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maging spectroscopy involves the sensing of a large amount 
of spatial information across a multitude of wavelengths. 
Conventional approaches to hyperspectral sensing scan adja-
cent zones of the underlying spectral scene and merge the 
results to construct a spectral data cube. Push broom spec-

tral imaging sensors, for instance, capture a spectral cube with 
one focal plane array (FPA) measurement per spatial line of the 
scene [1], [2]. Spectrometers based on optical bandpass filters 
sequentially scan the scene by tuning the bandpass filters in 
steps. The disadvantage of these techniques is that they require 
scanning a number of zones linearly in proportion to the 
desired spatial and spectral resolution. This article surveys 

compressive coded aperture spectral imagers, also known as 
coded aperture snapshot spectral imagers (CASSI) [1], [3], [4], 
which naturally embody the principles of compressive sensing 
(CS) [5], [6]. The remarkable advantage of CASSI is that the 
entire data cube is sensed with just a few FPA measurements 
and, in some cases, with as little as a single FPA shot. 

IntroductIon
CS dictates that one can recover spectral scenes from far fewer 
measurements than that required by conventional linear scan-
ning spectral sensors. To make this possible, CS relies on two 
principles: sparsity, which characterizes the spectral scenes of 
interest, and incoherence, which shapes the sensing structure 
[5], [7]. Sparsity indicates that spectral images found in nature 
can be concisely represented in some basis W  with just a small 
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number of coefficients. This is indeed the case in spectral imag-
ing where natural scenes exhibit correlation among adjacent 
pixels and also across spectral bands [2]. Incoherence refers to 
the structure of the sampling waveforms used in CS that, unlike 
the signals of interest, have a dense representation in the basis 
W  [7]. The remarkable discovery behind CS is that it is possible 
to design sensing protocols capable of capturing the essential 
information content in sparse signals with just a small number 
of compressive measurements. The sensing modality simply 
correlates incoming signals with a small number of fixed wave-
forms that satisfy the incoherence principle. The signals of 
interest are then accurately reconstructed from the small num-
ber of compressive measurements by numerical optimization 
[5], [6], [8]–[11]. In CASSI, the random projections occur natu-
rally as the result of the optical dispersion phenomena affecting 
coded aperture light fields as they transverse a prism before 
these are integrated by the imaging detector. 

Our intent in this article is to overview the fundamental 
optical phenomena behind compressive spectral imaging sen-
sors, present the key mathematical concepts embodying the 
sensing and reconstruction mechanisms, and describe the opti-
mization framework used to design optimal coded apertures in 
a number of applications, including hyperspectral image recon-
struction, spectral selectivity, and superresolution. The article 
describes many practical aspects of the instrumentation, includ-
ing calibration, discretization models, parameter design, and 
physical limitations, and it illustrates results with real data and 
imagery. A fascinating aspect of compressive spectral sensing is 
that it draws from various disciplines within optics, signal pro-
cessing, and probability theory. Our survey is to highlight the 

rich interaction among these fields of study as they come 
together in the discovery of novel compressive spectral sensors. 
Our treatment explains as plainly as possible four fundamental 
aspects of CASSI: 

1) the sensing problem
2) coded aperture optimization
3) reconstruction algorithms
4) computational spectral imaging. 

It should be noted that compressive spectral imaging is of 
interest in many fields and advances in this area are growing 
rapidly. Consequently, it is not possible to review all work in 
the field, and we focus on CASSI type compressive optical 
sensing. The topics in this tutorial are complemented by a 
companion article in this issue [12], where other approaches 
and methods are described. 

tHE SPEctrAL SEnSInG ProBLEM
The sensing physical phenomena in CASSI is strikingly simple, 
yet it adheres to the incoherence principles required in CS. In 
its simplest form, CASSI measurements are realized optically by 
a coded aperture, a dispersive element such as a prism, and an 
FPA detector [1], [3]. The coding is applied to the (spatial-spec-
tral) image source density ( ; ; )f x y0 m  by means of a coded aper-
ture ( ; )T x y  as realized by the CASSI system depicted in Figure 
1, where ( ; )x y  are the spatial coordinates and m  is the wave-
length [3]. The resulting coded field ( ; ; )f x y1 m  is subsequently 
modified by a dispersive element before it impinges onto the 
FPA detector. The compressive measurements across the FPA 
are realized by the integration of the dispersed field ( ; ; )f x y2 m  
over the detector’s spectral range sensitivity. 
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[FIG1] compressive cASSI sensor components. (Image courtesy of david J. Brady and david S. Kittle.)
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The sensing mechanism is illustrated by the discretized 
model shown in Figure 2, where the spectral data cube F  hav-
ing L  spectral bands and N N#  spatial pixels is first amplitude 
modulated by a pixelated N N#  coded aperture T . 

In this case, T  is a block- or unblock-coded aperture such that 
the energy along the spectral coordinate of the data cube is 
punched out when a block-coded aperture element is encoun-
tered. As the coded field transverses the prism, it is then spatially 
sheared along one spatial axis. In essence, each coded image 
plane at a fixed wavelength is shifted along the x-axis where the 
amount of shifting increases with the wavelength coordinate 
index. Finally, the coded and dispersed field is “collapsed” in the 
spectral dimension by the integration of the energy impinging on 
each detector element over its spectral range sensitivity. The inte-
grated field is then measured by the FPA detector elements. 

Several properties of the sensing phenomena model should be 
pointed out [13], [14]. First, note that the N N#  spatial dimen-
sions of the spectral data cube are mapped to an array of V N#  
FPA measurements, where .V N L 1= + -  This is due to the dis-
persion of the optical field as it transverses the prism. Second, 
observe that the optical coding across rows of the FPA measure-
ments are mutually independent. That is, the aperture coding 
affecting one row slice of the data cube is independent from the 
coding affecting other row slices in the data cube. These charac-
teristics of the sensing phenomena are important, as they shape 
subsequent signal processing algorithms. Third, note how the 
sequence of optical transformations altogether end up in a set of 
compressive linear measurements in the FPA detector. As Figure 
2 illustrates, each FPA shot captures a massive set of compressive 
measurements. 

The discretized output at the detector can thus be mod-
eled as [3] 

 ,Y TF ( )( )( )kj j k k
L

j k j0

1
~= +, , ,,=

-
++/  (1)

where Yj,  is the intensity measured at the ,j ,  position of the 
detector whose dimensions are ( )N N L 1# + - , L  is the num-
ber of spectral bands, Tj,  is the binary coded aperture, and j~ ,  
is the noise of the system. In essence, (1) sums each of the spec-
tral image slices that have been coded and spatially shifted in 
proportion to the wavelength index k . Notice in (1) that each 
discrete spectral band is defined such that a continuous region 
of the analog spectrum span one pixel in the detector. 

Assume that the bandpass filter of the instrument limits 
the spectral components between 1m  and 2m . If the pixel width 
of the detector and of the coded aperture are both equal to D , 
then the number of resolvable bands L  is limited by 

(( ) / ( )),L 2 1a m m D= -  where for a given wavelength m , am  
corresponds to the dispersion induced by the prism, i.e., to the 
displacement of light in the focal plane along the x-axis. 

The spectral resolution is limited by /aD . The horizontal and 
vertical spatial resolutions are limited by D , and the number of 
spatially resolvable pixels of the underlying scene is N N# . 

For spectrally rich scenes or very detailed spatial scenes, a 
single-shot FPA measurement is not sufficient, and additional 
shots are required, each with a distinct coded aperture that 
remains fixed during the integration time of the detector. Time-
varying coded apertures can be realized by a spatial light modu-
lator or by a lithographic mask actioned by a piezoelectric 
device [4], [15], [16]. It was also shown in [15] and [16] that the 
ensemble of say, K L11  FPA shots in one-dimensional vector-
ized form ,, ,y y yT

K
T T

0 1f= -6 @  can be rewritten in the standard 
form of an underdetermined system of linear equations 

 ,y A Hi i ~W= = +  (2)

where A H RKN LN2 2

!W= #  is the CASSI sensing matrix, i  is a 
sparse representation of the data cube in a three-dimensional 
(3-D) basis W, and ~  represents the noise of the system. A 
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[FIG2] An illustration of the spectral optical flow in cASSI. the thq  slice of the data cube F  with 11 nonzero voxels is coded by a row 
of the coded aperture and dispersed by the prism. the detector captures the intensity y  by integrating the coded light. 
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Kronecker basis 1 27W W W=  is often used, where 1W  is the 
two-dimensional-wavelet Symmlet-8 basis and 2W  is the cosine 
basis [17]. The matrix H  in (2) accounts for the effects of the 
coded aperture and the prism. The sensing matrix A  thus cou-
ples H  with the representation basis W. The coded aperture is 
considered binary, and the dispersive element is considered lin-
ear. In practice, it is necessary to take into account the various 
optical artifacts and nonideal characteristic of the optical system. 
Furthermore, the underlying principles of CASSI described 
above are general and are thus, in principle, applicable to imag-
ing with FPAs sensitive to any region of the visible and infrared 
(IR) radiation of the electromagnetic spectrum. 

Signal recovery in CASSI entails solving an underdetermined 
linear system of equations. Given the set of measurements y , the 

inverse CS problem consists on recovering i  such that the 
2 1, ,-  cost function is minimized 

 | | | | | | | | ,arg min y A 2
1i im- +

i
 (3)

where m  is a regularization constant. The inverse problem in (3) 
will be addressed next. At this point, however, it should be 
emphasized that the sensing matrix A  will play a pivotal role in 
sensing and thus its design is of key importance. Other cost 
functions could be used instead of (3). For example, an approach 
based on the stable recovery of a low-rank and joint-sparse 
matrix can be used to reconstruct the hyperspectral information. 
In this case, the optimization problem is regularized to mini-
mize jointly a nuclear norm and a 2 1, ,-  norm [18]. 

To illustrate the underlying concepts above, a wide spectral 
bandwidth reconstruction is shown in Figure 3, acquired with a 
recently developed UV-visible CASSI instrument [19]. The object 
was illuminated using SoLux daylight emulation bulbs and 
bandpass filtered by a Baader Planetarium (Germany) UV-IR cut 
filter with transmission from to420 680 nm. A random, binary 
coded aperture was used in the instrument with a minimum 
feature size of two pixels and total area on the detector of 
, ,1 988 1 988#  pixels. Figure 3 shows the comparison between a 

snapshot reconstruction and a multishot reconstruction with 
24 frames. The prism dispersion is nonlinear, where the shorter 
wavelengths disperse significantly more than longer wave-
lengths. This yields higher spectral resolution and lower spatial 
resolution in the shorter wavelengths and corresponding higher 
spatial resolution and lower spectral resolution for longer wave-
lengths, shown in the blue spectral channel in Figure 3(a) and 
the red spectral channel in (b), respectively.

Code features fewer than two pixels place high demands on 
the optics, alignment, and calibration of the CASSI instru-
ment, especially for small pixel size detectors. The coded aper-
ture is required to disambiguate the spatial and spectral 
information that is multiplexed at the detector. For smaller 
code features, the optical blur, forward model, calibration, 
detector noise, and pixel sampling of the code have a larger 
impact on the reconstruction. A code feature size of two pixels 
(total area of four pixels) guarantees that regardless of where 
the feature is sampled on the detector, it will cover at least one 
pixel to fully modulate the signal. Smaller features will gener-
ally modulate less, where the worst case scenario involves a 
one-pixel feature sampled by four pixels, reducing the modula-
tion to %25 . In general, sampling a square wave (in our case, 
the coded aperture) requires infinite sample points. Even a 
sine wave would require at least two pixels assuming spatial 
Nyquist sampling and interpolation under the assumption of 
lowpass filtering. At the limits of small code features, adequate 
models [14] are required to compensate for undersampling the 
coded aperture. 

A calibration process is realized in CASSI in which the spec-
tral channels are determined so that the centers of each channel, 
at the finest scale, are separated by one column of detector pix-
els. Thus, the position of a channel corresponds to a fixed 
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[FIG3] A comparison between snapshot and multishot cASSI 
reconstructions: (a) snapshot, 490 nm and 24-frame 
reconstruction at 490 nm, (b) snapshot, 612 nm and a 24-frame 
reconstruction at 612 nm, and (c) selected wavelengths from the 
24-frame, reconstructed data cube. An rGB image of the object 
taken with an SLr digital camera is shown in the upper left part 
of (c). notice the relative spatial resolution for the blue and red 
spectral channels. 
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dispersion in terms of detector pixels relative to a fixed spectral 
channel. Charge-coupled device (CCD) measurements at equally 
spaced wavelengths are taken after uniformly illuminating the 
coded aperture with monochromatic wavelength of light within 
the bandpass of the system. These calibration measurements are 
used to build a modified system operator that accounts for the 
optical blur and nonlinear dispersion. The set of measurements 
is obtained with careful efforts to reduce or remove certain data 
corruptive processes, including the dark noise on the CCD, the 
nonuniform spectral intensity of the calibrating light source, and 
the nonuniform spectral sensitivity of the CCD. An alternative 
calibration procedure can be realized using specifically designed 
coded apertures for calibration and by using a high-order model 
of the CASSI phenomena [14]. 

codEd APErturE oPtIMIZAtIon
The sensing matrix A  in (1) plays a crucial role in the mathe-
matics of the inverse CS problem. A large body of literature in 
CS specifically deals with characterizing the “goodness” of A  
[5], [6]. In CASSI, A  is determined by the matrix ,H  which can 
be shown to have the structure shown in Figure 4 [4], [15], [16]. 
It consists of a set of diagonal patterns (circled) that repeat in 
the horizontal direction, each time with a unit downward shift, 
as many times as the number of spectral channels. Each diago-
nal pattern, circled in Figure 4, is the coded aperture pattern 
itself. Just below, the next set of diagonal patterns are deter-
mined by the coded aperture pattern used in the next FPA shot. 
The matrix H  will thus have as many sets of diagonal patterns 
as FPA measurements. Initially, commonly used coded aper-
tures in CASSI included Hadamard matrices, S matrices, and 
Bernoulli random matrices [1]. 

The use of these coded apertures was principally motivated by 
the realization that they are well conditioned when used in least 
square estimation [1]. However, these code designs do not fully 
exploit the rich theory of CS. Given that the coded apertures 
determine the nonzero entries of the sensing matrix, the impor-
tant question can be asked: Can the coded apertures be optimally 
designed? Remarkably, the answer is yes, where the restricted 
isometry property (RIP) provides the optimization criteria [6]. 

The RIP establishes the conditions necessary for A  such that 
the 2,  norm of the underlying 3-D spectral image is approxi-
mately preserved under the transformation Ai . More precisely, 
for each integer , , ,S 1 2 f=  define the restricted isometry  
constant sd  of the matrix A  as the smallest constant such that 
the RIP inequality ( ) | | | | | | | | | | | | ( )1 1As s2

2
2
2

2
2# #i iid d- +  

holds for all S -sparse vectors i  [7]. A more intuitive 
description of the RIP is that it requires that subsets of S  
columns taken from A  to be nearly orthogonal, or equiva-
lently, that all | |m T#  column submatrices A | |T  of A  are 
well conditioned for all | | ST # . This, in turn, implies that 
all pairwise distances between S -sparse vectors are well 
preserved in the compressed signal space such that 
( ) | | | | | | | | | | | | ( )1 1A As s2 1 2 2

2
1 2 2

2
1 2 2

2
2# #i i i i iid d- - - - +  

holds for all S -sparse vectors 1i , 2i . If the RIP holds for the 
sensing matrix A , one can discriminate among S -sparse signals 

in the compressed domain and consequently it is then possible 
to accurately reconstruct any i  from its projection .Ai  

The RIP inequality can be rewritten as || | | | | | | | |A 2
2

2
2 #i i-

| | | |s 2
2id  or equivalently as | ( ) , | | | | | ,AA IT

s 2
2#G Hi i id-  

where I  is an identity matrix. Constraining the vector i  to 
|| | | ,12

2i =  taking the supremum over all the vectors i  with 
( ) ,supp T1i  | | ,ST #  and taking the maximum with  

respect to all the subsets T  leads to max , | |s nT Tm = 1 #6 @

( ),s A I| | | | | |max T T Tm -  where ,A A A| | | | || | |
T

T T T T=  and n N L2=  
The probability of satisfying the RIP condition is thus calculated 
by estimating the statistical distribution of the maximum eigen-
value maxm  of the matrices .A I| | || | |T T T-

The design strategy is then formulated as seeking the set of 
coded apertures { , , },T Tj j

K0 1f, ,
-  such that 

 , , ( ),argmin maxT T A A I
{ , , }

| | | | | |
, | |

maxj j
K

T T n S

T0 1

T T
T T T

j j
K0 1

f m= -
f

, ,
1 #

-

, ,
- 6 @

 (4)

where the entries of A | | | |TT  are determined by the coded aper-
tures. For a set of K  coded apertures { , , , },T T Tj j j

K0 1 1f, , ,
-  as 

depicted in Figure 5, it turns out that the correlation variable 
[Figure 5(b)] 

 z T T T T T Tj
j j j j j

K
j
K0 0 1 1 1 1

1 2 1 2 1 2 1 2g= + + +, , , , , , , ,
- -  (5)

strongly influences (4) and consequently the RIP in CASSI [20]. 
As depicted in Figure 5, T Tj j1 2, ,

ii  is the product of two elements 
of the ith coded aperture, both at the jth row, but at the column 
positions 1,  and 2, . The first- and second-order statistics of 
z j1 2, , , specifically the mean { }E z mj

1 2 =, ,  and ( ) ,zVar j 2
1 2 v=, ,  

have a critical effect on (4). The expectation in this case is over 
the random selection of the entries .T Tj j1 2, ,

ii  
Let the entries of W  be ,,j kW  then using the structure of  

the matrices H  in Figure 4, the entries A | | | | k kTT 1 2
^ h  can be 

obtained as [4] 
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[FIG4] the sensing matrix H where the (circled) diagonal 
patterns repeating horizontally correspond to the coded aperture 
pattern used in the first FPA shot. the second coded aperture 
pattern determines the next set of diagonals. the figure depicts 
the sensing of four spectral bands and two FPA shots.
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=
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=

-

////  (6)

for , , , | | ,k k 0 1T1 2 f= -  where k1X  and .Tk2 !X  Note that 
the coded aperture entries determine z( )( )j r j r

j
2 1 2 2

1
- -  in (6), which in 

turn determine the statistical properties of the entries 
.A | | | | k kT T 1 2

^ h  It was also shown in [20] that the entries in (6) can 
be roughly approximated as independent and identically distrib-
uted Gaussian variables ( , ( ))C m0A N| | | | k k 1

2 2
T T 1 2

- v +^ h  such 
that the concentration of measure for this type of matrices can be 
applied [21]. A relation between the statistics of (6) and the proba-
bility of correct reconstruction is then established using the con-
centration of measure. The variance of the entries in the 
Gaussian approximation depends on the variance 2v  and mean 
m  of the variables .zi 1 2, ,  To guarantee that the diagonal elements 
of A | | | |T T  satisfy 1E A | | | | k kT T =^^ h h  for all ,k  these are normal-
ized by constraining the coded apertures to satisfy 

T Cji
K 2

0
1 =,=

- i^ h/  for all j  and ,,  where C  is a selectable con-
stant. The so-called Boolean-coded apertures are defined as those 
whose entries satisfy { , } .T 0 1j !,

i  In which case, /m C K2 2=  and 
( ) /K C2 2v = -  ( ( )) .K K 12 -  The term m2 2v+  can be mini-

mized by setting C 1=  implying that in each spatial position, 
only one coded aperture from the ensemble of K-codes contains a 
nonzero value. Thus, for each j  and ,  the optimal coded aper-
ture entries under the criterion (4) are obtained by satisfying the 
constraints T 1j

0 =,
i  and T 0j =,

i  for .i i0!  
Figure 5(a) illustrates an optimal Boolean ensemble for four 

coded apertures of size .64 64#  As indicated in the zoomed-in 
regions of the coded apertures, there is only one nonzero ele-
ment for each ,j ,  position of the ensemble. Figure 6(a) 

illustrates a portion of the ground truth of a 16-band spectral 
data cube sensed with a monochromator. Figure 6(b) illustrates 
a corresponding compressive measurement. Figure 6(c) shows 
the reconstruction of a data cube of 16 bands using the optimal 
Boolean-coded apertures. Figure 6(d) depicts the reconstruction 
using an ensemble with random entries. Notice in Figure 6 that 
the resulting spectral data cubes are shown as they would be 
viewed by a Stingray F-033C CCD color camera. 

rEconStructIon FroM coMPrESSEd 
MEASurEMEntS
Several numerical algorithms are available to solve the inverse 
problem in (3). These can be grouped into one of five computa-
tional approaches [10]. Algorithms based on greedy pursuit itera-
tively find an estimate of the solution by selecting atoms of a 
dictionary and the correspondent weighting factors such that the 
signal can be represented as a linear combination of these vec-
tors. This approach is implemented by algorithms such as the 
orthogonal matching pursuit (OMP) and compressive sampling 
matching pursuit (CoSaMP). The second type of algorithms solve 
a convex optimization problem. This includes interior-point 
methods such as 1, -magic software and gradient-descent meth-
ods like the sparse reconstruction via separable approximation 
(SpaRSA), the two-step iterative shrinkage/thresholding algo-
rithm (TwIST), and the gradient projections for sparse recon-
struction algorithm (GPSR) [10], [22], [23]. The third approach 
uses a Bayesian framework that finds a maximum a posteriori 
estimator assuming a prior distribution of the unknown coeffi-
cients of the signal to recover [8]. Other techniques include 
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[FIG5] (a) An optimal ensemble of four 64 64#  Boolean-coded 
apertures. White colored squares indicate ,T 1j =,

i  and black 
colored squares indicate T 0j =,

i . Zoomed-in areas show that 
each spatial coordinate in the ensemble contains only one one-
valued entry. (b) the elements T ( )j1 2 1, , -

k  and T ( )j1 2 2, , -
k  for 

, ,k K0 1f -=  are multiplied and the products are then added 
to obtain one realization of the random variable z  in (5).

(a) (b)

(c) (d)

[FIG6] (a) the original data cube and (b) compressive FPA 
measurement. reconstructions from six shots using (c) Boolean 
(PSnr 40.41 dB) and (d) random (PSnr 27.72 dB). the resulting 
spectral data cubes are shown as they would be viewed by a 
Stingray F-033c ccd color camera. (Image courtesy of G.r. Arce 
and H. Arguello.)
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nonconvex optimization [24] and brute force, which attempts to 
find the solution by trying all possible support sets. A tutorial 
review of the algorithms in each of these class-types and their 
associated complexity is found in [10]. Typical computations per-
formed by these algorithms include matrix pseudoinverses, 
sparse basis transformations, and vector-matrix multiplications. 
Given that the underlying signals are high dimensional, these cal-
culations require a large number of floating point operations. For 
instance, in each iteration of the GPSR algorithm, approximately 
( )O KN L4  operations are computed where K  is the number of 

measurement shots, N  is the spatial dimensions, and L  is the 
number of spectral channels of the data cube. Reconstructions of 
large scenes are indeed overwhelming since they can take hours 
in desktop architectures [13], [16]. 

The computational burden can be ameliorated by working 
with separable sensing operators [25] or fast field-programmable 
gate array and graphics processing unit implementations of the 
reconstruction algorithms [26]. Instead of relying on hardware 
solutions, the computational complexity can be also addressed by 
exploiting the physical properties of the CASSI optical sensing 
phenomena. In particular, it is possible to reconstruct the under-
lying 3-D data cube from a set of reconstructions obtained from 
nonoverlapping FPA windowed measurements. In this manner, 
the GPSR reconstruction algorithm performs ( )O KB L4  opera-
tions per iteration on each B B#  windowed measurement with 

.B N4 4%  After the recovery of the set of images, these are tiled 
together to assemble the complete data cube reconstruction. 

Consider a B B#  measurement window Y ,m n
i  within the FPA 

detector at the ith shot, as shown in Figure 7, where the energy 
in the windowed measurements is traced back through the opti-
cal system. After the prism, the energy to be collected by the 
B B#  FPA window is a coded and dispersed square source cube 
with L  spectral bands. If these voxels are traced back before they 
impinge on the prism and the coded aperture, the voxels no lon-
ger form a cube but instead they form an oblique parallelepiped 
consisting of L  spectral bands, with each one shifted one spatial 
position in the horizontal axis. Figure 7 illustrates how an 
oblique parallelepiped Fmn  of the data cube, which is amplitude 

modulated by a coded aperture of size ( )B B L 1# + -  and spec-
trally sheared by the prism, results on a B B#  block of measure-
ments at the detector. In other words, the voxels that are sensed 
in a B B#  area of the detector emanate from an oblique volume 
in the source and not from a cube. Furthermore, the oblique par-
allelepiped volume, once it is sheared by the prism, is trans-
formed into a B B#  cube before it impinges onto the detector. 

The energy impinging on an adjacent nonoverlapping win-
dow at the FPA can be traced back to the source in a similar 
manner, such that the entire FPA measurement Yi  can be 
expressed as an ensemble of B B#  nonoverlapping measure-
ment windows as 
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The total number of windows in the set is ,N Vl l  with 
/N BN =l  and ( ) / ( ) ,BV N L 1= + -l ^ h  with B  determining 

the partition block size. 
Now consider the reconstruction of the oblique parallelepi-

ped based on its compressive projections .Y ,m n
i  The compressive 

projection of the parallelepiped block Fmn  is given by 

 ,y H fmn
i

mn
i

mn mn
i~= +  (8)

where Hmn
i  is a B B L2 2#  submatrix of Hi  obtained by choosing 

the rows and columns that affect each windowed FPA measure-
ment, ymni  and fmn  are the vectorized representations of Y ,m n

i  and 
,Fmn  respectively. Equation (8) is referred to as the block-model 

projection. The set of windowed measurements from sequential 
FPA shots can then be assembled as in the CASSI model to obtain 

, ,y y ymn mn
T

mn
K T T0 1f= -^ ^h h6 @  and the correspondent matrices 

Hmn
i  are assembled as , , .H H Hmn mn

T
mn
K T T0 1f= -^ ^h h6 @  The matri-

ces Hmn
i  preserve the structure of Hi  in Figure 4 except that the 

dimensions are now considerably smaller. The multishot block 
CASSI model can be rewritten as 

 .y H fmn mn mn mn~= +  (9)
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[FIG7] Each B B#  window at the detector results from sensing a B B L# #  oblique parallelepiped block of the data cube. (reprinted 
and used with permission from [13].)
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Each individual set of windowed measurements ymn  in (9) is 
now used to recover an oblique parallelepiped Fmnt  within the 
data cube. A vectorized representation of Fmnt  is then recovered 
by solving 

 | | | | | | | |argminf y Hmn mn mn mn2 1
mn

i ixW W= - +
i

,l l lt
` j  (10)

where il  is a sparse representation of fmnt  in the basis .Wl  
Notice that the inverse problem in (10) is similar to that in (3) 
of the traditional approach. The difference lies in that the spar-
sifying basis Wl representing the Kronecker product of a wave-
let basis and the cosine basis has smaller dimensions than W  
since Fmn  is a smaller section of the data cube .F  

The full data cube Ft  is assembled by tiling all the recon-
structed oblique parallelepipeds. Since the number of opera-
tions per iteration in CS reconstruction algorithm grows 
rapidly with the size of the measurement vector, the compu-
tational complexity in the block CASSI model decreases rap-
idly as the number of partitions increase. In particular, the 
GPSR in CASSI performs approximately ( )O KN L4  operations 
per iteration to recover a N N L# #  data cube using K FPA 
measurements. The block model reduces the number of 
operations to O KN B L2 2^ h operations. If distinct processors 

are used to reconstruct separately each of the N 2l  blocks, 
then the number of operations per core is .O KB L4^ h  

Figure 8 illustrates the reconstruction quality attained by 
the block CASSI model. A detailed analysis of the block CS per-
formance in PSNR is presented in [13] where the improvements 
in image reconstruction are described at length. Figure 8 shows 
an original 512 512 32# #  data cube, the block model recon-
structed data cube, and the traditional CASSI model reconstruc-
tion. Using an Intel Core i7 3.30 GHz processor PC with 32 GB 
RAM memory, the block model and the standard CASSI take 
approximately . .K0 71 3 6+  min and . .K1 58 7 8+  min, respec-
tively, to reconstruct the complete data cube, where K  is the 
number of shots. The reconstruction of one parallelepiped asso-
ciated with a single block takes . .K0 045 0 28+  min; thus, if 
multiple processing is available, the block reconstruction can 
offer significant faster processing. 

The block CASSI model is general and can be used with any 
CS reconstruction algorithm. For instance, the Bayesian recon-
struction framework introduced in [27] is noteworthy, with an 
approximate posterior distribution on model parameters inferred 
assuming a prior distribution of the unknown coefficients of the 
signal to recover. In this approach, one seeks to recover not only 
multiple fmn  but to also infer on the underlying dictionary with 
which the data may be represented. Specifically, we wish  
to jointly recover all { }fmn  and ,Wl  where the latter is an over-
complete dictionary. It is assumed that ,fmn mn mni ~W= +l  
where RB L U2

!W #l  with ;U B L22  mni  is sparse, and mn~  
again represents noise. Each measurement is of the form 

.y Hmn mn mn mni ~W= +l  The theoretical underpinnings are 
developed in [28], where a number of illustrative experiments are 
given. A key distinction of this approach with conventional CS 
reconstruction algorithms is that Wl and mni  are estimated 
simultaneously, implying that the measurements are “blind” to 
the underlying W  in which each fmn  may be sparsely rendered. 
This is achievable because N Vl l different signals ymn  are jointly 
processed and analyzed. This framework has been coined as blind 
CS [28]. In this framework, a prior is placed on the noise vari-
ance, and this is inferred within the analysis. The noise statistics 
are assumed Gaussian within the prior, but the posterior may dif-
fer from the Gaussian assumption. The dictionary learning 
employed here represents each patch of data in terms of a sparse 
subset of dictionary elements. One may show that this model has 
close similarities to Gaussian mixture modeling (GMM) with 
(near) low-rank covariance matrices [29], with this in turn closely 
related to recent work on low-rank data modeling [30]. Low-rank 
models assume the data live in a single linear subspace, with the 
GMM assume the data live in a union of linear subspaces [29]. 

coMPutAtIonAL SPEctrAL IMAGInG
The coded aperture patterns determine the quality of CASSI 
measurements. Good codes provide better measurements that, 
in turn, render more accurate signal reconstructions. Compu-
tational spectral imaging goes a step further by jointly opti-
mizing the coded apertures and the computational modules to 
produce new types of imagery that could benefit vision in 

(a)

(b)

(c)

[FIG8] (a) the original rGB and zoomed-in version of the 
512 512 32# #  data cube. reconstructions for 10 FPA 
measurement shots using (b) the block approach with block size 
B 64= , 31.84 dB and (c) the traditional reconstruction approach, 
30.99 dB. Block overlapped was used in this example [13].
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different applications. This tutorial describes computational 
algorithms for spectral selectivity and super resolution. Com-
putational tools exist for a number of other applications as 
detailed in the recent literature [1], [31], [36], [37] and in the 
companion article [12] in this issue.

SPECTRAL SELECTIVITY
It is often known a priori that objects of interest in a scene do 
not contain a spectral component over the full range of wave-
lengths but in a subset of wavelengths. Notably, the coded aper-
ture patterns can be designed so as to maximize the information 
content on a prespecified subset of spectral bands of particular 
interest. Spectral selectivity is of interest in many applications, 
including wide-area airborne surveillance, remote sensing, and 
tissue spectroscopy in medicine. The optimal spectral bands in 
airborne surveillance, for instance, depend on atmospheric con-
ditions, time of day, the targets of interest, and the background 
against which the targets are viewed [4], [15]. Efforts placed on 
acquiring the entire spectral image cube, to then throw away a 
large portion of this data is wasteful in many regards. 

To this end, coded apertures can be used to attain spectrally 
selective compressive measurements [4], [15]. A spectrally selec-
tive coded aperture, denoted as ,Ti  is formed from two concate-
nated coded apertures, which simplifies the optimization. The 
first coded aperture wi  is a structured code optimized to attain 
the spectral band selectivity. The second coded aperture ri  is a 
pseudorandom binary code necessary to attain randomized mea-
surements in CASSI. The coded aperture used in each measure-
ment is obtained by the Hadamard product ,T w ri i i

5=  and its 
optimization is divided in two parts. Since row measurements in 
CASSI are independently coded, the model in (2) is first rewrit-
ten as ,y H C wkk

V T k
0

1 1H=
=

- +l ^ h/  where y  is the compressive 
measurement and Hkl  representing a row of the data cube F  and 
the prism effect, C  is an antidiagonal matrix with all the non-
zero entries equal to one, and H  is a permutation matrix [4]. 
Note that the term C wT k 1H +^ h  represents the effects of the 
coded aperture operations on the sheared data cube .Hkl  Since 
the desired spectral bands of interest are known a priori, an 
approach to design the coded apertures is to create a desired 
compressive measurement d  where the data cube is first modi-
fied such that the spectral bands that are of no interest are 
zeroed out. A compressive measurement based on the modified 
data cube would be ideal in the sense that it would only contain 
information from the spectral bands of interest. The desired 
compressive measurement is then obtained as d H

K

V
k0

1
m=

=

-
l/  

where the entries of m  are 1jm =  if the jth band is desired and 
zero elsewhere. The desired compressive measurement d  is next 
equated to the compressive measurement y  attained with the 
full data cube sensed by the CASSI imager leading to the follow-
ing structures for the coded apertures 

 ( ) , , .j L0 1w Cj j 1 1 fH m= = -+ -  (11)

The solution in (11) requires L  vectors, however, the number of 
vectors can be reduced by exploiting their interdependence. More 

specifically, to estimate K L1  linearly independent weight vec-
tors, the coded apertures are arranged into the matrix 

, , .M w ww
L0 1f= -6 @  The minimum number of shots K  for a 

given set of bands of interest is the number of independent col-
umn K  of Mw  determined by ,K rank Mw= ^ h  the rank of the 
matrix Mw  [4]. The K  linear independent columns of Mw  are the 
linear independent weight vectors , ,w wW K0 1f= a a -6 @ selected 
from .Mw  The remaining L K-  columns of Mw  can be esti-
mated using the ensemble of vectors in .W

Once the components w j  of the coded apertures have been 
optimized, these are fixed and the companion pseudorandom 
components ri  are then optimized so as to further minimize 
the required number of shots. This is achieved by minimizing 
the rank of the matrix M r r Wt

K0 1
&f= -6 @  such that 

( ) ( ),rank rankM Mt w1  where &  is the element by element 
multiplication operator and where the search of the vectors ri  
is such that the CASSI measurements better satisfy the RIP. 
The rank minimization of Mt  is an NP hard problem such that 
a stochastic algorithm can be used to approximately solve this 
optimization [4]. 

To illustrate the design of coded apertures with spectral 
selectivity, consider again the data cube F  with 512 512#  pix-
els of spatial resolution and L 24=  spectral bands ranging 
from 460 nm to 668 nm. The desired spectral bands are set to 

,461 479 641 668nm nm nm nmm = - -6 @ as depicted in Fig-
ure 9(e). In this case, the initial rank of the matrix Mt  is 24. 
Using a stochastic based optimization algorithm [4], the rank of 
the matrix Mt  is minimized to 12. The resulting spectral data 
cubes are shown as they would be viewed by a Stingray F-033C 
CCD color camera: Figure 9(a) shows the original bands, Figure 
9(b) depicts the reconstruction of the same scene from 12 Ber-
noulli random coded aperture compressive measurements, Figure 
9(c) shows the results when 12 optimized coded apertures are 
used in the sensing and reconstruction, and Figure 9(d) shows one 
of the optimal spectrally selective coded apertures. Figure 9 illus-
trates the gain attained by optimal coded apertures in terms of 
spectral resolution and higher quality of reconstruction. 

SuPERRESOLuTION
While FPAs are available across the IR spectrum, there is con-
tinued interest in the development of larger format FPAs for 
increased resolution [32], [33]. Increasing the size and resolu-
tion of FPAs comes with ever-increasing costs. Notably, coded 
apertures can be designed to yield superresolved reconstruction 
by leveraging computational imaging [34], [35]. The goal is to 
translate high-resolution scenes into compressed signals mea-
sured by low-resolution or small-format detectors. Superresolu-
tion can be attained not only spatially but also spectrally, where 
the number of spectrally resolved image planes is increased. 

Let cD  and D  be the coded aperture pitch and FPA pitch, 
respectively, and let / .r cD D=  A critical requirement to achieve 
superresolution is that .c 1D D  If ,cD D=  the resultant spec-
tral imaging system is equivalent to the standard CASSI archi-
tecture. On the other hand, when the pitch resolution of the 
coded aperture is reduced to the extreme where all the elements 
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of the coded aperture are mapped to just one pixel in the detec-
tor ,N cD D=^ h  the imaging system becomes the single pixel 
camera [12]. Superresolution CASSI is realized when the pitch 
resolution lies somewhere between these two extremes, i.e., 
when cD  lies in the interval ( / ), .ND D^ h  It is important to 
observe that the minimum value for cD  is limited by the dif-
fraction limit of the instrument. 

The random projections in superresolution CASSI are given 
by ,y DH iW=  where H  is the CASSI measurement matrix 
shown in Figure 4, and D  is a decimation matrix with size 
( ( )) / ( ) ( ),rN N L N N L1 1#+ - + -  where r  represents the 
decimation ratio induced by the low-resolution FPA [35]. The 
decimation matrix D  accounts for the integration of light in the 
detector when pixel mismatch c 1D D  is introduced. A set of K  
low-resolution FPA measurements are first captured, each one 
having N M#l l compressed measurements, with /NN D=l  and 

( ) /M M L 1 D= + -^ h being the low-resolution detector height 
and width, respectively. Superresolution CASSI allows one to 
exploit subpixel information of a scene to obtain a high-resolu-
tion spectral image from low-resolution measurements. As the 

number of FPA measurement increases, the superresolved mea-
surements lead to a rapid increase of image reconstruction qual-
ity. The standard CASSI measurements, on the other hand, 
cannot provide improved performance after a few shots. Figure 
10 illustrates this concept for ,r 4=  where the CASSI image 
reconstruction quality after 48 shots (24.95 dB) is compared with 
the superresolved CASSI, which attains over a 3 dB gain in PSNR 
by exploiting subpixel information. 

concLuSIonS
Compressive spectral imaging with coded apertures benefits 
from the use of simple optical sensing elements to harness 
compressive projections. CASSI snapshot spectral imagers are 
both, remarkably simple and surprisingly efficient, making 
them attractive in a number of applications in remote sensing 
and surveillance. Their power emerges from the combination 
of optics with the rich theories of CS and computational imag-
ing. While CASSI spectral imagers naturally embody the con-
gruence of these fields, new spectral imagers as well as more 
general multidimensional imaging sensors are being discov-
ered by the use of more advanced optical and photonic devices 
as sensor elements. The potential of coded aperture optimiza-
tion and optical sensing in multimode and multidimensional 
imaging holds great promise in the near future, providing fer-
tile ground for signal processing exploration. 
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