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Compressive Spectral Imaging via Polar Coded
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Abstract—A compressive spectral imager based on a polar
coded aperture and a continuous variable circular bandpass filter
is proposed for spinning munitions. As the imager rotates with
the munition, compressive projections are sequentially captured
with embedded spatial and spectral modulation. The polar
coded aperture design is introduced, aiming at optimizing the
sensing process. Both discrete and continuous rotation models of
the proposed imager are derived and used to characterize the
compressive imager. Computer simulations validate the compu-
tational models and the reconstruction algorithm.

Index Terms—Compressed sensing, Image coding, Polar coded
aperture, Circular viable filter, Continuous rotation model.

I. INTRODUCTION

IMAGING techniques have been introduced in guided mu-
nitions to perform precise target detection and pinpoint

strike capabilities. They have many advantages over global
positioning system (GPS) driven systems, such as jamming
immunity and greater accuracy as demonstrated in many
unmanned aerial vehicle (UAV) platforms [1-5]. Typically,
monochromatic imaging is used in these applications. Spectral
imaging, however, is capable of increasing the precision in
target detection and munition guidance by providing additional
spectral information of the scene [6,7]. Spectral imaging ar-
chitectures usually involve moving filters [8] or the application
of expensive color patterned imaging sensor arrays [9,10] to
achieve spectral modulation. The spinning nature of munitions
provides an approach to modulate the spectrum via a circular
variable filter (CVF) without the need for moving parts. A
CVF is a bandpass filter whose center wavelength continuously
varies with its angular position and has a history of being used
in spectrometers, monochrometers, and spectral imagers [11-
18]. When mounted on a spinning munition, the CVF provides
a continuous spectral modulation of the target.

In addition to spectral modulation, the munition’s spin
can also be leveraged to increase the spatial resolution of
the imager using compressive sensing (CS) theory. In CS,
a compressive sample is normally acquired by applying a
binary code in the spatial domain [19-22]. Besides increased
resolution, compressive imaging can provide faster measure-
ment acquisition, easy data storage and transmission, as well
as reduced system noise. Thus, a new compressive spectral
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imager is proposed for spinning munitions that combines a
CVF with a coded aperture.

Although several coded aperture compressive spectral im-
agers have been developed recently [19,23-27], our design
has three advantages over existing designs. First, in traditional
coded aperture compressive imaging, a square shaped coded
photomask was initially used to provide spatial coding for
a single snapshot. To capture additional snapshots, elaborate
mechanisms are typically employed to apply multiple codes,
such as using a digital micro-mirror device (DMD) or by
shifting an aperture code with a piezoelectric actuator [26-
29]. These complex, expensive architectures are not suited
to munitions, however, which require a simple, inexpensive
imager. Our design solves this problem by using a polar shaped
coded mask together with the munition’s natural spin to obtain
multiple snapshots without any moving parts or complex
devices. Secondly, although spatial super-resolution methods
have been presented [25], traditional coded aperture compres-
sive spectral imagers usually employ coded apertures the same
size as the focal plane array (FPA) sensors, thus limiting the
resolution of the spectral image to that of the FPA [19,23-28].
However, this is unnecessary since the reconstructed spatial
resolution is only determined by the resolution of the coded
aperture. Instead, a low resolution FPA is applied here with
less expense on munition applications. Sufficient measure-
ments are captured through the imager rotation with a high-
resolution coded aperture. Third, in traditional compressive
spectral imagers, one or more dispersive elements are typically
applied to produce spectral separation [23,24]. However, the
non-linear spectral dispersion makes the spectrum sampling
non-uniform. A high-order model is needed to characterize
the dispersion, increasing the complexity of modeling and
calibration [30]. Our design solves this problem by using a
CVF, which has a linear spectral modulation. Combined with
the polar coded aperture, the CVF is placed on the focal plane
of the objective lens, making our imager more compact than
other existing coded aperture compressive spectral imagers.

Challenges exist when developing the coded aperture de-
sign. The spatial coding provided by conventional square
shaped coded apertures requires complex rotation transforma-
tions. Additionally, the coded aperture provides less modu-
lation towards its center, resulting in an inefficient sensing
strategy. Different from traditional square coded apertures in
compressive imaging [19-30], we propose a polar coded aper-
ture with a spokes-rings structure to solve the above problems.
The rotation motion is transformed into a simple circular
shifting of image pixels which provides uniform modulation.

Figure 1 shows the proposed imaging architecture which
consists of an objective lens, a polar coded aperture, a CVF,
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Figure 1. Compressive spectral imaging architecture with a polar coded aper-
ture and a continuous viable circular bandpass filter. Compressed projections
are captured on the FPA detector.

a relay lens and a focal plane array (FPA) detector. The polar
coded aperture, combined with the continuous circular variable
bandpass filter, are placed in the image focal plane of the
objective lens, providing the spatial and spectral modulation
to the scene. As the munition spins, the imager conducts a con-
tinuous rotation. In general, the imager can also be mounted on
other spinning equipment, or simply on a electronic controlled
rotating platform to perform compressive spectral imaging.

For guided munitions, the motion of the imager can be
described in multiple dimensions. The translation motion
should be precisely acquired for characterizing the com-
pressive sensing reconstruction. In this paper, only a two-
dimensional rotation is considered for simplicity, with the
rotation speed assumed to be constant and known a priori. For
further research, the robustness of the system should also be
evaluated by calculating the tolerance of the rotation modelling
error.

The main contributions of this paper are addressed in three
aspects: First, a novel method of changing spatial coding
for compressive imaging is developed by the rotation of
a polar coded aperture. The geometry design of the polar
aperture is presented to optimize the image quality. Second,
the CVF is introduced into compressive spectral imaging. To
our knowledge, this is the first time a CVF is applied to
compressive coded aperture imaging. The influence of CVF
bandwidth to the reconstruction quality is analysed. Finally,
both the discrete and continuous rotation forward models are
developed with the corresponding computer simulation results
presented.

II. POLAR CODED APERTURE COMPRESSIVE SPECTRAL
IMAGING SYSTEM

A. Spectral Imaging via Compressive Sensing

Natural scenes typically contain correlations among neigh-
bourhood image points and between adjacent spectral bands
[31]. Thus the spectral images can be represented in some
basis with a small number of nonzero coefficients. The sparsity
of the spectral images enables the application of compressive
sensing in the imaging procedure. Denote the vector f as the
collection of the desired spectral image pixels, and denote g
as the vector formed by the CCD measurements. Then the
sensing procedure can be expressed as

g = Hf , (1)

where H is the sensing matrix of the imaging system. With
a proper selected basis Ψ, f can be represented as f = Ψθ,
where the coefficients vector θ is sparse. Thus the sensing
procedure is rewritten as

g = HΨθ = Aθ, (2)

where A = HΨ. Given the measurements g with the number
of elements much smaller than the desired vector f , the inverse
problem can be solved with high accuracy by reconstruction
algorithms [19,31]. A good knowledge of the sensing matrix H
is critical to an accurate reconstruction. Thus in this section,
a detailed mathematical modelling of the sensing matrix is
presented.

B. Discrete Imager Rotation Sensing Model

The proposed compressive imaging architecture is displayed
in Figure 1. A polar coded aperture combined with a contin-
uous variable circular bandpass filter is applied at the image
focal plane to provide spatial and spectral compressive coding.
The polar coded aperture is designed to have a ring-spoke
structure as shown in Fig. 2. The aperture consists Rin inner
rings and Rout outer rings. The outer rings are designed to
have a denser distribution of spokes than the inner rings. Sin
and Sout are denoted as the numbers of spokes in the inner and
outer rings, respectively. The design of the aperture geometry
is further introduced in Section III.

Figure 2. Geometry illustration of the proposed polar coded aperture. The
number of spokes in outer rings is twice of the spokes in inner rings.

Compressed FPA projections of the coded data cube are
captured as the imager rotates. If the image rotations are
generated by electronic devices, the rotation can be controlled
to have discrete angle increments, where the imager remains
fixed during one snapshot measurement. When the imager is
mounted on a spinning munition, continuous rotation motion
occurs when measurements are captured. However, if the
shutter time τs of the camera is much smaller than the rotation
period of the imager τr, τs << τr, the imager can be assumed to
be static during each snapshot. With this assumption, a discrete
approximation model of the imager rotation is described next.
In Section V, a continuous rotation model is further developed.

Denote the scene as a 3D data cube f(ϕ, ρ, λ), where
ϕ and ρ are the spatial polar coordinates, and λ is the
spectral wavelength. The polar coded aperture is represented
as T (ϕ, ρ), while the continuous variable circular bandpass
filter is modeled as C(ϕ,λ). The center wavelengths of the
polar bandpass filter continuously change in the range of



2333-9403 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2016.2617740, IEEE
Transactions on Computational Imaging

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 3

Figure 3. Discretized compressive sensing phenomenon of polar imager. The qth ring of the data cube fsrk is coded by the polar coded aperture and
modulated by the continuous variable circular bandpass filter. The modulated light is integrated in both spatial and spectral domains, captured by the FPA
sensors.

[λmin, λmax] with ϕ increasing from 0 to 2π. The bandwidth
of the bandpass filter is denoted as bw for all ϕ. Thus the
transmitted wavelength range of the continuous variable cir-
cular bandpass filter is [λmin − bw/2, λmax + bw/2]. The polar
coordinates representation of the FPA projection is written as:

gp(ϕ, ρ) = T (ϕ, ρ)∫
λmax+bw/2

λmin−bw/2
C(ϕ,λ)f(ϕ, ρ, λ)dλ. (3)

The physical phenomenon of this compressive sensing pro-
cedure is shown in Figure 3, where the discrete form of the
binary polar coded aperture is written as

tsr = ∫
(r+1)∆ρ(r)

r∆ρ(r) ∫
(s+1)∆ϕ(r)

s∆ϕ(r)
T (ϕ, ρ)ρdϕdρ, (4)

where s and r index the spokes and rings in the polar coded
aperture, respectively. ∆ϕ(r) is the pitch of spokes in rth ring,
while ∆ρ(r) represents the pitch of the rth ring. Denote the
integration region of the (s, r)th polar pixel as Ωsr, then the
binary polar coded aperture is rewritten as

tsr =∬
Ωsr

T (ϕ, ρ)ρdϕdρ. (5)

The discrete representation of the 3D data cube is written as

fsrk = ∫
λk+1

λk
∬

Ωsr
f(ϕ, ρ, λ)ρdϕdρdλ. (6)

Similarly, the discrete form of the continuous variable circular
bandpass filter is represented as

csrk = ∫
λk+1

λk
∬

Ωsr
C(ϕ,λ)ρdϕdρdλ. (7)

The physical phenomenon of this discrete spectral modulation
is illustrated in Figure 4. The modulation amplitude csrk is
determined by the center wavelengths and the bandwidth of
the bandpass filter. The impact of the bandpass filter bandwidth
is further discussed in Section IV.

Figure 4. Illustration of the spectral modulation of the filtered polar data cube.
Two spectrally adjacent polar data cube voxels are modulated in spectrum as
passing through a continuous variable circular bandpass filter pixel.

The continuous change of the center wavelength with the
change of the angular position in the circular bandpass filter
enables the division of the spectral channels. The spectrum
is uniformly divided into L bands from λmin − bw/2 to
λmax + bw/2, where as defined above, [λmin, λmax] is the
center wavelength range of the bandpass filter, and bw is the
filter bandwidth. The spatial and spectral modulated polar data
cube is integrated in the spectral domain. The discrete form
of this polar projection is

gsr = ∬
Ωsr

T (ϕ, ρ)∫ C(ϕ,λ)f(ϕ, ρ, λ)dλρdρdϕ

= ∑
k
∬

Ωsr
T (ϕ, ρ)∫

λk+1

λk
C(ϕ,λ)f(ϕ, ρ, λ)ρdλdρdϕ

= ∑
k

tsrcsrkfsrk. (8)

Denote the vector form of the data cube and the integrated
coded scene as f and g1, respectively. This sensing process in
the `th snapshot can be written in matrix form as

g`1 = P`f , (9)

where P` represents the effect of the polar coded aperture
and the continuous variable circular bandpass filter. The vector
form of the bandpass filter modulation in kth spectral channel
is represented as

c`k = [c`11k, c
`
21k, ..., c

`
12k, ..., c

`
SoutRk]

T . (10)
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Similarly, the vector form of the polar coded aperture in the
`th snapshot is given by

t` = [t`11, t
`
21, ..., t

`
12, ..., t

`
SoutR]

T . (11)

Then the coding matrix P` is written as

P` = [diag(t` ○ c`1),diag(t` ○ c`2), ...,diag(t` ○ c`L)], (12)

where t`○c`k is the element-wise product of t` and c`k. Denote
the total number of polar pixels in the coded aperture as V =
RinSin +RoutSout. Then P` has the dimensions of V ×V L.
In order to visualize P`, a test data cube with 2 inner rings
(Rin = 2), 8 inner spokes (Sin = 8), 1 outer rings (Rout = 1),
16 outer spokes (Sout = 16), and 2 spectral channels (L =
2) is applied. The corresponding P` generated via Eq. (12)
is displayed in Figure 5. The gray scale values are between
0 and 1. 80% unblocked pixels are randomly distributed in
the polar coded aperture for better demonstration of the CVF
modulation c`k in P`. Each spectral band is organized from
inner to outer rings, with the spokes in each ring arranged
from angles 0 to 2π. In this two band example, the CVF acts
as a low pass filter for the first spectral band, and a high pass
filter for the second spectral band. This can be observed by
the spoke values of the first spectral band falling off from 1 to
0, while the spoke values in the second spectral band increase
from 0 to 1.

Figure 5. Coding matrix P` for Sin = 8, Sout = 16 Rin = 2, Rout = 1,
L = 2 data cube. The entries represent the spatial and spectral modulation
factors on the polar data voxels, with 0 entries remaining black.

C. Discussion on the Spectral Resolution

As displayed in the P` image, distinct spectral modulation
c`k for each band k enables the separation of the spectral bands.
One spectral band k can always be separated into two or more
sub-bands ki when the spectral modulations c`ki are different.
It is thus possible to separate a band into two sub-bands with
distinct spectral coding. Thus, an infinite number of spectral
bands could be recovered in principle. As shown in Figure 6,
the region R`

k = {(s, r)∣c`srk≠0} is the spatial area where the
kth spectral band is sensed by the continuous variable filter.
Assume this spectral band is uniformly divided into two sub-
bands k1 and k2. Thus, denote R`

k1
= {(s, r)∣c`srk1≠0} and

R`
k2

= {(s, r)∣c`srk2≠0}. Since the bandpass wavelengths differ
for different angular positions in the spatial domain, R`

k1
≠R`

k2

when the number of spectral bands L≤Sout. Then, there exists
a polar pixel (s1, r1), such that (s1, r1) ∈ R`

k1
and (s1, r1) ∉

R`
k2

. Similarly, another polar pixel (s2, r2) exists, such that
(s2, r2) ∈ R`

k2
and (s2, r2) ∉ R`

k1
. Therefore, the following

equations hold,
⎧⎪⎪⎨⎪⎪⎩

c`s1r1k1≠0

c`s1r1k2 = 0
and

⎧⎪⎪⎨⎪⎪⎩

c`s2r2k1 = 0

c`s2r2k2≠0
, (13)

resulting in c`k1≠c`k2 . Thus, the two sub-bands k1 and k2 are
separated.

Figure 6. The polar pixels in kth spectral band that can be sensed by the
continuous variable filter are concentrated in the region of R`

k . This spectral
band is split into two sub-bands where the sensed polar pixels are concentrated
in two smaller regions R`

k1
and R`

k2
.

In the situations that L > Sout, R`
k1

= R`
k2

= R`
k.

For any polar pixel (s3, r3) located in the edges of R`
k1

,
c`s3r3k1≠c

`
s3r3k2

. Thus c`k1≠c`k2 . The two sub-bands k1 and k2

can still be distinguished by the imager.
However, notice from Figure 6 that in each single snapshot,

amounts of elements in both c`k1 and c`k2 are 0, making it
impossible to recover either k1 or k2 band in the corresponding
spatial area. Thus, a number of imager rotations are needed to
modulate a certain spatial area with the whole spectrum of the
bandpass filter. In consequence, an infinite number of spectral
bands could be separated with unlimited number of shots,
under the conditions that the bandpass filter ideally changes its
center wavelength continuously along the angular positions.

In addition, as discussed in Section IV, a larger number of
reconstructed spectral bands requires a narrower bandwidth of
the bandpass filter to achieve the best recovery performance. In
Section IV. D, a 11.6nm wide bandpass filter is applied for a
successful reconstruction of 128 bands, where L = 2Sout. Nar-
rower bandwidths are more difficult to manufacture. Moreover,
the difficulties for the spectral modulation calibration process
also increase with L > Sout. All these practical difficulties
need to be considered for the real implementation of the
proposed imager.

D. Sensing Model of the Rectangular FPA sensors
The FPA detector consists of N2 rectangular sensors. De-

note the Cartesian representation of the FPA projection as
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gc(x, y). Then gc(ρ cosϕ, ρ sinϕ) = gp(ϕ, ρ). The discrete
FPA pixel measurement is

gmn = ∫
(n+1)∆c

n∆c
∫
(m+1)∆c

m∆c

gc(x, y)dxdy, (14)

where ∆c is the square FPA pixel pitch. Denote the integra-
tion region of (m,n)th pixel as D. Then the discrete FPA
measurement is

gmn = ∬
Dmn

gc(x, y)dxdy

= ∬
Dmn

gp(ϕ, ρ)ρdρdϕ. (15)

With the forward model expressed in Eq. (3) and Eq. (8), the
FPA measurement is represented as

gmn = ∬
Dmn

T (ϕ, ρ)∫ C(ϕ,λ)f(ϕ, ρ, λ)dλρdρdϕ

= ∑
r
∑
s

wsrmn ∫
(r+1)∆ρ(r)

r∆ρ(r) ∫
(s+1)∆ϕ(r)

s∆ϕ(r)
T (ϕ, ρ)

∫
λmax+bw/2

λmin−bw/2
C(ϕ,λ)f(ϕ, ρ, λ)ρdλdρdϕ

= ∑
r
∑
s

wsrmngsr, (16)

where wsrmn is the proportion of the energy in the (s, r)th

polar coded aperture pixel sensed by the (m,n)th FPA sensor,
given by

wsrmn =∬
Dmn∩Ωsr

ρdρdϕ(∬
Ωsr

ρdρdϕ)−1. (17)

Denote the vector form of the `th shot measurements as g`.
Then this polar-rectangular transformation can be expressed in
matrix form as

g` = W`g`1, (18)

where W` has the dimensions of N2 ×V . Then W` accounts
for the weights wsrmn of the polar coded aperture sensed on
N ×N FPA sensors. Thus, the (i, j)th entry of W` is W `

ij =
wpquv , where v = ⌊ i

N
⌋ indexes the number of FPA columns,

and u = i − vN counts the number of FPA rows; Similarly,

q =
⎧⎪⎪⎨⎪⎪⎩

⌊ j
Sin

⌋ , if j ≤ SinRin
Rin + ⌊ j−SinRin

Sout
⌋ , otherwise

(19)

indexes the polar coded aperture rings, and

p =
⎧⎪⎪⎨⎪⎪⎩

j − qSin, if j ≤ SinRin
j −RinSin − (q −Rin)Sout, otherwise

(20)

counts the spokes of the polar coded aperture.
In order to visualize W, the same test data cube used in
Figure 5 is applied here. The FPA is assumed to have 4 by
4 sensors (N2 = 42). The corresponding weight matrix W is
shown in Figure 7.

Figure 7. Weight matrix W for a Sin = 8, Sout = 16 Rin = 2, Rout = 1,
L = 2 data cube and an N2 = 42 FPA. The entries with larger values are
displayed in brighter points, while the 0 entries remain black.

E. Sensing Matrix of Discrete Rotation Model

By combining Eq. (8) and Eq. (16), the FPA measurement
in `th snapshot is

g`mn =∑
r
∑
s
∑
k

w`srmnt
`
src

`
srkfsrk, (21)

Similarly, from Eq. (9) and Eq. (18), the matrix representation
of the sensing procedure is expressed as

g` = W`P`f

= H`f , (22)

where H` = W`P` is the sensing matrix for the `th shot.
Applying the same test data in Figure 5 and Figure 7, H`

can be visualised in Figure 8.

Figure 8. Sensing matrix H` for a Sin = 8, Sout = 16 Rin = 2, Rout = 1,
L = 2 data cube and an N2 = 42 FPA.

Let K-snapshot measurements be represented in the
vector form g = [(g1)T , (g2)T , ..., (gK)T ]T . Then the
sensing procedure is written as g = Hf , where H =
[(H1)T , (H2)T , ..., (HK)T ]T . The relationship between the
sensing procedures in different snapshots is further analysed.
The imager rotation motion enables multiple snapshots mea-
surements embedded with different spatial and spectral coding.
If the imager rotation exceed 2π, the patterns of polar coded
aperture and the circular bandpass filter repeats themselves,
resulting in duplicated measurements. Thus the number of
snapshots is restricted to the coded aperture design. As will
be shown in Section III, a good geometry design of the coded
aperture has fewer spokes in the inner rings than the outer
rings, i.e, Sin < Sout. Thus the maximum number of snapshots
captured is limited by the number of spokes in the polar coded
aperture inner rings, K≤Sin.
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Assume the polar coded aperture rotates dr pixels in the
rth ring between adjacent snapshots acquired and assume K
snapshots are taken within the rotation period τr, then, dr is
represented as

dr = ⌊Sr
K

⌋ , (23)

where Sr is the number of spokes in rth ring. As shown in
Figure 9, the spatial coding provided by the coded aperture
has a circular shift in its spokes between snapshots.

Figure 9. As the imager rotates, the spatial coding provided by the polar
coded aperture is circularly shifting the spokes. The imager is assumed to
be static when snapshots are captured, and dr spokes are shifted between
adjacent shots.

Then the current snapshot coded aperture can be obtained
from the previous shot coded aperture as

t`sr =
⎧⎪⎪⎨⎪⎪⎩

t`−1
s−dr,r, if r ≤ dr
t`−1
s+Sr−dr,r, otherwise.

(24)

A permutation matrix M can represent this circular shift
procedure, with the `th shot coded aperture calculated as

t` = Mt`−1. (25)

Similarly, the spectrum modulation of each spectral band
performs the same spokes shift between snapshots. Thus the
`th shot spectrum modulation is calculated as

c`k = Mc`−1
k . (26)

P` can be constructed by applying Eq. (11). Notice that the
columns of W` are organized in the same fashion as the polar
coded aperture structure, performing the same permutation
procedure. Then the transformation of W` between adjacent
snapshots is modelled as

(W`)T = M(W`−1)T . (27)

F. Spectral Data Cube Recovery

Since the polar coded aperture pixels share the same pixel
size, the desired polar image band can be organized into
rectangular matrix as shown in Fig 10. The inner-ring matrix
with the dimension of Sin×Rin is the matrix formulation of
the inner rings polar pixels. Similarly, the outer rings polar
pixels are transformed into a Sout×Rout rectangular matrix.

Then a Kronecker basis Ψ = Ψ1 ⊗Ψ2 ⊗Ψ3 is applied to
the matrix cubes, where Ψ1 ⊗ Ψ2 provides the basis in the
spatial domain and Ψ3 is the basis in the spectral domain.

Figure 10. One polar image band is transformed into two rectangular matrices
representing the inner and outer rings polar image pixels.

Thus the polar data cube f is represented as f = Ψθ. In the
simulation, we apply the Kronecker product of the 2D Wavelet
in space and 1D discrete cosine transform (DCT) in spectrum
as the basis, which has been shown as an efficient sparse
basis in compressive spectral imaging [19,32,33]. Instead of
the DCT, other bases such as the Wavelet transform along the
spectral axis could be applied [33-36]. A further research could
focus on optimizing the basis representation for polar spectral
images. Then the sensing process can be expressed in Eq. (2).
The signal reconstruction is then performed by solving the
inverse problem of the underdetermined linear system, where
θ is recovered to minimize a l1-l2 cost function. This signal
recovery problem is expressed as

θ̂ = arg min
θ

∣∣g −Aθ∣∣2 + λ∣θ∣1, (28)

where λ is a regularization constant. In the simulation, the
gradient projection for sparse reconstruction (GPSR) algorithm
[37] is applied. In Matlab R2011b and a computer with the
Intel(R) Core(TM) i7 CPU and 6.00GB RAM, the reconstruc-
tion algorithm takes approximate 447 seconds to recover a 16-
band data cube with 1282 spatial resolution in 600 iterations.
Note the reconstruction speed can be significantly improved
by performing code optimization, applying parallel computing
or simply alternating the reconstruction algorithm.

III. POLAR CODED APERTURE GEOMETRY DESIGN

The polar coded aperture rotates together with the proposed
imaging system, providing a set of block-unblock coded mea-
surements to the detector. Thus the scene is sampled according
to the polar geometry of the rotating aperture, resulting in polar
shaped image pixels. The geometry design of the polar coded
aperture aims at improving the image sensing strategy.

Similar structures of polar images have been proposed
with the name of “log-polar image” in the field of computer
vision [38,39]. The concept of polar pixels has also been
applied in CT [40], SPECT [41,42], Compton SPECT [43],
and PET [44]. Our design of the polar coded aperture takes
the advantages of the spokes-rings structure, as shown in
Figures 11 (a) and (b). This structure transforms the image
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rotation motion directly into a circularly shift of the polar
pixels. The proposed imaging system aims at obtaining a
uniform spatial resolution across the scene. Uniformly sensing
is achieved by designing the spaces between rings, resulting
in a projection where the same pixel size is attained across the
image.

Figure 11. (a)-(c) show different polar aperture geometry designs with the
shapes polar pixels being analysed: (a) and (b) show the spoke-ring aperture
structure with S/R = 1 and S/R = 4, respectively; (c) shows the inner-outer
rings design. (d)-(f) are the examples of polar images with the corresponding
polar pixels geometry in (a)-(c), respectively.

Denote R and S as the number of rings and spokes,
respectively. Figures 11 (a) and (b) show the influence of the
spoke-ring ratio S/R to the image quality: Higher density of
rings leads to good image quality in the inner rings, while
higher density of spokes leads to good image quality in the
outer rings. To determine the optimal spoke-ring ratio S/R, an
analysis of the pixel shape is shown in Figure 11 (a)-(b), where
the pixels P2 and P3 are highly unbalanced in the lengths
of their rings and spokes, resulting in a poor image quality.
On the other hand, pixels P1 and P4 have similar rings and
spokes lengths, resulting in a more balanced sensing along
both dimensions which is desired in the geometry design.
Denote the widths between the rings and the spokes in (s, r)th

pixel as asr and bsr, respectively, as shown in Figure 12,
where s indexes the spokes and r counts the rings. The design
principle is to achieve a minimum difference between asr and
bsr for each pixel. Thus, a sum of the squared differences
between asr and bsr across all s and r is calculated as a cost
function, expressed as

Cost =∑
r
∑
s

(asr − bsr)2. (29)

Then the cost values are computed for different S/R ratio,
as displayed in Figure 13. S/R = 4 provides the minimal cost
value. However, since the cost function only minimizes an av-
erage value, polar images with S/R = 4 still have unbalanced
pixel shapes in the inner rings as shown in Figure 11 (b).
Instead, the aperture with S/R = 1 provides more balanced
pixel shapes in the inner rings as shown in Figure 11 (a).
However, it suffers from unbalance pixel shapes in outer rings,

Figure 12. The shape of a polar pixel with rings distance asr and spokes
distance bsr .

Figure 13. Plot of the cost function value changing with the spoke-ring ratio
S/R varying from 1 to 16.

resulting in a higher value of the cost function. The aperture
with a fixed ratio of S/R can not provide good image quality
in all spatial positions of the scene. Thus, a new geometry
design of the polar aperture is proposed to have an inner-
outer ring structure that is shown in Figure 11 (c). The new
design keeps the spokes-rings structure with S/R = 4 in the
outer rings, while reducing the number of the spokes in the
inner rings to improve the overall image quality. The number
of spokes in the inner rings is half of the spokes number in
the outer rings, denoted as Sin = 0.5Sout, which results in a
higher density of rings in the inner rings and a higher density
of spokes in the outer rings. As shown in Figure 11 (d)-(f),
the image quality is improved with the new design.

The inner-outer ring structure can be further designed
by determining the inner-total rings ratio, defined as ε =
Rin/(Rin+Rout). A proper value of ε is desired such that the
cost function expressed in Eq. (29) is minimized. Figure 14
shows the cost function value changing with the variable ε
when the numbers of inner spokes Sin are 128 and 256
respectively, with the constrain that the total number of polar
coded aperture pixels remains S2

in. The values for ε between
0.2 to 0.3 result in smaller cost values, with the minima at
ε = 0.27 for both Sin = 128 and Sin = 256 cases, with
corresponding Rin = 20 and Rin = 40, respectively.

This result is verified by showing an image quality compar-
ison with 6, 20, and 60 inner rings (with the corresponding
ε = 0.09,0.27 and 0.64), as shown in Figure 15. In this
comparison, the number of pixels are fixed as S2

in = 1282.
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Figure 14. Plots of the cost function value changing with the inner-total
rings ratio ε ∈ [0,1] in both 128 inner spokes and 256 inner spokes coded
apertures.

With two regions on the eyes and chest of the toy zoomed, it
is clear that the image sampled by a Rin = 20 polar aperture
obtains better image quality in both areas.

Figure 15. Comparison of image quality with 6 (left), 20 (middle) and 60
(right) inner rings with the polar pixel number restricted to be 1282. Better
image quality with 20 inner rings is observed in both zoomed regions.

IV. COMPUTER SIMULATIONS

A. Polar Data Cube Acquisition and Measurements Simula-
tion

To further study the proposed imaging system, computer
simulations are performed with a polar spectral data cube
acquired in the laboratory. A wide-band Xenon lamp is used
as the light source and a visible monochromator is applied to
capture spectral bands on a 9.9µm CCD camera. In this way,
a 256×256×16 data cube is obtained. Then, the acquired data
cube is transformed into a polar data cube with 20 inner rings
and 54 outer rings by software. The numbers of spokes are
128 and 256 in the inner and outer rings, respectively. Fig 16
shows the 9 polar spectral image bands selected from the total
L = 16 bands. The center wavelengths of each spectral channel
are uniformly distributed in the range from 451nm to 661nm.

In the simulation, the polar coded aperture has Rin = 20
inner rings and Rout = 54 outer rings. Sin = 128 and
Sout = 256 spokes are uniformly spaced in the inner rings
and outer rings, respectively. A random binary code with 50%

Figure 16. 9 spectral image bands selected from the total 16 bands are
displayed. The center wavelength of each band is indicated. Two image points
are selected for the spectral reconstruction comparisons.

open is applied on the polar coded aperture. The continuous
variable circular bandpass filter is simulated with the center
wavelengths ranging from 476nm to 635nm. The bandwidth
is assumed to be 80nm. Meanwhile, a N2 = 322 FPA sensor is
utilized to capture the compressed projections. Then the com-
pressive sensing ratio (CS ratio) of K snapshots measurements
is defined as

κ = KN
2

V L
, (30)

where V = SinRin + SoutRout.
By applying Eq. (21), 64 snapshots measurements are

simulated, where the CS ratio is κ = 25%. In order to show
the simulation process, Figure 17 (a) displays the RGB images
of the spatial and spectral modulated polar data cube before
being projected on the FPA. The RGB images demonstrate the
aperture coding and CVF spectral modulation to the scene.
The spatial resolution of each RGB image is 1282. The
corresponding simulated compressed projections are displayed
in Figure 17 (b), demonstrating the spatial and spectral inte-
gration on the low resolution monochromatic FPA. The spatial
resolution of these FPA projections is 322.

B. Reconstruction with Simulated Measurements

The reconstruction procedure applies the GPSR algorithm
to solve the `1 − `2 function described in Eq. (28), where
the representation basis utilizes a 2D Wavelet basis and a 1D
Cosine basis in the spatial and spectral domains, respectively.
Peak signal to noise ratio (PSNR) is calculated for each
reconstructed spectral channel.



2333-9403 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCI.2016.2617740, IEEE
Transactions on Computational Imaging

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 9

Figure 17. (a) shows the RGB images of the spatial and spectral modulated
polar data cube before projected on the FPA detector. (b) shows the corre-
sponding compressed FPA projections. 4 snapshots selected from the total 64
snapshots are displayed.

Figure 18. 16 spectral image bands are reconstructed from 64 snapshots
compressed measurements with κ = 25% CS ratio, where 9 image bands are
displayed. The average PSNR is 32dB.

Figure 18 shows 9 image bands selected from the recon-
structed 16 spectral bands. The average PSNR is 31.8dB.
Good image quality is observed in the reconstructed spec-
tral bands. With a larger number of snapshots captured,
more information of the polar data cube is acquired, with
a higher reconstruction accuracy expected. Thus, simulations
are performed with different numbers of snapshots applied
in the reconstruction. The PSNRs of the reconstructions are
calculated and displayed in Figure 19. The simulation results
verify the performance improvement by increasing the number
of snapshots. Note that the maximum number of snapshots is
limited by the number of spokes in inner rings, which has a
CS ratio of 50%. The spokes-rings coded aperture structures
with S/R = 1 and S/R = 4 have similar reconstruction perfor-
mance compared with the inner-outer ring coded aperture in

Figure 19. This is not surprising since the geometry design of
the polar coded aperture aims at better image quality instead of
better reconstruction performance. The reconstruction quality
could be improved by further optimizing the aperture code
patterns.

Figure 19. Average PSNRs are calculated for different polar coded aperture
geometry designs with the number of snapshots ranging from 4 to 128. The
corresponding CS ratio ranges from 1.56% to 50%.

Note that a random coded aperture with 50% open can
generally produce better reconstruction in polar coded aperture
compressive sensing imaging. In this simulation, the per-
formance decreases by 0.6dB PSNR if the transmittance is
decreased to 30%. When the transmittance increases to 80%,
a PSNR reduction of 0.8dB is observed. The FPA resolution
influences the reconstruction quality. A higher resolution FPA
performs slightly better, due to the additional spatial measure-
ments per snapshot and better spectral bands differentiation.
For example, the reconstruction from 8 shots in a 642 FPA is
0.6dB better than the reconstruction from 128 shots in a 162

FPA. However, we should also point out that the reconstruction
performance is determined by all hardware configurations
including the FPA resolution, the CVF bandwidth and the
coded aperture patterns. In addition, higher resolution FPAs
are typically more costly, particularly in the IR bands.

Sensor noise can also influence the reconstruction perfor-
mance. Here we define the signal-to-noise ratio (SNR) in
the sensor as the ratio between the variance of the sensor
measurements and the variance of sensor noise, SNR =
10log10Var(g)/Var(n), where n represents the noise. When
Gaussian white noise resulting in 30dB, 20dB and 10dB SNR
is added to the measurements, the resulting PSNR decreases
2dB, 5dB and 8dB, respectively. The optimal choice of the
regularization parameter τ in Eq. (28) tends to be larger with
stronger noise, indicating that more effort is needed in `1
minimization for a smooth image recovery. The robustness can
be improved by employing alternative optimization algorithms
with noise reduction.

C. Influence of the Bandpass Filter Bandwidth

The bandwidth and the range of the center wavelengths of
the continuous variable bandpass filter have a great impact on
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the values of the spectrum modulation c`srk, which eventually
influence the sensing matrix H and the reconstruction quality.
Generally, if the bandwidth of the bandpass filter is too
narrow, not enough of the spectral information is compres-
sively sensed, causing poor reconstructions. Meanwhile, if
the bandwidth is too wide to provide distinct modulation for
different spectral bands, the proposed imager will fail in the
spectral reconstruction.

To study this influence, a data cube with 128 spectral bands
is applied in the measurements simulation procedure, where
the high spectral resolution results in a more precise simu-
lation of the continuous variable bandpass filter. Simulations
are performed with a varying ratio γ = bw/(λmax − λmin)
between the bandwidth bw and the center wavelengths range
λmax − λmin, while keeping the total transmitted wavelength
range [λ − bw/2, λ + bw/2] fixed. 8, 16 and 32 spectral bands
are reconstructed respectively. PSNRs are calculated with γ
ranging from 0.02 to 1 as shown in Figure 20. With the

Figure 20. PSNRs of 8, 16 and 32 spectral bands reconstructions from 64
snapshots are displayed with γ varying from 0.02 to 1.

extreme values of γ = 0.02 or γ = 1, poor reconstructions
are acquired as expected. However, the best values of γ
gradually decrease from 0.75 to 0.35 when the number of
recovered spectral bands increases from 8 to 32, indicating that
a narrower bandpass filter is preferred when a higher spectral
resolution is desired.

D. Hyper-Spectral Reconstruction

For further verification of the spectral reconstruction at-
tained, simulations aim at accurate spectral reconstruction with
a large number of spectral bands. A 128 bands data cube is
used with a spatial resolution of 322 polar pixels. The 580nm
image band is shown in Figure 21 (a), where two image points
are selected for spectral signature comparisons.

With a 322 resolution FPA detector, 32 snapshots are simu-
lated, where the CS ratio defined in Section IV. A is κ = 25%.
As discussed above, the reconstruction of a larger number
of spectral bands requires a continuous variable filter with a
narrower bandwidth. For 128 spectral bands reconstruction, a
11.6nm bandwidth is selected and applied in the simulation,
with the corresponding γ = 0.1. The reconstruction achieves

Figure 21. The original 580nm image plane (a) and its corresponding
reconstruction (b) are displayed. 40dB PSNR is achieved with κ = 25%. Two
image points are selected for spectral signature reconstruction comparisons.

Figure 22. 128-band spectral reconstructions are compared with the original
spectral signatures of two image points. The reconstructions of 20 bands from
571nm to 590nm are zoomed for further comparisons.

an average of 40dB PSNR, with the reconstructed 580nm
image plane displayed in Figure 21 (b). The reconstruction
of spectral signatures in 128 bands are displayed in Figure 22.
The spectrum region between 571nm and 590nm containing
20 bands is zoomed for a detailed comparison. The spectral
reconstructions of both points are quite close to the original
spectral signatures, showing an accurate hyper-spectral recov-
ery.

V. CONTINUOUS IMAGER ROTATION MODEL

For the proposed imager to be mounted on spinning devices,
a more precise sensing model is developed by considering the
continuous rotation motion. When the continuous rotation is
taken into account, the polar pixels in the data cube shears
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circularly during the integration time (or the shutter time) τs,
as shown in Figure 23.

Figure 23. (a) shows a data pixel entering the polar coded aperture with
no transformation, when the discrete approximation of the imager rotation
is applied. (b) displays a circularly sheared data pixel hitting two adjacent
polar aperture pixels, when the continuous rotation motion of the imager is
considered.

From the figure, denote the region of the original polar pixel
during the time τs as Gsr; and denote the sheared pixel region
during τs as Qsr. Then the proportions of the (s, r)th shear
data pixel entering into the polar coded aperture pixels are
calculated as

βsru = (∭
Qsr∩G(s+u)r

ρdρdϕdt)(∭
Qsr

ρdρdϕdt)−1, (31)

where u indexes the adjacent polar aperture pixels hit by the
(s, r)th sheared data pixel. The sum of the proportions satisfies
∑u βsru = 1 for each sheared data pixel. Then the discrete
sensing model in Eq. (21) is changed to a more precise model
as

g`mn =∑
r
∑
s
∑
k

∑
u

w`srmnt
`
src

`
srkβsrufsrk, (32)

where the imager is assumed to rotate at a constant speed
and the shutter time τs is assumed to be constant for each
snapshot. Thus, the proportions βsru are unchanged during
distinct snapshots. The sensing matrix H` in Eq. (22) becomes

H` = W`P`B, (33)

where the rotation matrix B contains the proportions βsru for
each data pixel. Since each spectral band has the same rotation
procedure, B consists of L diagonal blocks. Each block has
the same entries, with the dimensions of V ×V . To visualize
H`, the test data cube used in displaying Figure 5 and Figure 7
is applied here. Then the corresponding H` in the continuous
rotation model is displayed in Figure 24.

Figure 24. Sensing matrix in the continuous rotation model H` for a Sin = 8,
Sout = 16 Rin = 2, Rout = 1, L = 2 data cube and an N2 = 42 FPA.

Denote the rotation period of the imager as τr. Assuming K
snapshots are desired, the shutter time τs should have an upper
bound in order to achieve the desired number of snapshots. The
acceptable value range of the shutter time is [0, τr/K]. Then
a normalized shutter time is defined as

η = Kτs
τr

, (34)

where η ∈ [0,1]. In the following experiment, 64-shot mea-
surements are simulated by Eq. (32), applying the continuous
rotation model. A comparison between the reconstructions
with discrete approximation model and the continuous rotation
model is desired. PSNRs are calculated in both reconstruc-
tions, as shown in Figure 25.

Figure 25. PSNR comparison between discrete rotation model reconstruction
and the continuous rotation model reconstruction. 64 continuous rotation
compressed projections are simulated with the normalized shutter time η
increasing from 0 to 1.

From this experiment, A slight PSNR decrease is observed
with the reconstructions by the continuous rotation model
when η increases from 0 to 1; while the discrete rotation
model suffers from a PSNR decrease with an increasing η.
This is because the discrete rotation model fails to model the
imager rotation during each FPA integration period, leading to
g−Hf≠0. The modelling error increases with larger value of η,
reducing reconstruction performance. A further comparison of
reconstruction quality between the two approaches is shown in
Figure 26, where simulations with η = 0.5 are performed. The
reconstructed image using the discrete rotation model shown
in Figure 26 (b) is blurred, with the rotation motion contained.
On the other hand, Figure 26 (a) shows a sharp reconstructed
image by utilizing the continuous rotation model.
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Figure 26. (a) shows the 4th spectral image band reconstructed by applying
the continuous rotation model, with 30.1dB PSNR; (b) displays the same
spectral band recovered by utilizing the discrete rotation model with the
corresponding PSNR 23.6dB.

VI. CONCLUSION

A compressive spectral imaging system mounted on rotating
equipment, such as munitions, has been described. The scene
is spatially coded by a polar coded aperture and spectrally
modulated by a continuous variable circular bandpass filter.
The rotations generate various spatial and spectral modula-
tions. Multiple compressive coded projections are thus cap-
tured on the FPA. An inverse algorithm is then applied to
reconstruct a spatial spectral data cube. Computer simulations
showed accurate spatial and spectral reconstructions when us-
ing only a fraction of the full amount of measurements. Design
parameters, such as the aperture code geometry and CVF
bandwidth, were explored and optimized to enhance image
quality. The imager’s versatility as a hyper-spectral camera
was demonstrated with simulations reconstructing up to 128
spectral bands. A continuous rotation model was developed
and simulated, successfully correcting for image blur observed
in the discrete model. Although the application in guided
munitions requires further research with additional practical
considerations, the computational models and the simulation
results imply a promising result in the real implementation of
the proposed compressive sensing imager.
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