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Multi-shot coded aperture snapshot spectral imaging (CASSI) systems capture the spectral information of a scene
using a small set of coded focal plane array (FPA) compressive measurements. Compressed sensing (CS)
reconstruction algorithms are then used to reconstruct the underlying spectral 3D data cube from an underde-
termined system of linear equations. Multiple snapshots result in a less ill-posed inverse problem and improved
reconstructions. The only varying components in CASSI are the coded apertures, whose structure is crucial in-
asmuch as they determine the minimum number of FPA measurements needed for correct image reconstruction
and the corresponding attainable quality. Traditionally, the spatial structures of the coded aperture entries are
selected at random, leading to suboptimal reconstruction solutions. This work presents an optimal structure
design of a set of coded apertures by optimizing the concentration of measure of the multi-shot CASSI sensing
matrix and its incoherence with respect to the sparse representation basis. First, the CASSI matrix system rep-
resentation in terms of the ensemble of random projections is established. Then, the restricted isometry property
(RIP) of the CASSI projections is determined as a function of the coded aperture entries. The optimal coded
aperture structures are designed under the criterion of satisfying the RIP with high probability, coined spatio-
temporal blue noise (BN) coded apertures. Furthermore, an algorithm that implements the BN ensembles is
presented. Extensive simulations and a testbed implementation are developed to illustrate the improvements
of the BN coded apertures over the traditionally used coded aperture structures, in terms of spectral image
reconstruction PSNR and SSIM. © 2016 Optical Society of America

OCIS codes: (170.1630) Coded aperture imaging; (110.1758) Computational imaging; (110.4234) Multispectral and hyperspectral

imaging.
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1. INTRODUCTION

Spectral imaging captures the spatial information of a scene
across a range of wavelengths. Such three-dimensional (3D)
information is arranged as a data cube and has been gaining
relevance in several applications, including remote sensing in
agriculture [1,2], defense [3], and medicine [4]. Traditionally,
spectral image acquisition methods scan adjacent zones of the
scene to construct the data cube. These methods are particu-
larly expensive due to the overwhelming amount of required
data. Recently, compressed sensing principles have been used
to acquire the spatial and spectral information of a scene with
a reduced amount of coded random projections, which is
known as compressive spectral imaging [5]. This acquisition
approach alleviates the cost of sensing, storing, and transmitting
hyperspectral images. The coded-aperture snapshot spectral
imager (CASSI) is a compressive spectral imaging (CSI)

architecture that effectively captures the 3D information using
a single two-dimensional (2D) projection measurement.
Specifically, the image source density f 0�x; y; λ� is encoded
by means of a coded aperture T �x; y� as depicted in Fig. 1,
where �x; y� are the spatial coordinates and λ is the wavelength
[6–8]. The resulting coded field f 1�x; y; λ� is subsequently
sheared by a dispersive element before it impinges on the
FPA detector. The compressive measurements across the
FPA are realized by the integration of the field f 2�x; y; λ� over
the spectral range sensitivity of the detector. Assuming that the
detector and the coded aperture have a pixel pitch Δd and a
bandpass filter of the instrument limits the spectral components
between λ1 and λ2, the number of resolvable bands L is limited
by L � β λ2−λ1

Δd
, where βλ is the dispersion induced by the prism

when a linear dispersion function is considered. Similarly, the
spectral resolution is limited by Δd

β . Thus, the horizontal and
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vertical spatial resolutions are limited by Δd, and the number of
spatially resolvable pixels of the underlying scene is N × N .

It has been shown that for spectrally rich scenes or very de-
tailed spatial scenes, a single-shot CASSI measurement may not
provide a sufficient number of compressive measurements [9].
Increasing the number of measurement snapshots, each using a
different coded aperture that remains fixed during the integra-
tion time of the detector, will rapidly increase the quality of the
image reconstruction. Given that each CASSI shot simultane-
ously addsN �N � L − 1� compressive measurements, the total
number of available measurements when K shots are taken is
m � KN �N � L − 1�. The time-varying coded apertures can
be realized by moving a large photomask using a piezo-electric
system [9]. A more versatile system was developed in [10], in
which a digital micromirror device (DMD) was used to vary the
random patterns on each snapshot.

Given a set of FPA compressive measurements, the
compressive sensing (CS) theory is then exploited to recover
the underlying 3D spectral data cube by finding the sparsest
approximation with the minimum Euclidean distance to the
2D random projection measurements. More specifically, let
F be the N × N × L spectral data cube, or its vectorized rep-
resentation f. Then, the ith FPA measurement is obtained
as yi � Hif, where Hi is an N �N � L − 1� × N 2L projection
matrix representing the effects of the coded aperture and
the dispersive element. The set of K FPA measurements,
each with a different coded aperture, is then represented
as y � ��y0�T ;…; �yK −1�T �T . The underlying data cube is
estimated as f̃ � Ψ�argminθ‖y −HΨθ‖2 � τ‖θ‖1�, where
H � ��H0�T ;…; �HK −1�T �T , θ is an S-sparse representation
of f on the basis Ψ, and τ is a regularization constant.

A critical component in the inverse problem that estimates f
from y is the structure of the sensing matrix A≜HΨ, as it
ultimately determines the attainable quality of reconstruction.
While the optical architecture in CASSI partially imposes a
well-defined sparse structure onto the sensing matrix A, the
coded apertures used in each measurement shot determine
the structure of A. The objective in CASSI is thus to optimally
design the set of coded apertures so as to forge a structure on A
that minimizes the number of FPA snapshots while attaining
the highest-quality reconstruction. To this end, this paper ex-
plores the interplay between the restricted isometry property
(RIP) and the set of coded apertures used in CASSI.

The RIP gives a characterization of sensing matrices in CS.
It establishes the necessary conditions for A such that the l2

norm of the underlying 3D spectral image is approximately

preserved under the transformation Aθ. More precisely, the re-
stricted isometry constant δs of the matrix A is the smallest
constant such that �1 − δs�‖θ‖2 ≤ ‖Aθ‖2 ≤ ‖θ‖2�1� δs�
[11]. The RIP requires that all m × jT j column submatrices
AjT j of A are well conditioned for all jT j ≤ S. Indeed, the RIP
imposes that all the eigenvalues of the matrices AT

jT jAjT j are in
the interval �1 − δs ; 1� δs �. The probability of satisfying this
condition is calculated by estimating the statistical distribution
of the maximum eigenvalue λmax of the matrices AT

jT jAjT j − I,
where I is an identity matrix. The distribution of the maximum
eigenvalue λmax is estimated using the concentration of measure
for random matrices developed in [12]. The RIP condition
also implies a stable recovery of the signal θ from the projec-
tions Aθ using a l1 optimization algorithm [11].

Frequently used CS matrices are unitary dense Gaussian
random matrices whose entries are drawn from zero-mean
Gaussian random variables with 1∕m variance. Bernoulli ran-
dom matrices with entries taking on values f−1∕ ffiffiffiffi

m
p

; 1∕
ffiffiffiffi
m

p g
with equal probability are also common. These random matri-
ces have well-established RIP properties. The RIP has been
also studied for various structured random matrix topologies,
including Toeplitz matrices with random Gaussian entries
[13,14], random circulant matrices [11], and partial random
Toeplitz matrices [15], which are often used in applications
such as sparse channel estimation and multi-user detection.
The RIP property for block diagonal random matrices (RBD)
used in sensor networks and multiple-view imaging was studied
in [16]. Also, a more general framework for structurally random
matrices (SRM) has been established in [17]. SRM matrices are
defined as the productΦ �

ffiffiffiffiffiffiffiffiffi
n∕m

p
DFR, whereR is a random

permutation matrix, F is a fast computable matrix, n � N 2L in
the CSI problem, and D is a subsampling matrix. SRM can be
designed with high flexibility using different combinations of
fast computable matrices and block-based processing. The RIPs
for other types of matrix structures were studied in [15,18].

The RIP can be used to determine bounds on the required
number of measurements needed for successful CS
reconstruction. These bounds depend on the structure of the
underlying sensing matrix. The required number of measure-
ments for Gaussian or Bernoulli ensembles is, for instance, m ≥
CS log�n∕S� for a positive constant C , whereas the required
number for Toeplitz matrices is m ≥ CS2 log �n� and, for
random convolution, m ≥ CS log �n�. In the case of RBD
and SRM matrices, m ≥ CS log �n∕S� is a bound that can
be reached under certain conditions of the underlying signal
f and by the proper selection of the matrices R, F, and D.

Despite the importance of the RIP in CS, the RIP for CASSI
sensing matrices has not been fully exploited. Given that the
sensing matrices in CASSI are highly sparse and structured,
the RIP characterization of dense sensing matrices is not appli-
cable. The first approach to characterize the RIP in CASSI
was given in [7], where it was beforehand assumed that if
the RIP for the matrix A is satisfied for some constant δs, then
conditions on the coded apertures were determined so that the
RIP is better satisfied. These results, however, do not involve
the RIP in the optimal design of the coded apertures. In fact,
commonly used coded apertures in CASSI include Hadamard
matrices HN , whose entries are �HN �ij ∈ f−1; 1gN×N ,
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Fig. 1. Optical elements present in CASSI. The input scene
f 0�x; y; λ� is first spatially encoded by the coded aperture T �x; y�,
and then, the encoded source is dispersed by a prism. Finally, the
coded and dispersed scene is captured by the focal plane array.
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Hadamard S matrices SN , where SN � 1∕2�1 −HN � [19],
cyclic S-matrices consisting of cyclic permutations of a single
master codeword [20], and Bernoulli random matrices
[10,21]. The use of these coded apertures in CASSI has been
principally motivated by the fact that they are well conditioned
when used in least squares estimations [19,22]. However, these
coded apertures do not fully exploit the rich theory of CS. In
particular, they do not exploit the RIP condition or the concen-
tration of measure of the respective random submatrices of A
to define optimal coded-aperture sets. A more recent coded-
aperture design, based on the concentration of measure, can be
found in [23], where the correlation betweenmeasurement snap-
shots is taken into account to better satisfy the RIP. Despite the
improved reconstructions that can be obtained with this design,
its main weakness is that the spatial correlation of the one-valued
entries is not considered. The design in [23] was called “Boolean
coded apertures.”

In this paper, the structure of the multi-shot CASSI sensing
matrix is formulated, the RIP for CASSI sensing matrices is
derived, and the corresponding RIP constants are expressed
as a function of the structure of the random coded-aperture pat-
terns. Instead of simply increasing the number of FPA projec-
tions to provide a better-quality image reconstruction, it will be
shown that an optimal design of coded apertures can be used to
better satisfy the RIP requirements in multi-shot CASSI. The
resulting optimal set of coded apertures are called “blue noise
(BN) coded apertures,” since their distribution exhibits spatio-
temporal characteristics of blue noise patterns that suppress low-
frequency components of noise [24–26]. These coded apertures
allow uniform sensing across spatial and spectral dimensions of
the scene within different measurement snapshots. BN coded
apertures are then compared with the traditional random coded
apertures used in CASSI. Simulations are used to illustrate the
benefits of this design. Finally, testbed reconstructions using
BN coded apertures in the CASSI system are presented. The
following notations should be used: scalars are denoted by italic
lowercase roman, vectors by boldface lowercase roman, matrices
by boldface uppercase roman, and multidimensional data, such
as multispectral images, by uppercase calligraphic.

2. MULTI-SHOT CASSI MATRIX
REPRESENTATION

Let T i
j;l be the �j;l�th spatial index of a discretized represen-

tation of the coded aperture used to sense the ith FPA
measurement, and let F j;l;k be the spatio-spectral source with
k determining the kth spectral plane. The discrete output at the
detector is given by [6,9,21]

Y i
j;l �

XL−1
k�0

F j;�l−k�;�k�T i
j;�l−k� � ωi

j;l i � 0;…; K − 1; (1)

where i indexes the FPA snapshot, Y i
j;l is the intensity mea-

sured at the pixel �j;l� of the FPA detector, and ωi
j;l is the

noise of the system. The coded apertures T i
j;l are time-varying

and indexed by i. The output of the system Y i in Eq. (1) is an
N × V signal, with V � N � L − 1, yielding the compression
ratio NV ∕N 2L ≈ 1∕L. The FPA measurement can be written
in vector notation as

yi � Hif � ωi ; (2)

where yi ∈ RNV is a NV -long vector representation of Yi,
Hi ∈ f0; 1gNV ×n represents the effects of the coded aperture
and the dispersive element, and f � vec��f0;…; fL−1�� is the
vector representation of the data cube F, where fk is the vector
form of the kth spectral band. More specifically, the entries of fk
can be expressed as �f k�l � F �l−rN �;r;k for l � 0;…; N 2 − 1,
k � 0;…; L − 1, where r � ⌊ l

N ⌋. Using this definition of r,
the vectorization of the coded aperture T i

j;l can be defined
as �ti�l � T i

�l−rN �;r for l � 0;…; N 2 − 1, i � 0;…; K − 1.
Similarly, the vector representation of the output Yi is written
as �yi�l � Y i

�l−rN �;r for l � 0;…; NV − 1, i � 0;…; K − 1.
Based on the above matrix representation, the output yi in
Eq. (2) can be expressed as

yi�

Hi

diag�ti� 0N �1�×N 2 … 0N �L−1�×N 2

diag�ti� …
. .
.

0N �L−1�×N 2 0N �L−2�×N 2 … diag�ti�

3
777775

2
666664

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{2
66664

f0

f1

..

.

fL−1

3
77775; (3)

where diag�ti� is an N 2 × N 2 diagonal matrix whose entries are
the elements of the vectorized coded aperture ti, and 0N �1�×N 2

and 0N �L−1�×N 2 are N �1� × N 2 and N �L − 1� × N 2 zero-valued
matrices, respectively. The matrices for multiple snapshots
Hi are assembled in the matrix H given by
H � ��H0�T ;…; �HK −1�T �T . Figure 2 illustrates the structure
of the sensing matrix H for N � 8, L � 4, and K � 2, in
which the entries �ti�l are realizations of a Bernoulli random
variable with parameter p � 0.5. In practice, the dimensions of
the matricesH andA are much larger [9,21]. It can be observed
in Fig. 2 that the jth row of H contains at most L non-zero
elements. Further, the entries of the jth row of the sensing
matrix H can be written as

�hj�l �
�
tij−rN ; if l � �jmodN 0� and j − rN ≥ 0
0; otherwise

; (4)

1st Band 2nd Band 3rd Band 4th Band 

i = 0

i =1

n

Fig. 2. Structure of the matrix H is illustrated for K � 2; N � 8,
and L � 4. For illustration, the entries of the coded apertures are
tij ∼ Bernoulli�0.5�. The dark elements represent zero values and
the white elements correspond to the one-valued entries of the coded
aperture.
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for l � 0;…; N 2L − 1, where r � ⌊ l
N 2 ⌋, N 0 � N 2 − N and

i � ⌊j∕NV ⌋. The ensemble of CASSI outputs y �
��y0�T ;…; �yK −1�T �T can be rewritten as

y � Aθ � HΨθ� ω; (5)

where A � HΨ is the CASSI sensing matrix, θ is a sparse
representation of f on the basis Ψ, and ω represents the noise
of the system. Notice that A ∈ Rm×n, where m � KNV ,
n � N 2L, and m ≤ n. For instance, the basis matrix Ψ can
be a Kronecker representation basis given by Ψ � Ψ2D ⊗
ΨC, whereΨC is the one-dimensional cosine matrix transform,
Ψ2D is the 2D symlet wavelet transform, which treats each
spectral band independently, and ⊗ is the Kronecker product.
In this case, the entries of θ � ΨT f account for the correlation
among all the elements in the data cube f. In summary, given
that Ψ is fixed, the only variable elements in A correspond
to the coded aperture entries T i

j;l, which, in turn, determine
H. Thus, the goal of this work is to design T i

j;l such that the
sensing matrix A is better conditioned in order to improve the
attainable reconstruction quality.

3. RESTRICTED ISOMETRY PROPERTY IN
MULTI-SHOT CASSI

The restricted isometry property provides guidelines to deter-
mine the minimum number of measurements needed for signal
reconstruction in CS. In CASSI, the RIP is critical to designing
optimal coded aperture ensembles in order to maximize the
quality of the reconstructions. In particular, the RIP of the
CASSI sensing matrix A of order S is defined as the smallest
constant δS such that �1 − δS�‖θ‖22 ≤ ‖Aθ‖22 ≤ �1� δS�‖θ‖22
holds for all S-sparse vectors θ. The RIP constant δS is
given by

δS � max
T ⊂�n�;jT j≤S

‖AT
jT jAjT j − I‖22; (6)

where the operator ‖ · ‖22 is the squared norm from l2 into l2,
AjT j is a m × jT j matrix whose columns are jT j columns of
the CASSI matrix A indexed by the set Ω, and I is an identity
matrix [11,27]. In other words, the RIP determines whether
all column submatrices AjT j of A are well conditioned. The
RIP constant in Eq. (6) can be rewritten in terms of the
eigenvalues of AjT ‖T j � AT

jT jAjT j as

δS � max
jT j⊂�n�;jT j≤S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λmax�AjT jjT j − I�

q
; (7)

where λmax�·� denotes the largest eigenvalue [11]. Given that
the sensing matrix A is determined by the matrix H and
the basis representation matrix Ψ, the entries of AjT j can be
expressed as the product of the entries of Ψ and H. Let the
columns of Ψ be written as �ψ0;…;ψn−1�. Using the structure
of H in Eq. (4), the entries of AjT j can be expressed as the
product of the rows of H and the columns of Ψ indexed by
the set Ω:

�AjT j�j;k � hjψΩk
�

XL−1
r�0

T i
⌊j−rNN ⌋;j−rN−⌊j−rNN ⌋N

ψ j�rN 0 ;Ωk
; (8)

for j � 0;…; m − 1, k � 0;…; jT j − 1, where i � ⌊j∕NV ⌋,
N 0 � N 2 − N , and Ωk ∈ f0;…; n − 1g.

Given that the entries of AjT ‖T j are given by the product of
two columns of AjT j, Eq. (8) can be used to express the
elements of AjT jjT j as

�AjT jjT j�j;k �
XK −1

i�0

XN−1

l1�0

XV −1

l2�0

XL−1
r�0

XL−1
u�0

T i
l1 ;l2−r

T i
l1 ;l2−u

× ψl2N�l1�rN 0 ;Ωj
ψl2N�l1�uN 0 ;Ωk

; (9)

for j; k � 0;…; jT j − 1.
A necessary condition for satisfying the RIP is that the

expected value of the diagonal terms of AjT jjT j should be equal
to one, so E��AjT jjT j�s;s� � 1 for s � 0; � � � ; jT j − 1. This con-
dition holds when the coded-aperture entries are constrained to
satisfy ΣK −1

i�0 �T i
l1;l2−r

�2 � C, with C a selectable constant.
Hence, AjT jjT j can be normalized by defining the matrix
BjT jjT j � AjT jjT j∕C . Using Eq. (9), the normalized matrix
can be written as

�BjT jjT j�j;k �
XN−1

l1�0

XV −1

l2�0

XL−1
r�0

XL−1
u�0

γl1l2ruϕl1l2ru∕C; (10)

where γl1l2ru � ΣK −1
i�0T

i
l1 ;l2−r

T i
l1 ;l2−u

and ϕl1l2ru�
ψl2N�l1�rN 0;Ωj

ψl2N�l1�uN 0 ;Ωk
.

Equation (10) can be analyzed from two perspectives: the
first one assumes that ϕl1l2ru is a constant in order to study
the effect of the term γl1l2ru; the second perspective studies
the effect of the coded apertures on the coherence between
H and Ψ. Given that the elements of Ψ are fixed and
bounded, the sparse representation basis term ϕl1l2ru is also
bounded. More specifically, jϕl1l2ruj < C1, for all l1;l2; r,
and u. Thus, Eq. (10) can be rewritten as �BjT ‖T j�j;k ≤ C1∕
CΣN−1

l1�0ΣV −1
l2�0ΣL−1

r�0ΣL−1
u�0γl1l2ru. In consequence, the elements

�BjT ‖T j�j;k are the sum of bounded random variables and
they can be modeled as a sub-Gaussian random variable
�BjT ‖T j�j;k ∼ Sub�α2�, with parameter given by

α � max
j;k

C1

C

XN−1

l1�0

XV −1

l2�0

XL−1
r�0

XL−1
u�0

γl1l2ru: (11)

Previous works on the RIP for sub-Gaussian random vari-
ables have established that P�‖BjT ‖T j − I‖ ≤ δS� ≥ 1 − ε,
where ε � 2�1� 2∕ρ�2e−δS�2−�1�ρ�2�2KV c2∕α, with ρ � 2∕
�e3 − 1� and c2 a constant independent of K and V [28,29].
Therefore, the error probability ε is minimized either when the
number of measurement shots K is increased, or when the
coded-aperture ensemble is designed such that the sub-
Gaussian parameter α is minimized. It can be noted in
Eq. (11) that the minimization of α, based on the design of
the coded apertures, is directly related to the minimization
of the variable γl1l2ru � ΣK −1

i�0T
i
l1 ;l2−r

T i
l1 ;l2−u

, which depends
on the horizontal separation of the one-valued entries of Ti and
their correlation across shots.

Equivalent to the RIP, the notion of coherence provides
an alternative approach for evaluating the properties of A that
guarantee the correct recovery of the underlying signal. In
particular, CS requires the acquired measurements to be uncor-
related, and the coherence is used to measure the correlation
between H and Ψ, such that the CS conditions hold.
Recently, the coherence has been defined as the largest absolute
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inner product between any two columns of the sensing matrix
[30]. More specifically, the coherence of the CASSI sensing
matrix can be calculated as

μ≜max
i≠j

jTPSF�i; j�j∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPSF�i; i�TPSF�j; j�

p
; (12)

where TPSF�i; j� � �ΨTHTHΨ�i;j is a transform point-spread
function, as defined in [31,32]. In other words, the coherence
is calculated as the maximum off-diagonal entry of the TPSF
matrix. Given that low correlation values are desired, one can
define the incoherence as μ̃ � 1 − μ for simplicity in evaluating
low correlation values between H and Ψ.

4. CODED-APERTURE DESIGN BASED ON RIP

The results from the previous section provide useful guidelines
for the design of coded-aperture ensembles that help satisfy
the RIP and incoherence conditions so better sensing matrices
can be designed in order to improve image reconstructions. In
particular, the following design criteria are taken into account
to generate optimized coded-aperture ensembles:

(a)Horizontal separation: The minimization of the sub-
Gaussian parameter α in Eq. (11) is determined by the term
γl1l2ru. More specifically, given that r; u ∈ f0;…; L − 1g, the
products T i

l1 ;l2−r
T i

l1 ;l2−u
should be minimized within a

horizontal neighborhood of size L of the coded aperture Ti.
It can be noted that this minimization is achieved when the
one-valued entries of Ti within the same row are maximally
separated. This condition, in essence, requires the codes to
satisfy spatial blue noise pixel distribution.

To illustrate the effect of this condition, different coded-
aperture ensembles are employed to determine H and, α from
Eq. (11) is evaluated for the corresponding matrices with a
fixedΨ. Given that Kronecker product bases have shown good
sparse representations of spectral images, a Kronecker product
basis Ψ � Ψ2D ⊗ ΨC is used, where Ψ2D is the N 2 × N 2

matrix of the 2D wavelet transform that is applied to each spec-
tral band, and ΨC is the L × L matrix of the cosine transform
that looks for the sparse representation across the spectral
coordinates. The value of α is evaluated for the traditionally
employed random coded apertures with 50% transmittance,
and it is compared with coded-aperture ensembles intentionally
designed to exhibit horizontal separation of one-valued entries
for K � 4. Figure 3 shows one realization of these coded
apertures and their corresponding average values of α. It can
be noted that random coded apertures result in larger values of α.

(b) Vertical separation: The presence of clusters of one-valued
elements in the vertical direction of the coded-aperture ensem-
ble is related to an increase of the incoherence related to
Eq. (12). This fact is illustrated in Fig. 4, where a random
coded aperture is compared with a coded aperture intentionally
designed to exhibit vertical separation of one-valued entries.
It can be noted that the random coded aperture results in a
lower incoherence value. Furthermore, given that clusters of
one-valued pixels prevent uniform sensing of the scene, one
of the design criteria of an optimal coded-aperture ensemble
is to reduce these vertical cluster occurrences.
(c) Temporal correlation: Given that each measurement
snapshot employs a different coded aperture, low correlation
across shots is desired. An approach to reduce this correlation
consists of constraining the set of codes to be complementary.
In practical terms, this is equivalent to having just one coded
aperture pixel set to one at each particular spatial position of
the ensemble. This guarantees that a sensed voxel of the scene
is captured just once. This property corresponds to temporal
blue noise characteristics.

Based on the previous design criteria, the coded-aperture
optimization problem is mathematically described below.
First, it is easy to see that small regions of the ensemble can
be designed such that the optimization criteria are satisfied;
hence, the whole ensemble will fulfill them as well. Thus,
let Ui

P be a Δ × Δ window of Ti centered at a specific point
P � �j;l�, defined as Ui

P�fT i
l1;l2

jl1∈�x−⌊Δ∕2⌋;
x�⌊Δ∕2⌋�;l2∈�y−⌊Δ∕2⌋;y�⌊Δ∕2⌋�g, for i � 0;…; K − 1.
Given that j � 0;…; N − 1, and l � 0;…; N − 1,
P � 0;…; N 2 − 1. In order to reduce the concentration of
one-valued terms within U i

P , let

d i
P1 � fT i

l1 ;l2
jl1 ∈ �x − ⌊Δ∕2⌋; x � ⌊Δ∕2⌋�;l2 � yg (13)

be the subset of horizontal neighboring pixels within U i
P

around P. Similarly define

d i
P2 � fT i

l1 ;l2
jl1 � x;l2 ∈ �y − ⌊Δ∕2⌋; y � ⌊Δ∕2⌋�g (14)

as the subset of vertical neighboring pixels in Ui
P around P.

Finally, let the subsets of diagonal neighbors of P in Ui
P be

written as

d i
P3 � fT i

l1 ;l2
jl1 ∈ �x − ⌊Δ∕2⌋; x � ⌊Δ∕2⌋�;l2

∈ �y − ⌊Δ∕2⌋; y � ⌊Δ∕2⌋�;l1 � l2 � Δ� 1g; (15)

Random 50% =13 104 Horizontal Sep. = 6 104

Fig. 3. Comparison for different coded aperture ensembles with
K � 4 in terms of parameter α. (Left) Random coded aperture entries
are realizations of a Bernoulli random variable with p � 50%. (Right)
Coded aperture intentionally designed to exhibit horizontal separation
of one-valued features.

Random 50% 3698.0~ =µ Vertical Sep. 4309.0~ =µ

Fig. 4. Incoherence comparison for different coded aperture ensem-
bles with K � 4. (Left) Random coded aperture entries are realizations
of a Bernoulli random variable with p � 50%. (Right) Coded aperture
intentionally designed to exhibit vertical separation of one-valued
features.
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d i
P4 � fT i

l1 ;l2
jl1;l2 ∈ �x − ⌊Δ∕2⌋; x � ⌊Δ∕2⌋�;l1 � l2g:

(16)

Figure 5 shows a graphic representation of the definitions
from Eqs. (13)–(16). These subset definitions are then used
to define a weighted local metric SiP given by

SiP �
X4
k�1

wk

���d i
Pk

���
1
; (17)

which measures the concentration of one-valued elements in
U i

P for i � 0;…; K − 1. More specifically, this metric penalizes
the appearance of clusters of ones according to the weights wk.
Thus, if horizontal and vertical clusters are not desirable, w1

and w2 should be assigned greater values. Equivalently, w3

and w4 should be greater than w1; w2 if the distance between
one-valued elements in the diagonals is to be increased.

Hence, an optimal coded-aperture ensemble can be ob-
tained by minimizing the variance of SiP , given that all K coded
apertures in the ensemble are intended to exhibit the same
transmittance value. The optimal set of coded apertures for
compressive spectral imaging can thus be expressed as the
solution of the problem

argmin var�SiP�
fT 0 ;T 1 ;���;T K −1g

subject to
XK −1

i�0

T i
l1 ;l2

� 1; (18)

where P � 0;…; N 2 − 1. To generate the set of optimal coded
apertures, an algorithm that finds a solution to Eq. (18) has
been developed and is illustrated in Fig. 6. The required inputs
are: the size of the coded-aperture ensemble N , the number of
measurement shots K , the window size Δ, the set of weights
w � fwkg4k�1, and a set of randomly ordered spatial coordi-
nates Ω � �Ωr ;Ωc�. Notice that Ω represents a permuted
version of the spatial positions indexed by P, such that the pro-
cedure is performed in a random raster fashion. Also, an initial
guess of the coded aperture is required.

The proposed algorithm moves over the pairs �Ωr ;Ωc� for
r; c � 0;…; N − 1, and for each coded aperture of the ensem-
ble, i.e., i � 0;…; K − 1, creates a Δ × Δ window, Ui

P , cen-
tered at T i

Ωr ;Ωc
, as illustrated in Fig. 5. On each window,

the algorithm calculates the concentration of one-valued entries
as

��d i
P1

��
1
;
��d i

P2

��
1
;
��d i

P3

��
1
, and

��d i
P4

��
1
, which are then used

to calculate SiP using Eq. (17). Hence, the criterion to decide
the best coded apertures of the ensemble, i.e., the value of i, to
insert the one-valued element for the specific spatial position
�Ωr ;Ωc� given by î � arg mini �SiP�, which in other words re-
fers to the coded aperture with the minimum concentration of
ones in the window around �Ωr ;Ωc�. Finally, the algorithm sets
the corresponding values of the coded aperture ensemble in the
particular point P � �Ωr ;Ωc� as

T i
Ωr ;Ωc

� 0 ∀ i ≠ î; T î
Ωr ;Ωc

� 1. (19)

Figure 7 illustrates an example of the operations performed
by the proposed algorithm. More specifically, an 8 × 8 coded
aperture ensemble for K � 4 snapshots is used for this exam-
ple. It can be noted that the initial guess has clusters of
one-valued elements and, at the end of the execution of the
algorithm, the clusters of ones in the resulting coded-aperture
ensemble are considerably minimized.

The resulting coded-aperture ensemble is coined spatiotem-
poral blue noise. A single realization of the BN coded apertures
obtained with the proposed algorithm for K � 4 is illustrated
in Fig. 8 (top) along with the average incoherence and RIP
parameters, μ̃ and α. Another approach to obtain BN coded

dP2
i

dP3
idP4

i
dP1

i

T i

1, 2

Fig. 5. Graphic representation of the metric used to determine
the concentration of one-valued entries in a window Ui

P of the code.
This metric helps with deciding the best i for setting the one-valued
element.
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Fig. 6. Block diagram of the algorithm that generates the designed
coded apertures. This procedure iterates over all �Ωr ;Ωc� points and
determines the best coded aperture of the ensemble in which the
�Ωr ;Ωc�th pixel is set to one.

(a) Initial guess 

i = 0 i =1

i = 2 i = 3

(b) Final ensemble 

i = 0 i =1

i = 2 i = 3

Fig. 7. Example of the operations performed by the proposed algo-
rithm. (a) Initial guess of an 8 × 8 coded aperture ensemble for K � 4
snapshots. (b) Resulting ensemble after applying the proposed algorithm.
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apertures is the direct binary search (DBS) algorithm, which
has been originally used in lithography to optimally represent
continuous-tone images [33,24]. In particular, blue noise pat-
terns suppress the low-frequency components of noise [25,26],
and the characteristics of the patterns generated with the DBS
algorithm correspond to the desired design criteria of the
proposed BN coded apertures, as shown in Fig. 8 (top). For
comparison purposes, Fig. 8 (top) presents one realization of
the traditional random coded apertures and Boolean coded
apertures, which exhibit a spatially random distribution but ex-
ploit the temporal correlation restriction of BN patterns.
Notice that the clusters of one-valued entries of the random
coded aperture are highlighted in the orange rounded square.
In addition, given that the spatial distribution of the Boolean
coded apertures is random, clusters of zero-valued elements are
likely to appear, as shown in the yellow circle, as well as clusters
of ones. The DBS and the BN coded apertures, on the other
hand, have a very similar structure. The corresponding average
values of the incoherence and RIP parameters, μ̃ and α, respec-
tively, are also indicated for each case. As expected, BN coded
apertures exhibit larger incoherence and lower RIP constant
values. Furthermore, Fig. 8 (bottom) illustrates the 4 × 4 blue
highlighted portion of the BN coded aperture ensemble for
K � 4 snapshots, where the temporal correlation restriction
is satisfied.

5. SIMULATION AND EXPERIMENTAL RESULTS

The performance of the proposed coded aperture design was
tested through simulations and experiments. First, the CASSI
acquisition process is simulated. In addition, a testbed imple-
mentation of the CASSI system is used for capturing experi-
mental measurements. Reconstruction results and an analysis
are also presented for each case.

A. Simulations

The compressive spectral imaging acquisition was simulated
using Eq. (5) for three different spectral data cubes with 256 ×
256 pixels of spatial resolution and 8 spectral bands with central
wavelengths of 450, 456, 484, 503, 524, 549, 580, and
621 nm. The first data cube was acquired by illuminating the
scene with a monochromatic light source. The other data cubes

are real scenes illustrating a set of colorful balloons and a color
palette, available in [34] and [35], respectively. The proposed
blue noise coded apertures are compared against the traditional
random coded apertures with 50% transmittance and the
Boolean coded apertures [23]. In addition, the simulations are
conducted using blue noise coded apertures obtained with
the DBS algorithm [24]. Recall that the Boolean and the DBS
coded aperture ensembles are complementary as the BN, result-
ing in low correlation across snapshots. The number of snap-
shots is varied in the simulations from K � 2 to K � 8, which
matches the number of spectral bands, that is, the compression
ratios from 1∶4 to 1∶1.

Figure 9 shows the average behavior of the reconstruction
quality when different types of coded apertures are used and
the number of snapshots is varied. The quality of the recon-
structions is measured using two widely known error metrics:
the peak signal-to-noise ratio (PSNR) and the structural sim-
ilarity index (SSIM), averaged across spectral bands. The PSNR
measures the log scale of the inverse of the mean squared error
and is defined as 20 log10�maxI∕MSE1∕2�, where maxI is the
maximum possible value of the image and MSE is the mean
squared error with respect to the original image. On the other
hand, the SSIM, introduced in [36], compares local patterns of
pixel intensities that have been normalized for luminance and
contrast. It can be noted in Fig. 9 that the random coded
apertures exhibit the poorest reconstructions, while the coded
apertures with low correlation across snapshots, i.e., the
Boolean, DBS, and BN, yield improved reconstruction quality.
In addition, the DBS and BN coded apertures provide the best
PSNR and SSIM results. More specifically, the proposed BN
coded apertures outperform the performance of the random

Random DBS Boolean BN 

µ = 0.3698, =13 104 µ = 0.4303, = 8 104 µ = 0.4485, = 6 104 µ = 0.5014, = 6 104

i = 0 i =1 i = 2 i = 3

Fig. 8. (Top) Comparison of one of the K � 4 realizations of the
BN coded apertures with the traditional random, Boolean, and DBS
coded apertures. (Bottom) Zoomed-in portion of a BN coded aperture
ensemble for K � 4 measurement snapshots to illustrate the low
correlation across shots.

D
at

ab
as

e 
1 

D
at

ab
as

e 
2 

D
at

ab
as

e 
3 

Fig. 9. Average reconstruction quality measured by the PSNR and
SSIM as a function of the number of captured snapshots. Results for
three different data bases are illustrated using the random, Boolean,
DBS, and BN coded apertures.
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coded apertures in up to 9 dB of PSNR, and the DBS coded
apertures in up to 1 dB. Similarly, for the SSIM measure, the
BN coded apertures present improvements of up to 0.14 and
0.04 with respect to the random and DBS coded apertures,
respectively. In general, these results indicate that the restric-
tions on the horizontal, vertical, and diagonal separations of
the one-valued entries are determinant to obtaining improved
reconstructions.

Figure 10 shows an RGB mapping of the recovered spectral
data cubes for the different types of coded apertures, compared
to the original scene. In particular, these reconstructions are
obtained from K � 4 measurement snapshots, which corre-
sponds to 50% of the data. In addition, Fig. 11 illustrates a
zoomed-in portion of the reconstructions in Fig. 10, in which
the differences between the recovered images are noticeable.
Specifically, in spite of the good results obtained with the
random, Boolean, and DBS coded apertures, the proposed BN
ensemble provides more detailed and accurate reconstructions.
Moreover, to illustrate the spectral accuracy of the BN coded
apertures, the spectral signatures for two different points of
each scene are illustrated in Fig. 12. Additional simulations
with a fourth spectral data set captured with an AVIRIS sensor
[37] were performed to test the BN coded apertures in these
types of remotely sensed images. This data set is a 256 × 256

portion of the aerial view of Moffett Field with L � 32 spectral
bands. Figure 13 illustrates the average reconstruction PSNR
and SSIM for this data base as a function of the number of
snapshots. It can be noted that these results exhibit a similar
behavior to those in Fig. 9.

Even though in most applications, the coded apertures are
usually generated offline, the computation time required to
generate a coded aperture ensemble is an additional comparison
factor that can be taken into account. The performed simula-
tions show that the DBS algorithm is up to 5 times slower than
the proposed algorithm for generating coded apertures with
blue noise characteristics. Another metric to compare different
types of coded apertures is the radially average power spectrum
density (RAPSD) [24], which is used to identify spectral char-
acteristics of lithographic patterns. Given that the designed
coded apertures have blue noise characteristics, RAPSD can
be used to verify this behavior. In essence, RAPSD relies on
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Fig. 10. RGB profiles of the reconstructed images obtained using
the random, Boolean, DBS, and BN coded aperture ensembles, and
K � 4 measurement snapshots, compared to the original data cubes.
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Fig. 11. Comparison of zoomed-in portions of the RGB reconstruc-
tions in Fig. 10.
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Fig. 12. Spectral signature comparison for two spatial points on
each data base. Reconstructions obtained from K � 4 snapshots.
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estimating the magnitude square of the Fourier transform of the
output ensemble to produce a spectral estimate with Bartlett’s
method of averaging periodograms. Thus, the RAPSD
is obtained by partitioning the spectral domain into a series
of annular rings, and it is calculated as the average power in
the annular ring for each center radius [25,26]. Figure 14 illus-
trates the RAPSD for random, Boolean, DBS, and BN coded
aperture ensembles, in which the random and Boolean designs
present a flat behavior. Meanwhile, the high-frequency charac-
teristics of DBS and BN coded apertures are clearly noticeable.

B. Testbed Implementation

The optical setup of the CASSI system illustrated in Fig. 15 was
constructed to experimentally verify the performance of the
proposed BN coded apertures. This setup comprises an objec-
tive lens, a custom Amici prism, a relay lens, a monochrome
CCD, a photomask wafer, and an x–y linear stage. In particular,
the wafer is a 17 × 17 × 0.015 0 0 chrome-on-quartz photomask
that consists of several 128 × 128 coded aperture realizations

with a pixel pitch of 19.35 μm. The linear stage moves the
photomask accordingly in order to locate and align the corre-
spondent pattern to be used on each snapshot. The nonlinear
Amici prism disperses the visible incoming radiation into 10
spectral bands with the following central wavelengths: 448,
460, 473, 489, 507, 526, 550, 579, 611, and 653 nm.
Compressive measurements for K � 2; 4; 6 measurement
snapshots were captured using random, Boolean, DBS, and
BN coded apertures. These sets of measurements and the
corresponding calibration data cubes are used to estimate the
original scene.

Figure 16 presents a comparison of an RGB map of the
recovered scenes using the random, Boolean, DBS, and BN
coded apertures obtained from K � 2; 4, and 6 measurement
snapshots. It can be noted that increasing the number of snap-
shots results in improved and more detailed reconstructions.

Fig. 13. Average reconstruction PSNR and SSIM for the Moffett
Field data set as a function of the number of snapshots.
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Fig. 14. Comparison of the radially averaged power spectral density
for the random, Boolean, DBS, and BN coded apertures.
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Fig. 16. RGB representations of the experimental reconstructions
from K � 2; 4; 6 for different types of coded apertures.
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Fig. 17. Selected reconstructed spectral bands for the random,
Boolean, DBS, and BN coded apertures with K � 4.
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Furthermore, the BN and DBS coded apertures yield better
reconstructions than the random and Boolean coded apertures.

To better visualize the improvements in the reconstructions,
Fig. 17 presents four selected recovered spectral bands, from
K � 4 measurement snapshots, for the random, Boolean,
DBS, and BN coded apertures. Finally, Fig. 18 compares the
spectral signatures of three different points of the scene with
the original spectrum measured with a point spectrometer.
This comparison shows that in spite of the good approximation
of the spectra obtained with the random and Boolean coded
apertures, the DBS and BN designs provide a better approxi-
mation of the bands of interest.

6. CONCLUSIONS

Spatiotemporal blue noise coded apertures for compressive
spectral imaging have been introduced. This design is based
on the restricted isometry property of the CASSI sensing ma-
trix, as well as the incoherence with a given sparsifying basis.
The mathematical development of the proposed design and a
computational algorithm to generate BN coded apertures have
been also presented. The simulations and experiments show
that the proposed design results in improved reconstructions
with respect to the traditional random coded apertures, while
similar quality can be attained with blue noise coded apertures
generated with the DBS algorithm. In particular, gains of up to
9 dB of PSNR and 0.15 in SSIM are obtained with respect to
the random ensembles. However, the proposed algorithm gen-
erates BN coded apertures up to 5 times faster than the DBS
algorithm. It is worth noting that although BN coded apertures
were tested for the CASSI system, the concept can be extended
to other CSI architectures, such as those in [5], and applications
like remote sensing.
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