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Abstract: Radiation dose is a concern in X-ray tomographic imaging;
coded aperture compressive X-ray tomosynthesis is an approach used to
reduce radiation. It places a coded aperture in front of an X-ray source
in order to obtain 2D patterned projections of a three-dimensional object
onto a detector plane. By using different coded apertures in a multiple
source system, multiplexed projections can be obtained instead of sequen-
tial projections as in conventional tomosynthesis systems. Compressed
sensing (CS) reconstruction algorithms are then used to recover the three-
dimensional data cube. An optimization approach to design the structure of
the coded apertures in a multiple source compressive X-ray tomosynthesis
imaging system is presented. A uniform energy criteria on the voxels and
detector elements is used so that the object is uniformly sensed and the
elements of the detector plane uniformly sense the information. Simulations
and experimental results for optimized coded apertures are shown, and their
performance is compared to the use of random coded apertures.
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1. Introduction

X-ray tomosynthesis imaging systems have become essential in medical imaging diagnostic
tasks such as coronary angiography, dual energy imaging and mammography, among others
[1]. Recent data suggest that medical radiation exposure may significantly increase the risk
of adverse radiation effects, including damage of body cells and even DNA molecules [2].
In order to reduce damage that radiation can cause to patients, optimized hardware settings
have been proposed by lowering the number of angles at which projections are taken [3]. In
this sense, tomosynthesis can be considered a limited-angle computed tomography (CT) that
results in less radiation exposure for the patient [3]. However, the reduction of measurements
leads to a highly ill-posed inverse problem, sensitive to measurement and modeling errors.
Filtered backprojection (FBP) image reconstructions with ill-posed systems of Eqs. produce
artifacts and noise that make the reconstructions useless for medical diagnosis [4]. Sparsity-
promoting and total variation regularization algorithms have been recently used to improve the
ill-posed inverse problem, obtaining better image reconstructions [5]. Reducing the number of
angle or projection rays, invariably leads to artifacts in reconstructions. Coded aperture X-ray
tomography is one approach that can overcome these limitations.

In [6], Choi et al. introduced coded aperture X-ray tomosynthesis, which goes beyond sparse
regularization since it allows the acquisition of compressive measurements. The physical cod-
ing in coded aperture X-ray tomosynthesis controls the correlation between the measurement
vectors. The projections used in [6], however, used random coded apertures. No coded aperture
optimization was considered. The optimization of coded aperture for the coded aperture com-
pressive X-ray tomosynthesis system is introduced in the present work, further reducing the
radiation exposure in compressive tomosynthesis. Furthermore, multi-frame measurements are
obtained by taking sequential snapshots of the object, which leads to more degrees of freedom
and improved results. The performance of the optimized codes is compared to that of random
codes by means of the singular value decomposition (SVD) analysis of the forward operator.

Recently, in [7], Kaganovsky et al. introduced coded aperture projections for medical CT
scanner geometries. Random coded apertures are used to modulate the measurements obtained
by varying the angle and detector use for each projection [7]. The methods presented in this pa-
per for compressive X-ray tomosynthesis can be extended to the third-generation CT scanners,
in which a fan beam X-ray source rotates around the object.

2. Forward projection model

The X-ray transmission imaging model for a single source is given by the Beer-Lambert law
[8]: I = I0 · e−

∫ ∞
0 μ(x)dx, where I0 is the intensity of a particular X-ray originated from the X-ray

source passing through the object, I is the measured intensity in the detector, and μ(x) is the
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Fig. 1. (a) X-ray tomosynthesis. The system matrix Hi determines the mapping of the X-
ray cone beam sources to the detector. Each row describes the sensing for a particular
detector element and each column corresponds to the sensing of a particular voxel. (b)
Coded aperture compressive X-ray tomosynthesis. The energy of each source is modulated
by means of a coded aperture.

linear attenuation coefficient varying in the location given by x. If such X-ray source is located
at position �s and illuminates an object in direction θ̂ , the data function for the imaging model
is given by y(�s, θ̂) = −ln(I/I0). Therefore, Beer-Lambert law can be rewritten as y(�s, θ̂) =
∫ ∞

0 f (�s+ xθ̂)dx, where f corresponds to the three-dimensional object function, i.e., the X-ray
linear attenuation coefficient map. This continuous-to-continuous imaging model is known as
the X-ray transform [3].

The imaging model needs to be discretized since only a discrete number of measurements can
be taken. Thus, the three-dimensional data cube is represented by a vector formed by a discrete
number of unknowns [f] j with j = 0, · · · ,Q− 1 that correspond to the attenuation coefficients
of each of the voxels that constitute the object f ∈R

Q, where Q = Q1 ×Q2 ×Q3 corresponds to
the number of voxels and Q1 is the number of slices of dimensions Q2 ×Q3 each. The detector
is designed to be a two-dimensional plane composed by M = N1 ×N2 detector elements placed
under the object as shown in Fig. 1(a).

The projection measurements are recorded by each of the detector elements such that [y]m ∈
R

M for m= 0, · · · ,M−1, corresponds to the mth detector measurement. Tomosynthesis sensing
with a single source i can be written as a finite linear system of Eqs. of the form yi = Hif, where
the matrix Hi of dimensions M×Q is the system matrix obtained by specifying the hardware
settings. The weights correspond to the mapping of the cone-beam energy radiating from the X-
ray source onto the detector. As shown in Fig. 1(a), each of the elements in the weighting matrix
Hi, i.e., [Hi]m j, correspond to the portion of the volume of voxel j that is irradiated by the X-ray
associated with the detector element m. Moreover, each of the rows of Hi corresponds to the
information gathered by one detector and each of the columns corresponds to the information
gathered from a single voxel.

Compressive X-ray tomosynthesis multiplexes measurements from multiple sources onto the
detector. Coded apertures are placed in front of each of the cone-beam sources to modulate the
energy of each X-ray source, producing a particular coded projection onto the detector plane
[6]. The coded apertures have the same number of elements as the detector plane. The size of the
elements of the coded apertures is fixed to obtain one-to-one correspondence with the detector
elements. The coded aperture Ti is paired to the corresponding ith source, for i = 0, · · · ,P− 1
with P being the number of sources with each (u,v) element in the code denoted by (Ti)uv ∈
{0,1}, where 0 blocks the X-ray beam and 1 lets the X-ray beam pass. The configuration for the
coded aperture compressive X-ray tomosynthesis is shown in Fig. 1(b). Each of the sources has
a different projection yi and a different system matrix Hi. To account for the coded apertures,
the matrix Ci is defined as a diagonal matrix whose diagonal elements are the elements of
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the coded aperture Ti, i.e Ci = diag((Ti)00,(Ti)12, · · · ,(Ti)(N−1)(N−1)). Therefore, the sensing
process for a single source i is given by yi = CiHif.

To generalize the sensing process, C is defined as the matrix concatenating the struc-
tures of the coded apertures of the P sources C = [C0|C1| · · · |CP−1], and H is defined as
H = [H0|H1| · · · |HP−1]

T . Thus, the measurements for a multiple source system are described
by

y =

(
P−1

∑
i=0

CiHi

)

f = CHf. (1)

The reconstruction of f from y describes an ill-posed problem; thus, it cannot be solved by the
use of traditional least square approaches. In general, the solution is not unique [4]. However,
compressive sensing (CS) asserts that the function f can be recovered, provided two principles
are met: 1) the function f is sufficiently sparse in some basis Ψ, and 2) the basis used to represent
the object and the system matrix used to sense the object are incoherent [9].

Let f be represented by f = Ψθ ∈ R
Q, where θ is the sparse coefficient representation of

the object, and Ψ is the basis representation. The cumulative sensing at the detector from all P
sources is given by y = CHΨθ = AΨθ , where A ∈ R

M×Q is the sensing matrix, with M � Q.
The mapping of the energy from all sources onto the detector y captures the modulated energy
of all X-ray sources by the coded apertures and the effect of the three-dimensional data-cube
on the coded X-ray field.

The number of compressive measurements obtained by one shot may not be sufficient for ad-
equate reconstruction. Therefore, the sensing can be generalized to account for K 2D snapshot
projections and P sources, located in a fixed position. The coded aperture for the ith source and
kth shot is denoted by Tk

i , for k = 0, · · · ,K−1. The matrix Ck
i is the diagonal matrix associated

with Tk
i . Define Ck = [Ck

0|Ck
1| · · · |Ck

P−1], thus yk corresponds to the measurements for the kth

shot, which can be rewritten as yk = CkHΨθ = AkΨθ . Defining ỹ = [y0|y1| · · · |yK−1]T, the
sensing process for K shots and P sources is described by:

ỹ = C̃Hf = C̃HΨθ = ÃΨθ , (2)

where C̃ = [C0|C1| · · · |CK−1]T. In order to reconstruct the object f, the under-determined
system of Eqs. given in (2) is solved by minimizing the cost function ‖ỹ− ÃΨθ‖2

2 +λ‖θ‖1,
where λ is a regularization constant and ‖ · ‖1 and ‖ · ‖2 correspond to the �1 and �2 norms,
respectively. This method of data acquisition provides a means to attain multiplexed coded
measurements.

3. Coded aperture optimization

Multiplexed tomosynthesis introduced by Choi et al. in [6] used random projections generated
by coded apertures with entries randomly distributed. These codes are, in general, sub-optimal
since they do not take into account the fixed geometry of the tomographic system. The coded
aperture optimization framework is described next.

3.1. Optimization constraints

Given K tomosynthesis detector measurements, the goal is to design K distinct coded apertures
for each of the X-ray sources. Let Tk

i be the coded aperture assigned for the ith source and the
kth shot. Note that the coded aperture does not depend on the object under inspection but on
the structure of the system matrix H. To achieve incoherent measurements and non-redundant
sensing, the coded apertures can be designed such that uniform sensing is achieved under the
following criteria.
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Criterion 1 Achieve uniform sensing in the detector: Each detector element should measure
approximately the same amount of information, indicating that the detector elements are sens-
ing the data cube uniformly. Sensing matrix Ak is binarized so that each entry Ak

mq represents

if the qth voxel is sensed by the mth detector element. Vector dk is defined as the matrix product
between the matrix Ak and a Q-long one-valued vector μQ = [1, · · · ,1]T i.e. dk = AkμQ, where

dk represents the sum along the M rows of the sensing matrix Ak, i.e. for the kth shot. Since
each of the rows of the sensing matrix corresponds to the information related to certain detector
element, each of the elements of the vector dk represents the number of voxels measured by the
aforementioned detector element [10, 11]. For multiple shots, the goal is to reduce the variance

between entries of each vector dk, thus making the entries of the vector d = 1
K

K−1
∑

k=0
dk uniformly

distributed.
Criterion 2 Uniformly sense the data-cube voxels: The number of times a certain voxel is

measured should be approximately the same for all voxels. To this end, rk is defined as the ma-
trix product between the transpose of the sensing matrix Ak T and an M-long one-valued vector
μM = [1, · · · ,1]T i.e. rk = Ak TμM , where rk represents the sum of the columns of the sensing
matrix for the kth shot. Each of the columns of the sensing matrix is related to a particular
voxel of the three-dimensional object; hence, each of the elements of the vector rk represents
the number of times a particular voxel is measured [10, 11]. For multiple shots, the goal is to
reduce the variance between entries of each vector rk, thus making the entries of the vector

r = 1
K

K−1
∑

k=0
rk uniformly distributed.

Criterion 3 Uncorrelated codes for multiple shots: When K ≥ 2, for a particular X-ray
source a different set of coded apertures is used in each shot, and Constraint 3 is defined to
assure complementary codes are obtained for each source. Specifically, the codes are designed
such that for a fixed spatial location (u,v) in all the set of coded apertures of a particular
source (Ti)

k
uv, only one out of K coded apertures should contain a non-zero value. To this

end, T i is defined as the sum of the K codes for the ith source, i.e. T i =
K−1
∑

k=0
Tk

i . In order to

make the codes uncorrelated, all the entries of T i should be 1. To that end, ST is defined as
ST = T −UN×PN , where UN×PN corresponds to a one-valued matrix of dimensions N ×PN,
T = [T 1| · · · |T P] and c3 as the �0 norm of the vectorized matrix ST , i.e. c3 = ||vect(ST )||0;
by minimizing c3 uncorrelated codes are obtained.

Based on the previous three constraints, a cost function that shapes the set of coded apertures
such that the three-dimensional data cube and the detector plane are sensed as uniformly as
possible while obtaining complementary codes for each source is defined. The cost function
thus aims to minimize the variance of the average number of detector elements measuring
each voxel, i.e., the entries of vector d, the variance of the average number of voxels that
each detector element measures given K shots, i.e., the entries of vector r, and the error term
defined as c3 for the third constraint. Thus, the optimization of the coded apertures for multiple
snapshots is determined by the minimization of the cost function:

argmin
[Tk

0,··· ,Tk
P−1]

k=K−1
k=0

α ·
M−1

∑
m=0

[(
d
)

m −m1
]2
+β ·

Q−1

∑
j=0

[
(r) j −m2

]2
+ γ · c3

Subject to
(
d
)

m > 0 and (r) j > 0 ∀ m, j, (3)

where α ≈ 1
M since the first term corresponds to the sum of M elements, β ≈ 1

Q since the

second term corresponds to the sum of Q elements, and γ ≈ 1
MP since the third term corresponds
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Fig. 2. (a) To generate the initial set of codes, vector vk
m is defined. It is formed by the values

of the mth elements of the P coded apertures used in the kth shot. (b) Iteration Process for
the DBS algorithm.

to the sum of MP elements. m1 is the desired median of the number of voxels sensed in each
detector element and m2 is the desired median of the number of times each voxel is sensed. Both
parameters depend on hardware settings. For each of the experiments, the median of the number
of voxels sensed in each detector element and the median of the number of times each voxel is
sensed are obtained from the vectors d and r obtained when using random codes. Therefore, for
different number of shots there are different values for m1 and m2.(d)m corresponds to the mth

element of the average sum of the rows of the sensing matrix for K shots, and (r) j corresponds
to the jth element of the average sum of the columns of the sensing matrix for K shots. In order
to solve the optimization problem in (3), the following approach is proposed.

3.2. Optimization algorithm

The Direct Binary Search (DBS) algorithm is an iterative approach to evaluating the effect of
trial changes for each pixel of a binary image for a particular search [12]. Using (3) as a cost
function, optimal coded apertures are obtained using the DBS algorithm to perform a local
search on each of the coded apertures by either swapping the current pixel with one of its
eight nearest neighbors or toggling the coded aperture pixel from 1 to 0 or 0 to 1, keeping the
changes that have positive effects in the cost function and ignoring the changes that have a
negative effect. The algorithm stops when, after processing all the K ×P coded apertures, no
swaps or toggles occur. Being a steepest descent type of optimization, the DBS algorithm is
susceptible to local minimum extrema. Thus the final codes depend on the initial set of coded
apertures that are selected [13]. Therefore, an alternative algorithm that takes into account the
three constraints is used to obtain a suitable initial first set of codes.

3.2.1. Initial set of codes

In order to produce an initial set of codes, a binary P long vector vk
m =

[(Tk
0)m,(Tk

1)m, · · · ,(Tk
P−1)m] is defined as the concatenation of the values of the mth ele-

ments of the P coded apertures used in the kth shot. The binary vector could take one of 2P −1
possible values. The matrix V of dimensions (2P − 1)× P is defined as the concatenation
of all possible binary combinations for vector vk

m, such that each of the rows of the matrix
corresponds to one possible value for the vector vk

m as shown in Fig. 2(a). For each location m,
K rows of V must be selected; to this end, W is defined as a matrix containing all the possible
combinations that can be selected from the rows of the matrix V.

To achieve uniform sensing in the detector, while having information only from the mth

pixel, the vector d can be expanded as d = 1
K

K−1
∑

k=0

[
P−1
∑

i=0
Ck

i Hi

]

μQ = 1
K

K−1
∑

k=0

P−1
∑

i=0
Ck

i Gi, where

Gi = HiμQ, i.e., the sum of the rows of the system matrices Hi associated with each source.
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Fig. 3. (a) Configuration for X-ray tomosynthesis simulation. 9 sources placed uniformly
over a 128×128 phantom with 16 slices. The dimensions for a general scenario are shown
in (a), for the particular simulation scenario that was studied here a = 128,b = 128,c =
675,d = 60,e = 150. (b) Mean of the transmittance of the optimal coded apertures for each
shot.

The mth element of the vectors Gi represents the information on how many voxels are measured
in the mth detector when illuminated by the ith source, defining the aforementioned element as
(Gi)m and a P-long vector gm = [(G1)m,(G2)m, · · · ,(GP−1)m] the uniformity condition for the

detector plane can be rewritten as: argmin
[v0

m,··· ,vk
K−1]

k=K−1
m=0

[
K−1
∑

k=0
vk T

m gm −m1

]2

.

In order to have complementary codes in the K shots, the following relation has to be met:
K−1
∑

k=0
vk

m = 1, i.e., for the mth location in the K coded apertures of a particular source, only one

of them can have a value of 1.

The algorithm starts selecting all the combinations in W that obey
K−1
∑

k=0
vk

m = 1 and discards

all the entries of the matrix that do not meet the constraint. From the updated matrix W, the
combinations that achieve uniformity in the detector plane are kept, the other combinations are
discarded. If the matrix W has more than one combination after the two previous iterations, the
combination that minimizes the variance of the mth row of the sensing matrix A is selected, then
the summation of all the columns of the sensing matrix possess a very low variance, achieving
uniform sensing of the object simultaneously.

3.2.2. Efficient DBS algorithm

The DBS algorithm takes an initial set of codes generated with the algorithm described in
Section 3.2.1 and the cost function (3) is evaluated and defined as the current error e, i.e. e =

α ·
M−1
∑

m=0

[[
d
]

m −m1
]2

+ β ·
Q−1
∑
j=0

[
[r] j −m2

]2
+ γ · c3. Then each pixel from each of the K ×P

codes is visited in a random raster path. For each pixel, the effects of swapping or toggling
that pixel’s value is evaluated in terms of the error e. If one of the nine operations results in a
reduction of e, such operation is performed and the error term e is updated; otherwise no change
in the codes is made. This process is illustrated in Fig. 2(b), where the pixel highlighted in red
can be swapped with its 8 nearest neighbors or toggled to black. The results of each of the nine
operations are shown. In Fig. 2(b), swap operations 1, 2, 4, 5 and 7 would not be considered
since they do not alter the value of e. Once the operation is completed, the process is repeated
for the next pixel, which is chosen randomly. The process continues until no change in e is
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produced after evaluating all the pixels in all the codes.
Updating the error e, implies calculating d, r and c3 for every toggle or swap of a pixel. How-

ever, the multiplication of matrices C and H for the computation of vectors d and r demands
significant computational resources. To reduce the computational burden of the error calcula-
tion, instead of recalculating d and r by the matrix multiplications defined in Section 3.1, an
alternative definition for the calculation of the constraints is proposed.

Criterion 1 d: using the previous definition developed for the initial codes, d =

1
K

K−1
∑

k=0

P−1
∑

i=0
Ck

i Gi and given that Ck
i is a diagonal matrix, each of the elements of the vector d

can be defined as dm = 1
K

K−1
∑

k=0

P−1
∑

i=0

[
Ck

i

]
m [Gi]m, where

[
Ck

i

]
m is the mth element in the main

diagonal of
[
Ck

i

]
. When the mth pixel of a particular Tk

i code is changed or toggled, vector d
remains unchanged except for its mth entry in case of a toggle, or m and the entry corresponding
to the neighbor of the pixel implied in the swap. Note these changes do not imply the multi-
plication of the matrices C and H. Instead, they rely only on the multiplication of the entries
involved in the change, i.e.,

[
Ck

i

]
m and [Gi]m.

Criterion 2 r: this constraint is related to the sum of the columns of matrix Hi. Therefore, a
swap or a toggle of one of the elements of the codes results in changing all the elements of the
vector r as opposed to the previous constraint. To obtain a simplification of the original expres-

sion for constraint 2, it is expanded as: r = 1
K

K−1
∑

k=0

P−1
∑

i=0

[
Ck

i Hi
]T μM = 1

K

K−1
∑

k=0

P−1
∑

i=0
HT

i Ck T
i μM =

1
K

K−1
∑

k=0

P−1
∑

i=0
HT

i Jk
i , where Jk

i = Ck
i μM is a column vector composed by the components of code

Tk
i . From the previous expression it can be seen that the mth element of the code multiplies all

the elements of the mth column of the matrix HT
i , i.e., all the elements of the mth row of matrix

Hi. Since the elements of the coded apertures are binary 0,1, a toggle of the mth pixel will result
in the subtraction (change of the pixel from 1 to 0) or addition (change of the pixel from 0 to 1)
of the elements of the mth row of the matrix Hi to the current vector r.

The efficient DBS optimal process is summarized as follows:

1. Generate the initial set of codes, and calculate the initial error e.

2. For each pixel in the coded apertures, evaluate the effect of all possible trial changes
using the modified constraints and the definition for c3. Perform the change that results
in a lower e.

3. Stop when, after processing all the K×P coded apertures, no swaps or toggles occur.

4. Simulations

To simulate the compressive X-ray tomosynthesis configuration, a scenario with a flat 2D de-
tector plane composed by N1 ×N2 = 150 × 150 elements, P = 9 cone-beam X-ray sources
placed uniformly in a 3×3 geometry and an object of interest f represented by a Q2×Q3×Q1 =
128× 128× 16 are used, each of the pixels in the coded aperture corresponds to a particular
detector element as detailed in Fig. 3(a). Therefore, the coded apertures placed in front of each
of the sources are also composed by 150× 150 elements. The ASTRA Tomography Toolbox
(“All Scale Tomographic Reconstruction Antwerp”) [14] was used to obtain the system matri-
ces Hi as well as the projection measurements yi of each of the X-ray cone beam sources. Using
the algorithm described in Section III, optimal coded apertures for K = 1 and K = 2 shots are
obtained. The performance of random coded apertures and the optimal codes is compared using
the singular value analysis.
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Fig. 4. (a) Singular Value Decomposition of the tomosynthesis matrix without coding, op-
timized codes and random codes for K=1 and K=2 shots (b) Singular Value Decomposition
for the last 6900 components.

4.1. Singular value analysis

When two different measurement strategies are used to sense an object, the singular value de-
composition (SVD) analysis can provide a simple mechanism for comparison [15]. The SVD of
the matrix Ã for the compressive X-ray tomosynthesis system showed in Fig. 4(a) is calculated.
Scenarios of K = 1 and K = 2 shots are considered. For the latter case, a randomized method
for computing an approximate singular value decomposition [16] is used due to the size of the
matrix Ã. Therefore, only the first 22500 nonzero singular values of the matrix Ã are obtained.
Three different cases are analyzed for K=1 and K=2: (A) No coding (Ã = H), which is equiva-
lent to setting all the pixel elements of all the coded apertures to 1, for K = 2 the singular value
decomposition is equivalent to K = 1 for this particular case; (B) Optimized codes using the
algorithm previously described and the parameters describing the hardware settings Ã = C̃H
are obtained and; (C) The coded aperture elements are generated randomly. For the latter, the
mean for 20 different selections is obtained. Figure 4(a) presents the singular value decompo-
sition for the cases previously discussed. Considering there is no prior information abut the
object under inspection, the measurement strategy that has more singular value components
lying above certain noise level is considered to outperform the others, since it would capture
more orthogonal components of the object. Thus, note that both random coding and optimized
codes outperform, for any noise level, the case when no coding is used for both K = 1 and
K = 2 shots. Additionally, the singular value spread for the curves corresponding to K = 1 is
larger than for K = 2 thus showing that an increase in the number of shots results in a better
measurement strategy to sense the object.

Two different noise levels are used in Fig. 4(a). It can be seen that for the higher noise level
in the case of a single shot both optimized codes and random codes have similar behavior.
However, for lower noise levels the optimized codes show better performance than the random
codes, as it is shown in Fig. 4(b). For K = 2, Fig. 4(a) shows that optimized codes outperform
random codes for both noise levels. From the SVD analysis, it can be concluded that optimized
codes can provide advantage over random codes even under noisy conditions. This will be
demonstrated in Section V for real data results.

For K = 1 and K = 2, the problem is very ill-conditioned. It can be noted that the number of
measurements is much lower than the number of unknowns (voxels). The condition number (ra-
tio of greatest singular value to the least nonzero singular value κ) measures how ill-conditioned
the problem is [15]. The condition number (κ) for the three cases studied in this section for
K = 1 show that when using optimized codes the sensing matrix becomes less ill-conditioned

#252081 Received 16 Oct 2015; revised 5 Dec 2015; accepted 6 Dec 2015; published 11 Dec 2015 
© 2015 OSA 14 Dec 2015 | Vol. 23, No. 25 | DOI:10.1364/OE.23.032788 | OPTICS EXPRESS 32796 



Fig. 5. Histogram of the number of voxels measured by a detector element, d. (a) Before
the optimization, (b) After the optimization.

Fig. 6. (a) Histogram of the number of detectors that measure a certain voxel, r. (a) Before
the optimization, (b) After the optimization.

(κ = 15.60) compared to using random codes (κ = 562.12) or no coding (κ = 20.49), showing
that uniformly sensing of the detector plane and the data cube leads to better conditioning of
the forward operator.

4.2. Results

Experimental tomography data was obtained at Chesapeake Testing Inc., with a Nikon metrol-
ogy 225/450kV Vault CT scanning system with a 450kV micro-focus X-ray source capable of
producing a spot-size down to 80um. The detector is a 16in×16in square plane and the detector
pitch is 200um. Multiple X-ray projections over 360 degrees around an object, in this particular
case a vivofit watch, are acquired. These projection images are then reconstructed into a full 3D
volumetric data set.

This 3D data cube is re-sampled to obtain the data cube of size 128× 128× 16 described
at the beginning of Section IV. Assuming that the line integrals are measured directly and the
hardware settings previously described, the measurements y and the matrix H are obtained as
described in (1). The set of coded apertures Tk

i with i = 0, · · · ,P−1 and k = 0, · · · ,K −1 was
acquired using the algorithm for the coded aperture design introduced in Section III. It can be
seen in Fig. 3(b) that the transmittance (τλ ) decreases as the number of shots increase given
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Fig. 7. (a) Thirteenth slice of the data cube. Sparse regularized reconstructions from: (b)
Random coded X-ray projections using 3 snapshots (PSNR=25.96 dB); (c) Optimized
coded apertures using 3 snapshots (PSNR=29.68 dB); (d) Uncoded X-ray projections using
1 snapshot (PSNR= 23.60 dB). Zoomed versions of: (e) Random coded X-ray projections;
(f) Optimized coded apertures.

the constraint that the codes have to be complementary. The reconstruction algorithm used to
recover the data cube is the GPSR (Gradient Projection for Sparse Reconstruction) [17]. The
signal representation basis used to represent the three-dimensional data cube is a Kronecker
product of a 2D wavelet transform and a 1D discrete Fourier transform (DCT) [18] . For K = 3,
Figs. 5 and 6 show the histograms corresponding to the number of voxels measured by one
detector and the number of detectors that measure certain voxel respectively. Figure 5(a) shows
the distribution of the entries of the vector d before the optimization. Figure 5(b) shows that the
distribution of the entries of vector d become concentrated around m1 = 32.47; thus an average
of 32 voxels are measured per detector, after the optimization. The initial distribution of the
entries of the vector r is shown in Fig. 6(a). After the optimization, a more uniform distribution
concentrated around m2 = 3.21 is obtained, as shown in Fig. 6(b); thus, every voxel is sensed
an average of 3 times. The peak signal-to-noise ratio (PSNR) is used to compare the reconstruc-
tions obtained since it is suitable for comparing restoration results as it does not depend strongly
on the image intensity scaling. For a scenario with an image I and a reconstruction R of size

N ×N it is defined as PSNR = 10 log10

(
Max2

I
MSE

)
, where MaxI is the maximum possible pixel

value of the image I and MSE = 1
N2 ∑N−1

i=0 ∑N−1
j=0 [I(i, j)−R(i, j)]2. Table 1 shows the PSNR of

the reconstructions of the thirteenth slice for K = 1,2,3,4 and 5 and for optimized codes and
random codes. The elements of the random coded apertures used are random realizations of
Bernoulli random variables, with different levels of transmittance. For the multi-frame scheme,
the transmittance of the codes is fixed depending on K for one case and for comparison, another
scenario is analyzed when the transmittance is fixed to τλ = 0.5. The compression ratio, will be
given in each case by ρ = 1− (M×K)/Q. Therefore, maximum compression is obtained when
a single shot is used. It can be seen that as the number of shots increases the reconstruction
quality improves. Nonetheless, the improvement is not significant after 3 shots, for the scenario
used for the simulations, since the number of unknowns is limited. For a data cube composed
by more slices, increasing the number of shots would lead to further improvement. Clearly, the
best results are obtained using the optimized coded apertures (first column in Table 1).
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Table 1. PSNR of the reconstructed image of the 13th slice for different number of shots
(K)

Shots
PSNR (dB) ρ

Optimal Codes τ∗λ = 0.5 τλ = 1/K
1 26.36 24.83 24.67 91.41%
2 28.29 25.82 25.92 82.83%
3 29.68 25.96 26.14 74.25%
4 29.76 26.45 26.48 65.67%
5 29.89 27.17 27.57 57.08%

Figure 7(a) shows the thirteenth slice of the three-dimensional data cube used for the simula-
tions. By acquiring uncoded measurements from 1 snapshot (A = H), the reconstruction shown
in Fig. 7(d) is obtained. Coded X-ray projections are next used in the measurements where ran-
dom binary patterns with transmittance τλ = 0.5 are used as coded apertures. For this scenario,
3 snapshots are used. The measurement set is now less correlated, such that improved recon-
structions are obtained as depicted in Fig. 7(b). As stated in previous sections, random codes
do not exploit the known geometry of the tomographic system. By applying the optimization
algorithm described in Section 3, with m1 = 32.47 and m2 = 3.21, the improvement in the re-
construction PSNR can be observed in Fig. 7(c). Moreover, Figs 7(e) and 7(f) show zoomed
versions of the reconstructions obtained when using random codes and optimized coded aper-
tures respectively. The PSNR gain is evident in the zoomed versions of the reconstructions.
The PSNR for slice 13 for random codes and K = 3 shots is 25.96 dB, for optimized codes is
29.68 dB and for the least squares approach is 29.10 dB. For the latter, least squares estimation
is used to reconstruct the X-ray tomosynthesis problem, i.e. when each source produces a set
of measurements on the detector. Note that the traditional least squares reconstruction uses 3
times the amount of measurements than the compressive X-ray tomosynthesis approach with
K = 3 shots. Furthermore, the latter reduces the radiation exposure of the patient/sample.

For the simulation results slice 1 is the closest slice to the sources and slice 16 is the slice
located farthest away from the sources. Table 2 shows the PSNR of the reconstruction of the
16 slices of the data cube for K = 3 shots, for both optimized codes and random codes. Fur-
thermore, Figs. 8(a) and 8(d) depict the slices 1 and 16 of the original data cube respectively,
and the reconstructions obtained when using optimized coded apertures and K = 3 snapshots
are shown in Figs. 8(b) and 8(e) for each of the slices. Figures 8(c) and 8(f) depict the least
squares reconstructions for slices 1 and 16 respectively, where least squares estimation is used
to reconstruct the X-ray tomosynthesis problem when the full set of X-ray projections are used.

Table 2. PSNR of the reconstructed image of the 16 slices of the data-cube for K = 3 shots

Slice 1 2 3 4 5 6 7 8
Optimized (PSNR dB) 28.5 27.6 29.2 27.8 27.7 27.3 27.7 26.8

Random (PSNR dB) 24.7 25.5 25.7 25.7 26.3 26.4 26.1 26.1
Slice 9 10 11 12 13 14 15 16

Optimized (PSNR dB) 26.4 27 28 29.3 29.7 29.7 29.6 25.4
Random (PSNR dB) 25.9 26.3 26.5 24.9 26 24.5 24.1 22.6

The optimized coded apertures used for the central source and the source located in the
lower right corner for K = 2 are depicted in Fig. 9. Figures 9(a) and 9(b) depict the coded
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Fig. 8. (a) First slice of the data cube. (b) Sparse regularized reconstructions from optimized
coded apertures using 3 snapshots (PSNR=28.47 dB). (c) Least squares reconstruction us-
ing the full matrix (PSNR=28.27 dB); (d) 16th slice of the data cube. (e) Sparse regularized
reconstructions from optimized coded apertures using 3 snapshots (PSNR=25.45 dB). (f)
Least squares reconstruction using the full matrix (PSNR=25.46 dB). Note that LS recon-
structions uses 3 times the amount of measurements than the compressive X-ray tomosyn-
thesis.

Fig. 9. Optimal coded apertures for: Two snapshots (K=2), (a) the central source and first
snapshot, (b) the central source and second snapshot, (c) the source located in the lower
right corner and first snapshot, (d) the source located in the lower right corner and second
snapshot.

apertures corresponding to the source located in the center and for K=2, Figs. 9(c) and 9(d)
correspond to the coded apertures used for the source located in the lower right corner for
K=2. Notice the non-uniform density of the designed codes as well as the structured patterns,
which also vary from location to location. Optimized coded apertures for K = 3 and the central
source are depicted in Fig. 10; the decrease in the transmittance (τλ ) is evident between the
coded apertures used for K = 2 (Fig. 9) and K = 3 (Fig. 10). A one-dimensional cross-section
of coded aperture elements in column 50, rows 130 to 140 in each of the codes used for the
central source is shown in Fig. 10. Note for 9 of the 10 cases analyzed, only one out of 3 coded
apertures contains a non-zero value for a specific spatial location in the codes, which was the
condition to assure complimentary codes.

Convergence of the DBS algorithm as stated in Section 3.2 depends on the initial set of coded
apertures that are selected, Fig. 11(a) presents the convergence of the DBS algorithm when
using random codes and a set of checkerboard codes as opposed to the optimized initialization
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Fig. 10. Optimal coded apertures for three snapshots (K=3) and the central source and a 1D
cross section of the coded aperture elements in column 50, rows from 130 to 140.

Fig. 11. (a) Convergence of DBS algorithm for different initial set of codes: (blue) checker
board, (red) optimized set of codes, (black) random set of codes. (b) Convergence of DBS
algorithm for the first 1.42 days (122,500 seconds)

proposed, for the simulation scenario previously discussed. Note that using a predefined pattern
(checkerboard) results in a higher error compared to both initial random and optimized coded
apertures. Furthermore, the initial error, the time of convergence and the final error are higher
for random coded apertures compared to the initial optimized set of coded apertures as depicted
in Fig. 11(b).

5. Testbed implementation

Experimental tomosynthesis data was obtained at Chesapeake Testing Inc. with the system
described in Section IV. The energy used for the source is 245keV and five projections cor-
responding to five different locations of the same source were obtained. The source is moved
along one line due to constraints of the testbed system. To obtain the measurements, the source
is moved 4 times, 5cm at a time from the center position, which is aligned with the center of the
detector. The detector remains static for all the measurements. The sources were located 892mm
away from the object and the detector was placed 1100mm away from the source. The object
imaged is a RJ45 cable, discretized as 12 slices of 128×128 pixels with voxels of dimensions
0.4mm×0.4mm×0.8mm. The detector was composed of 140×240 elements and the size of the
detector elements was 0.4mm. Figures 12(a)(b) depict the projections obtained from the central
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Fig. 12. Projections obtained from: (a) the central source, and (b) a source located 10 cm
to the left of the center source. Reconstructions obtained using 2 shots and random coded
apertures for: (c) the 6th and (d) 12th slice. Reconstructions obtained using 2 shots and
optimized coded apertures for: (e) the 6th and (f) 12th slice.

source and the adjacent to it. Using the ASTRA Tomography Toolbox, the matrix H is obtained
for the hardware settings specified before. The coded apertures used in the simulations are as-
sumed to match the pixels in the detector, using the data from the projections and the simulated
optimized codes for the configuration the projections are superimposed to obtain the multiple
source system proposed. Notice the artifacts highlighted in the reconstructions obtained when
using random coded apertures in Figs. 12(c) and (d). Furthermore, this reconstructions show
less image quality than those obtained using optimized coded apertures, as can be seen in Figs.
12(e) and (f).

6. Conclusions

A new algorithm for the coded aperture design for compressive X-ray tomosynthesis has been
introduced. Simulations show an improvement of up to 3dB in PSNR for reconstructions ob-
tained from optimized codes compared to random codes. The optimization does not depend
on the object under inspection. Instead it is based on the criteria to achieve uniform sensing
of the object and the detector plane while obtaining complementary codes. Experimental re-
sults demonstrate the spatial and spectral accuracy of the system. It has also been shown that
increasing the number of shots while reducing the transmittance of the coded aperture, due
to the complementary nature of the coded apertures, leads to improved image quality in the
reconstructions. The optimization yields improved results since the three-dimensional object
and the detector plane are uniformly sensed. This conclusion is based on the singular value
decomposition (SVD) analysis and the condition number of the forward operator for each case.
Additionally, a test bed implementation was presented with reconstructions for real data ac-
quired from a high-resolution XCT system. Source location optimization and the fabrication
of the coded apertures are under development. Calibration procedures will be used in order to
mitigate the mismatching errors that might occur. Additionally, the angular collimation pro-
duced by the implemented coded apertures can be accounted for in the sensing matrix Ã. The
optimized codes would take into account this phenomenon since the optimization is based on
Ã.
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