other scenarios that
exhibit greater sparsity, such as spectral imaging, will similarly
demonstrate enhanced performance [26].

Compressive sensing theory provides guarantees of not only
exact data recovery in ideal conditions, but also ensures that
recovery is stable in noisy environments for well-formed sens-
ing matrices, i.e., measurements corrupted with bounded noise
produce recovery results with bounded error [16]. Figure 20
shows the noise performance of 8 x 8 polar and square sensor
arrangements for a 256 x 64 image. The image pixel levels were
normalized to one unit, with Gaussian noise applied to the sen-
sor measurements. Since the image is not completely sparse, the
non-zero coefficient values dominate the noise at low noise lev-
els, resulting in a relatively flat response. At higher noise levels
the measurement noise dominates, leading to a roughly 1 dB
drop in the recovered PSNR for every 1 dB increase in mea-
surement noise. The stable response to measurement noise
demonstrates the robustness of the sensing matrix and conse-
quently the coded aperture geometry. Further noise modeling
of vibration effects, rotation center misalignment, and sensor

(b)

Fig. 19. (a) Original and (b) recovered images using the new coded

aperture geometry with a rectangular sensor array.

30 T T T T ! :
Polar Sensors
—~ Square Sensors
% 25 1
o
&
2 20
15 L 1 1 1 1
-5 0 5 10 15 20 25
(dB)

noise

Fig. 20. Recovered image PSNR versus sensor measurement noise
power for 8 x 8 polar and square sensor arrangements for an example

256 x 64 pixel image.
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specific noise sources will be important for the practical imple-
mentation of the imager, but is outside the scope of this paper.
Some noise sources can be mitigated by incorporating them into
the model, such as blurring effects due to finite sensor integration
time [20]. Additional research is required to determine if similar
techniques can be applied to other noise sources, or if external
image stabilization hardware will be required.

4. CODE PATTERN OPTIMIZATION

A. Code Pattern Optimization via Coherence
Minimization

In the preceding cases, block and unblock code sections appeared
with equal probability. The code pattern can be optimized, how-
ever, to create a better-conditioned sensing matrix. Several code
optimization approaches have been proposed, including develop-
ing the restricted isometry property (RIP) in coded aperture
snapshot spectral imaging (CASSI) [27], applying blue noise pat-
terns [28-31] as the distribution of pixelated polarizer [32], and
implementing the uniform sensing criteria for computing tomo-
synthesis aperture code design [33].

Another line of sensing matrix optimization lies in the mu-
tual coherence of the system matrix. As previously noted, a
sensing matrix with lower coherence is generally better condi-
tioned, leading to better reconstruction quality. Efforts have
been made to optimize an unconstrained sensing matrix via co-
herence minimization [34-36]. However, these optimization
methods cannot be applied here where the sensing matrix is
constrained by the binary block—unblock code, the code rota-
tion, and the sensor arrangement. Direct binary search (DBS)
algorithms [24,37], however, were designed to solve binary ma-
trix related optimization problems and can be used here as well.

A DBS algorithm involves flipping and swapping operations
to each binary section with its eight neighbor sections. These
operations are performed to each of the coded aperture sections
sequentially while the changes of the cost function are recorded.
Certain operations are kept when the cost function value has
the largest reduction. The algorithm runs iteratively until the
reduction of the cost function value is no longer observed.
A local minimum of the cost function is thus obtained. The
applications of the DBS in previous coded aperture optimiza-
tion approaches can be found in Refs. [32,33].

The optimization algorithm minimizes the coherence y de-
fined as the maximum of Eq. (4). However, the calculation of u
requires heavy computing. Furthermore, the DBS algorithm
evaluates the changes of the cost function value with every valid
swapping or toggling operation, requiring multiple u calcula-
tions for each aperture code section. Thus, it is important
to simplify the calculation of coherence based on the limited
changes in the aperture code section operations. Note that
the coherence calculation is identical to

(A TA)z'j

— max| 2 i | 40
H=ng J@an, o
G=A"A, (41)

where vector 4 contains the diagonal elements in ATA. To
avoid calculating ATA directly, it is possible to construct
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the desired matrix with its element values before changes, and
the changes of sensing matrix A due to the section swapping
and flipping operations. Denote the newly changed A as A’.
Then the change in the sensing matrix is Ay = A" -A.
Thus, the update of ATA is

(ATA) = (AT + AT)(A + Ap)
= ATA + (ATA), + (ATA),  (42)

where (ATA), = AL(0.5A, + A). As only a portion of rows
in A, contain non-zero elements, the calculation of (ATA)’ is
simplified by constructing (AT A), instead.

Using the same approach, the calculation of A can be con-
verted into the calculation of A, given by

AA == HA\I‘, (43)

where Hy represents the changes in H. This matrix multipli-
cation is simplified by only multiplying the non-zero columns
in Hy by the corresponding rows in W. H, is easily obtained
from the changes in aperture code T.

To further accelerate the algorithm, a more strict checking
process is performed for validating the swapping and toggling
operation to each aperture code section. In this process, the
location of y is recorded as (4, 7). For any swapping or toggling
operation that changes the coded aperture pattern, the corre-
sponding coherence value y;; in position (4 ) is first calculated.
For any p;; > p, the updated coherence p’ > p;; > p, making
the corresponding section operation invalid. Thus, the algo-
rithm will continue to calculate the updated cost function value
only if p;; < p.

B. Simulation
To evaluate the optimization algorithm, we first test the algo-
rithm with a 64% resolution random aperture code. 64 snap-
shots are simulated with a 4 x 4 sensor array, giving a CS
ratio of 0.25. The initial coherence of the system is 0.92.
The algorithm ends in 14 iterations, reaching a local minimal
coherence of 0.36. Figure 21 shows the convergence of the co-
herence during each iteration.

The algorithm was then tested with higher resolution.
Figure 22(a) is a random block—unblock coded aperture with
1282 polar sections; 128 snapshot measurements were simulated

Coherence

0.3
0

Iteration

Fig. 21. Coherence convergence is recorded in 14 iterations.
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Fig.22. (a) Comparison of initial random aperture code and (b) the
optimized code pattern.

Fig. 23. (a) Original image. (b) Reconstruction using random aper-
ture code with 27 dB PSNR. (c) Reconstructed image using the opti-
mized code with 29 dB PSNR. (d) The absolute errors of random
reconstruction. (¢) The absolute errors of the optimal recovery.

with an 8 x 8 sensor array to construct a sensing matrix with
u = 0.83. Using this random pattern as the initial code, the re-
sulting optimized aperture code is displayed in Fig. 22(b) with
the coherence reduced to 0.44.

To evaluate the performance of the optimized aperture code,
a reconstruction comparison is shown in Fig. 23. Figure 23(b)
shows the reconstruction using the initial random aperture
code with a PSNR of 27 dB. The reconstruction using the op-
timized code achieves a 29 dB PSNR, as shown in Fig. 23(c).
For a visual comparison, the absolute errors are calculated for
both cases as shown in Figs. 23(d) and 23(e). Smaller errors are
observed in the recovered image using the optimized aper-
ture code.

5. CONCLUSION

The design of a coded aperture for compressive imaging
through rotation has been presented. Initially, a code with rel-
atively uniform pixel shapes was proposed in order to maximize
image quality. The design then evolved through two major re-
visions aimed at increasing CS recovery performance. First, the
code was restricted to the same number of spokes for all rings.



B152 Vol. 56, No. 3 / January 20 2017 / Applied Optics

This deformed the pixel shapes, somewhat decreasing image
quality. Next, the single sensor was replaced by a small sensor
array, marginally increasing the cost and complexity of the de-
sign. In addition, the initial unrealistic polar sensor array was
replaced with a more practical, although inferior performing,
square array. Image quality, complexity, recovery performance,
and practicality are all balanced in the final design to form a
workable solution. Although mutual coherence was not helpful
as a performance metric during the code geometry design, it
was successfully used to optimize the block—unblock code pat-
tern. A laboratory experiment is being performed to verify these
simulation results, and work has been performed applying this
rotating coded aperture to spectral imaging [26]. Further re-
search is required to model the full system motion of a spinning
projectile, but the results presented here indicate a promising
future for the implementation of a rotating compressive imager.

APPENDIX A

The mapping of pixel f,, to element f i of matrix F in
the initial geometry in Fig. 2 can be divided into three steps.
First, the center point of £, is calculated as
_2n(s-1)+n
(psr - Sr 2

pW==A<r—l). (A2)

(A1)

2

Next, (py. ¢,,) is transformed into the corresponding point
(% 7,,) in Cartesian coordinates in the square code illustrated

in Fig. 2(b) by

po(4/n), 0<¢<n/4
2 if 7/4<¢ <3n/4

y= -plp-n)4/n), 3n/4< ¢ <5n/4 , (A3)
P Suf4 <@ <Tn/4
plp-2n(4/r), 7Tn/4<¢<2n

0<¢p<un/4

P,
-plp-n/2)(4/n), 7n/4< ¢ <3m/4

x = 0 /4 <@ <5n/4. (A4)
plo -3n/2)(4/n), Sn/4<¢ <Tn/4
2 Tr]4 <@ <2nm
Finally, (x,,.y,,) is changed to indices (7 j) using
i=x,/A+R+1/2, (A5)
j=R-y,/A+1/2 (A6)

APPENDIX B

Here we list the nomenclature used in this paper. When a sym-
bol has more than one meaning, its use is obvious from the
context. This includes differentiating a superscript ¢ denoting
the snapshot number, and a superscript denoting an exponent.
Some definitions suggest limitations that may not apply. For
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example, A is defined as the height of the first ring, but for
codes with rings of equal heights, A is the height of every ring.

NOMENCLATURE

A System matrix A = H¥Y

a Column of A

a Diagonal elements in A7A

d Code division factor

fp o) Continuous representation of image

Discrete 1D image pixel in spoke s

Discrete 2D image pixel in ring 7 and spoke s
Image pixel f, mapped to matrix element
Image matrix with elements f;

1D image with elements f or vec(F)

A measurement in a single sensor system

A measurement of sensor (72, 7)

Complete measurement vector

Measurement vector associated with sensor (2, 7)
Complete sensing matrix

Sensing matrix associated with sensor (2, 7)
Total number of measurements

Number of sensor array snapshots

Superscript denotes snapshot number

One dimension of an M x M sensor array
Total number of pixels in image

Total number of rings

Number of spokes in code

Number of pixel spokes in ring »

Continuous representation of coded aperture
Integral of 1D code #(p, ) over pixel f,
Integral of 2D code #(p, @) over pixel £,

v Element (s, 7) of matrix T,,,

1y t,, mapped to matrix element

T Code matrix with elements

T,.. Code matrix associated with sensor (2, 7)
vec(Z) Vectorization of matrix Z

Continuous function of polar sensor (7, 7) FOV
Continuous function of square sensor (7, 7) FOV
Wermn Proportion of z,,. in FOV of sensor (m, 1)
W, Matrix indexed by (s, ) with elements w,,,,,
z, L General purpose variable, matrix

A Height of first ring

K Compressive sensing ratio, K /N

b 4 Sparse basis

Q(z) Region of z
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