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Optimal Pivot Selection in Fast Weighted
Median Search
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Abstract—Weighted median filters are increasingly being used
in signal processing applications and thus fast implementations
are of importance. This paper introduces a fast algorithm to
compute the weighted median (WM) of samples which has
linear time and space complexity as opposed to
which is the time complexity of traditional sorting algorithms. A
popular selection algorithm often used to find the WM in large
data sets is Quickselect whose performance is highly dependent
on how the pivots are chosen. We introduce an optimization based
pivot selection strategy which results in significantly improved
performance as well as a more consistent runtime compared to
traditional approaches. The selected pivots are order statistics
of subsets. In order to find the optimal order statistics as well as
the optimal subset sizes, a set of cost functions are derived, which
when minimized lead to optimal design parameters. We compare
the complexity to Floyd and Rivest’s algorithm SELECT which to
date has been the fastest median finding algorithm and we show
that the proposed algorithm compared with SELECT requires
close to 30% fewer comparisons. It is also shown that the proposed
selection algorithm is asymptotically optimal for large .

Index Terms—Algorithms, median filters, nonlinear filters,
order statistics, quicksort, sorting.

I. INTRODUCTION

W EIGHTEDMEDIANS (WM), introduced by Edgemore
over two hundred years ago in the context of least ab-

solute regression, have been extensively studied in signal pro-
cessing over the last two decades [1]–[4]. WM filters have been
particularly useful in image processing applications as they are
effective in preserving edges and signal discontinuities, and are
efficient in the attenuation of impulsive noise properties not
shared by traditional linear filters [1], [4]. The properties of the
WMare inherited from the samplemedian—a robust estimate of
location. An indicator of an estimator’s robustness is its break-
down point, defined as the smallest fraction of the observations
which when replaced with outliers will corrupt the estimate out-
side of reasonable bounds. The breakdown of the sample mean,
for instance, is indicating that a single outlier present in the
data can have a detrimental effect in the estimate. The median,
on the other hand, has a breakdown point of 0.5 meaning that
half or more of the data needs to be corrupted before the median
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estimate is deteriorated significantly [5]. This is the main mo-
tivation to perform median filtering. Assuming that the data is
contaminated with noise and outlying observations, the goal is
to remove the noise while retaining most of the behavior present
in the original data. The median filter does just that and does not
introduce values that are not present in the original data. Signif-
icant efforts have been devoted to the understanding of the the-
oretical properties of WM filters [1], [6]–[14], their applications
[13], [15]–[19] and their optimization. A number of generaliza-
tions aimed at improving the performance of WM filters have
recently been introduced in [20]–[25]. WM filters to date enjoy
a rich theory for their design and application.
A limiting factor in the implementation of WM filters, how-

ever, is their computational cost. The most naive approach to
computing the median, or any th order statistic, is to sort the
data and then select the th smallest value. Once the data is
sorted finding any order statistic is straightforward. Sorting the
data leads to a computation time of and since the
traversing of the sorted array to find the WM is a linear opera-
tion, the cost of this approach is the cost of sorting the data. Sev-
eral approaches to alleviate the computational cost have been
proposed. In many signal processing applications the filtering is
performed by a running window and the computation of a me-
dian filter benefits from the fact that most values in the running
window do not change when the window is translated. In such
case, a local histogram can be utilized to compute a running
median since the median computation takes into account only
the element values and not their location in the sliding window.
Simply maintaining a running histogram at each location of the
sliding windows enables the computation of the median [26],
[27]. In a running histogram, the median information is indeed
present since pixels are sorted out into buckets of increasing
pixel values. Removing pixels from buckets and adding more
is a simple operation, making it easier to keep a running his-
togram and updating it than to go from scratch for every move
of the running window. The same idea can be used to build up a
tree containing pixel values and the number of occurrences, or
intervals and number of pixels. One can thus see the immediate
benefit of retaining this information at each step.
Other approaches to reduce the computation of running me-

dians include separable approximations where 2D processing is
attained by a 1Dmedian filtering in two stages: the first along the
horizontal direction followed by a second in the vertical direc-
tion [9], [13], [28]. All of the above mentioned techniques focus
on the median computation of small kernels—a set of samples
inside running windows. Depending on the signal’s sampling
resolution, the sample set may range from a small set of four or
nine samples to larger windows that span a few hundred sam-
ples. However, emerging applications in signal processing are
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beginning to demand WM computation of much larger sample
sets. In particular, WM computations are not simply needed to
process data in running windows. WM are often needed for the
solution of optimization problems where absolute deviations are
used as distance metrics. While norms, based on square dis-
tances, have been used extensively in signal processing opti-
mization, the norm has attracted considerable attention re-
cently because of its attributes when used in regression. First,
the norm is more robust to noise, missing data, and outliers,
than the norm [29]–[32]. The norm sums the square of
the residuals and thus places small weight on small residuals and
strong weight on large residuals. The norm penalty, on the
other hand, puts more weight on small residuals and does not
weight as heavily large residuals. The end result is that the
norm is more robust than the norm in the presence of outliers
or large measurement errors.
Second, the norm has also been used as a sparsity-pro-

moting norm in the sparse signal recovery problem, where the
goal is to recover a high-dimensional sparse vector from its
lower-dimensional sketch [33]. In fact, the use of the norm
for solving data fitting problems and sparse recovery problems
traces back many years. In 1973, Claerbout et al. [34] proposed
the use of the norm for robust modeling of Geophysical data.
Later, in 1989, Donoho and Stark [35] used minimization
for the recovery of a sparse wide-band signal from narrowband
measurements. Over the last decade, a wide use of the norm
for robust modeling and sparse recovery began to appear. It
turns out, that it is often the case that WMs are required to solve
optimization problems when norms are used in the data fit-
ting model. For instance, the algorithm in [36] uses weighted
medians on randomly projected compressed measurement to re-
construct the original sparse signal. For this application the input
sizes on which a WM is performed are the size of the signals
which range from several thousands up to several million data
points. The computation of WMs for such very large kernels
becomes critical and thus fast algorithms are needed. The data
structures are no longer running windows and rough approxi-
mations are inadequate in optimization algorithms. To this end,
fast and accurate WM algorithms are sought.
In this paper we introduce a new algorithm which solves the

problem of finding the WM of a set of samples. The algorithm
is based on Quickselect which is similar to the Quicksort algo-
rithm. Even though the algorithm is explained and implemented
for theWMproblem it is straight forward to use similar concepts
to construct a novel selection algorithm to find the order statis-
tics of a set. The median is a special case of an order statistic.
In many applications of data processing it is crucial to calculate
statistics about the data. Popular choices are quantiles such as
quartiles or 2-quantile (for instance in finance time series) both
of which reduce to a selection problem. Often, these consist of
thousands or millions of samples for which a fast algorithm is
of importance in order to allow quick data analysis.
The th order statistic of a set of samples is formally

defined as the th smallest element of the set. In this paper
we adapt the standard notation of to refer to the th
order statistic. Additionally, the weight which is associated
with the sample is denoted as . Moreover, is
needed as a threshold parameter and is formally defined as

. Without loss of generality it is assumed that
all weights are positive. All results can be extended to allow
negative weights by coupling the sign of the weight to the
corresponding sample and use the absolute value of the weight
[7].
The problem of estimating a constant parameter under ad-

ditive noise given observations can be solved by minimizing
a cost function under different error criteria. The well-known
sample average can be derived by using the error norm.
Extending the idea by incorporating weights assigned to each
sample into the equation results into the familiar weightedmean.
The sample median follows fromminimizing the error under the
error norm. Conversely allowing the input samples to have

different weights leads to the cost function of weighted median:

(1)

where the weights satisfy . The WM can be de-
fined as the value of in (1) which minimizes the cost function

as . Fig. 1 depicts an example
cost function for . It can be seen in the figure
that is a piecewise linear continuous function. Fur-
thermore, it is a convex function and attains its minimum at the
sample median which is one of the samples . Fig. 1 also de-
picts the semiderivative of the cost function where it is observed
as a piecewise constant nondecreasing function with the limits

as . Note that the WM is the sample where the
derivative crosses the horizontal axis. Therefore the WM can be
defined by the following formula:

Note that finding the th order statistic is a special case of the
above definition and can be found by replacing by
and set all weights to 1.
Fig. 1 illustrates the algorithm to find the WM which is sum-

marized as follows:
Step 1: Sort the samples with their concomitant weights

, for .
Step 2: Traverse the sorted samples summing up the
weights.
Step 3: Stop and return the sample at which the sum is
higher or equal to .

It is well known that sorting an array of elements requires
comparisons, both, in the average as well as in the

worst case. However, using a similar approach as in Quicksort,
Hoare [2] introduced Quickselect which is an average linear
time algorithm to find the th order statistic of a set of samples.
This algorithm can be extended such that Quickselect solves the
WM problem. This is further described in Section III. The run-
time of both algorithms greatly depend on the choice of the pivot
elements which are used for partitioning the array. In Quick-
sort, a pivot close to the median is best and in Quickselect a
pivot close to the sought order statistic is best. Moreover we
extend the concept of Quickselect which seeks the th order
statistic to the more general case of WM filters which is needed
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Fig. 1. (Top) An example cost function with six input samples
to and a minimum at . (Bottom) The derivative and
the zero-crossing point at which produces the WM. The weights
range from 0 to 1.

for many signal processing applications. This paper introduces
a new concept to pivot selection. The idea is based on an opti-
mization framework in order to minimize the expected cost of
solving theWMproblem. The cost functions are thenminimized
in order to determine the optimal parameters. In particular, the
cost is defined as the number of comparisons needed until the
algorithm terminates which is the standard measurement for se-
lection algorithms. Our approach uses order statistics of a subset
of samples to select the pivot. The optimization framework finds
the optimal value of the parameter , which determines which
order statistic to choose, and the optimal value of the subset size
. For practical performance comparisons the proposed algo-

rithm was implemented in the C programming language. Nu-
merous simulations validate the theory and show the improve-
ments gained by the proposed algorithm.

II. PRELIMINARIES

The sample selection problem in essence, is equivalent to
finding the th-order statistic of a set of samples. The algorithms
introduced in this paper to solve the selection problem can easily
be extended to solve the WM problem. To this end, our treat-
ment focuses on the selection problem to simplify analysis but
will go into the details of solving WMs when necessary. Before
introducing the two major algorithms it is necessary to define
what “fast” means in terms of algorithm runtime. In algorithm
theory a fast algorithm is one which solves the problem and at
the same time has low complexity [37]. Complexity is defined
in different ways which depends on the type of algorithm. In
sorting and selection it is defined as the number of comparisons
until termination. This is a sensible measure as the main cost
of these algorithms is the partitioning step which compares all
elements with the pivot. Furthermore the computational com-
plexity is differentiated into worst case, average case and best

case complexities. The best case complexity is of little interest
since it is usually for selection and for sorting. The
average case complexity is of most interest in practice since it
is the runtime which can be expected in a real implementation
with well-distributed input data. Of similar importance in theory
as well as practice is the worst case complexity as this can be
exploited by malicious users to attack the algorithm if the worst
case complexity is unexpectedly higher than the average case.
It was shown in [38] that a lower bound on the expected time

of the selection problem is in , i.e., linear time. This re-
sult is not surprising since given a solution it takes linear time to
verify if the solution is correct. Additionally, in [39] it is shown
that by choosing the pivots carefully it is possible to avoid the

worst case performance of the traditional Quickselect
and also achieve a worst case complexity. Hence it is
important to note that there exists a linear time worst case se-
lection algorithm as well as a proof that the lower bound is also
linear. For this reason, we do not only compare the computa-
tional complexity of the algorithms in terms of their limiting
behavior (i.e., asymptotic notation or Landau notation) but also
analyze the behavior for low to moderate input sizes and ob-
tain accurate numbers for the number of comparisons in order
to compare performance. Taking into account the constants in-
volved in the equations is important especially in practice. A
popular example is the preferred Quicksort to Heapsort: Despite
Heapsort’s advantageous behavior of having worst case as well
as average case complexity of , Quicksort—with its
worst case of —is often preferred as the smaller constant
term of Quicksort makes it outperform Heapsort on average.
To this date the fastest selection algorithm has been SELECT

which was introduced by Floyd and Rivest in 1975 [38]. The
algorithm is asymptotically optimal for large and as shown
by [38] the number of comparisons for selecting the th-order
statistic given elements is .1 Note
that our proposed algorithm is asymptotically optimal as well.
Furthermore, as can be seen by the simulations in Section VI
our algorithm outperforms SELECT and converges to the op-
timum more quickly. Quickselect, which will be introduced in
Section III is another very popular selection algorithm due to its
simplicity and similarity to Quicksort. Even though it is widely
used in practice, its performance is always worse than SELECT
except for very small input sizes. In particular, for a median-of-3
pivot selection approach Quickselect needs on average 2.75
comparisons for large as shown by [40].

III. THE QUICKSELECT ALGORITHM

Quickselect was first introduced in [2] as an algorithm to
find the th-order statistic. Note that Quicksort and Quickse-
lect are similar and the only difference between the two is that
the former recurs on both subproblems—the two sets after par-
titioning—and the latter only on one.
The original algorithm chooses a sample at random from the

sample set which is called the first pivot . Later in this
paper, the method of choosing the pivot will be made more ac-
curately, than selecting a random sample, and instead optimal

1We use the notation and in the following way:
means and

means
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Fig. 2. Standard Quickselect algorithm using random pivots.

order statistics which minimize a set of cost functions are used.
By comparing all other elements to the pivot, the rank of the
pivot is determined. The pivot is then put into the th position
of the array and all other elements smaller or equal than the
pivot are put into positions before the pivot and all elements
greater or equal are put after the pivot. This step is called par-
titioning and can be implemented very efficiently by running
two pointers towards each other. One from the beginning of
the array and one from the end, swapping elements if necessary
until both pointers cross each other. If then the th-order
statistic is located in the first part of the array and Quickselect
recurses on this part. If then Quickselect recurses on the
second part but instead continues to seek the th-order
statistic. If the recursion terminates and the pivot is re-
turned. A pseudocode description of the Quickselect algorithm
is depicted in Fig. 2. The case of (N odd) is the
well-known median and is considered a special case of the WM
with all weights equal to one. Small modifications of Quickse-
lect lead to a WM-finding Quickselect algorithm in the general
case with arbitrary weights: Instead of counting the number of
elements less than or equal to the pivot, the algorithm sums up
the weights of all the samples which are less than or equal to
the pivot. We define to be the sum of weights of the par-
tition which contains all elements smaller than or equal to the
pivot. Respectively, contains the sum of weights of the other
partition. The next step is to compare and to and ei-
ther recourse on the partition which contains the WM or return
the pivot which terminates the algorithm.

IV. OPTIMAL ORDER STATISTICS IN PIVOT SELECTION

A. First Pivot

The run time of Quickselect is mostly influenced by the pivot
choice. A good pivot can significantly improve the performance.
Consider an example: If the pivot is small compared to the
sought WM then only elements which are less than the pivot
are discarded. In the worst case—i.e., if the pivot is the smallest
element of the set—no elements are discarded. The main cost
of the partitioning step is to compare all elements to
the pivot. Where is the number of elements of the original
set before any reductions have been performed. Clearly, a pivot
close to the actual WM is desired. Assuming no prior knowl-
edge of the sample distribution or their weights, the only good

estimate for a pivot is to choose the median of the samples. The
median—by its definition—ensures that half of the samples are
removed after partitioning. However, finding themedian is itself
a selection type problem which would cost too much time to be
computed. Instead, an approximation of the median is used as
the pivot. A straightforward approach is to take a random subset
of and find the median of this smaller set. Let be the size
of this subset with .
Martínez and Roura [3] studied the optimal subset size as a

function of with the objective to minimize the average total
cost of Quickselect. We found however that in practice the run-
time was improved if was chosen larger. For this reason, we
introduce a model to obtain a closed form solution for the near
optimal . Consider a set of samples . As-
sume each sample is independent and identically dis-
tributed (i.i.d.). Furthermore consider the random subset
with . We seek the pivot as

well as the optimal to minimize the expected samples left
after the partitioning step. The cost function has to differ-

entiate between the three main cases:
1) the pivot is less than the WM of ;
2) the pivot is greater than the WM of ;
3) the pivot is equal to the WM of .
The problem arises that both—pivot and WM—are not

known beforehand and are in fact random variables. In order to
obtain a simpler yet accurate enough cost function which can
be solved, various assumptions and simplifications are applied
to our model:
1) Each sample of the set is modeled as uniformly dis-
tributed random variables. This approximation is in fact
very accurate since the working point of our model is near
the median of the true distribution function at which most
distribution behave like a uniform distribution.

2) Finding can be done in comparisons
where is some constant independent of . Addition-
ally, solving the remaining WM problem after the parti-
tioning step can be done in comparisons as well. Since

this does not hold true as finding the constant
decreases with increasing samples. However, the differ-
ence is small and can be neglected.

3) The WM coincides with the median of the standard uni-
form distribution which is at 0.5. As stated earlier the WM
is a random variable. However the variability of the WM
can be accounted for in the pivot. Increasing the variance
of the pivot distribution accordingly allows to perform this
simplification.

Let be the expected number of elements removed after the
partitioning step and by using the assumptions 1)-3) above,
is derived as

(2)

(3)

where is the size of the original problem set , where is
the beta function, and is the regularized incomplete beta func-
tion [41]. The first term of (2) is the expected number of
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elements less than the pivot. The second term of (2) is the prob-
ability that the pivot is located at . Assuming is odd then
the median of a random subset of size is beta distributed
with the parameters and [42]. To ac-
count for the third item of our approximation model we further
change the variance of the median. Halfing the samples of the
beta distribution approximately doubles the variance. Further-
more, we can use the fact

to obtain (2). Solving the integral of (2) cannot be done in a
closed form. However since the resulting equation is again the
p.d.f. of a beta distribution the result is the c.d.f. of the beta
distribution evaluated at 0.5 in (3).
With the derived expression for , the new cost function de-

fined as the expected number of comparisons is given by

(4)

where is the constant mentioned in the second item of the sim-
plification model. The first summand is the expected number
of comparisons necessary to solve the remaining problem after
the partitioning step. The second summand accounts for the ex-
pected number of comparisons to find the pivot (i.e., the median
of the subset). The minimum of in (4) is defined to be :

Minimizing cannot be done in an algebraic way hence
further approximations are necessary. First note that the divi-
sion of the two parameters of the beta distribution is
close to one as is large. This fact allows to use the normal
distribution to approximate the beta distribution. The variance
of the beta distribution is which can be approximated
as . The resulting approximate cost function is:

(5)

where erfc is the complementary error function. It is easy to
show that (5) is convex for .
Theorem 1: For large , the optimal subset size for

choosing the first pivot is approximately

Proof: Differentiating (5) with respect to yields

Taking and
yields the result.
Note that in an implementation is rounded to the nearest

odd integer. Now we can formally define the first pivot
.

Fig. 3. The error of the optimal and the approximated . The error in-
creases as becomes increasingly large. However the relative error stays close
to zero since the error grows slower than . This result shows the applicability
of our approximations.

The error introduced by the approximation is very small
which can be seen by analyzing the error as well as the relative
error. Fig. 3 depicts the error as well as
the relative error for . The error is
almost always zero except for very few for which the error
is a small even number (due to rounding to odd numbers). In
fact the number of values of where the error is not zero
is 67964 between and , i.e., approximately 99.999%
of all samples between and have zero error. For large

however, the error starts to increase which makes
it important to analyze the relative error . As can be
seen by the lower graph of Fig. 3 the relative error stays close
to zero as the error increases. The simulations were run over
all integer numbers between and . As becomes
larger it becomes difficult to compute the error. Random
of up to were picked and the error was bounded by 0.001
for the few chosen numbers which indicates that the error does
increase faster than increases.

B. Second Pivot

For a large number of samples it is unlikely to find the exact
WM with the first pivot. Thus it is assumed that the first pivot
was either larger than or smaller than the WM. The next step is
to choose the second pivot . Should the median of a subset be
used again? Intuitively, if the first pivot was smaller but close to
the WM then a good choice for the second pivot is an element
close to the WM but slightly larger than it. If we select the me-
dian of a subset again, we will most likely be far away from the
WM, thus not discarding many elements. This is the result of a
skewed sample median as many samples were discarded during
the first step of the algorithm. It is natural to use the approach of
using the th-order statistic of a subset as the second pivot. The
number of samples left after the first iteration of our algorithm
is denoted as . is the cardinality of the random subset
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of the remaining samples. Again the formula of Theorem 1
is used to determine the optimal as a function of .
To find the optimal , the approach of minimizing the expec-

tation of an approximate cost function is again used. Since the
goal is to remove as many elements as possible by choosing the
pivot appropriately the cost was defined as the expected number
of elements left after the partitioning step. A chosen pivot can
be either larger, smaller or equal to the WM. Since the cost is
negligible if the pivot happens to be the WM there are only
two terms for the other two cases. Only the case in which the
pivot was smaller than the WMwill be explained now, the other
case follows from symmetry.
The cost is defined formally as the expected number of ele-

ments left after the partitioning step and is given by

(6)

where

and where is introduced to normalize . The
minimum of (6) is attained by the order statistic

(7)

is the probability that the expected order statistic of the WM
is less than or equal to and will be formally defined below in
(9). can be interpreted as the mean of the th-order statistic of

i.i.d. standard uniform distributed random variables. Equa-
tion (6) constitutes of two simple summands, the first of which
accounts for the case that the pivot is greater than the WM
and the second for the case it is smaller. The first term of the
first summand is the expected number of elements which are
less than the pivot. Again, we model the WM as a beta dis-
tributed random variable with the parameters and

. Where is the point at which the WM
is expected to lie

with

(8)

where is the sum of all weights which were lower than the

first pivot and formally defined as .
are the concomitant weights as defined in the introduction.

Note that the mean is as desired. The terms for the second
summand of (6) are similar to the first summand but cover the
case when the pivot is smaller than the WM.
For the above model to hold, we assume that the input sam-

ples are uniformly distributed at the vicinity of the sample me-
dian. This holds true for many distributions. The pivot is mod-
eled as being the th-order statistic drawn from a standard uni-
form distribution. Hence can be expressed as [43]

(9)

Fig. 4. Expected cost for choosing the th-order statistic as the second
pivot. .

where is the incomplete beta function. Note that
is not an order statistic since is most likely not an
integer but can still be evaluated correctly since the incomplete
beta function allows noninteger arguments.
An example of a cost function is depicted in Fig. 4. This

figure shows that the 30th-order statistic of the set
of samples should be chosen as the pivot in order to
minimize the expected cost. This can be explained by looking
at the parameters. is 0.1 which means the WM is expected to
lie close to . However if was chosen as the pivot the
probability that this pivot is again lower than the actual WM is
higher than if was chosen.
There is no closed form algebraic solutions to (6) so that fur-

ther approximations are necessary. First is approximated
by the normal distribution with mean and variance

. We call this approximation . Replacing
with , taking the derivative with respect to and

division by the constant yields

(10)

Note that is a cumulative density function and is a prob-
ability density function.
Lemma 1: The function is quasi-convex for .
Proof: The proof is divided into three parts:
for : Since has median it follows that (10)
is strictly negative.
for : Taking the second derivative of :

shows that the function is convex on this interval as both
terms are strictly positive.
for : Since all terms are positive, is
positive as well.

Combining the three intervals proofs the quasi-convexity.
Since the cost function is quasi-convex as shown by Lemma

1 the function has only one global minima between [0,1]. Min-
imizing (6) in order to find the optimal yields the following.
Theorem 2: The optimal order statistic which is to be chosen

as the second pivot is

(11)
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Fig. 5. The maximum relative error of the optimal order statistic and the
approximation . The error decreases as the input size increases.

where as defined in (8), and is the
size of the random subset .

Proof: Taking the derivative of (6) and setting it to zero
yields the following equation:

(12)

where . First, the approximation is used
to simplify (12). As increases so does and hence the error
function is close to 1 which justifies this step. Next, the approx-
imation can be used
since for large . Solving the resulting equation yields
the desired result.
Note that in an implementation is rounded up to the

nearest integer. The reason is that the cost function is steeper
towards smaller number and more flat towards larger number
which makes this step plausible.
The error introduced by the approximations is very small as

can be seen in Fig. 5. The error was defined as

Note that the maximum relative error is declining with in-
creasing . Fig. 6 shows an example of the relative error. Note
that the maximum occurs at and the error is close
to zero for small . Most likely will be close to zero. This
is true if the first pivot was close to the actual WM. Hence the
maximum error has a low impact on the average performance.
Given that is now known, Quickselect is called recursively

to compute the pivot. With high probability this pivot will be
slightly larger than the WM and hence many samples will be
discarded. However, it is not guaranteed that the pivot is smaller
than the WM and in the other case very few samples are dis-
carded. The case that the pivot is on the same side of
as the first pivot is to be avoided as it would only result in dis-
carding the elements between and . Since this approach is
based on probabilistic analysis it will fail sometimes which will
result in a repetition of this approach until the two pivots are
located on different sides such that .
Note that in the successful case we have a bounded problem,
i.e., we know that the WM is between the first and the second
pivot.

Fig. 6. The relative error of the optimal order statistic and the approximation
for and
. It is important to note that the error is small for small . This is crucial

for the algorithm to work well as small are more likely to occur in practice.

C. Subsequent Pivots

Given the first and second pivots, these can be considered
as the lower and upper bounds of the array since all elements
outside of these bounds have been discarded. Therefore, at each
iteration hereafter the pivot is defined as a convex combination
of the maximum and minimum

where is the ith pivot, is some constant between 0 and 1, and
and are the minimum and maximum points left in

the array. After each iteration the minimum and maximum will
be updated and hence new bounds are established. This strategy
is very different to the existing ones since the pivots are not
selected but computed which implies that the pivots are most
likely not an element of the set. Note however, that the crucial
step for the algorithm—partitioning the set—is still possible.
After the partitioning step, the set which does not contain the

WM will be discarded and the new pivot takes over the weights
of the discarded set. The pivot will act as a proxy of the samples
of the discarded set. This will introduce new samples into the set
which originally did not exist. However, this will not change the
WMor the zero-crossing point and is therefore a valid operation.
An optimal at some iteration can again be found by mini-

mizing a cost function which will be of similar structure to the
cost function (6). The result is similar to (11)

where and is defined the same way as in (8),
and being the number of elements left in the

array at the ith iteration.
Intuitively, if there are many samples between and

then this approach works very well. If, however, few
samples are within the boundaries then the assumption of the
data being uniformly distributed breaks down which results in
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degraded performance. Therefore, the algorithm stops when the
problem size gets below a certain threshold level and solves the
remaining problem by the standard median-of-3 Quickselect
implementation. Also, in the case that this approach does not
remove any elements—this can happen for some inputs—the
algorithm falls back to the median-of-3 Quickselect as well to
protect from an infinite loop.

V. COMPLEXITY ANALYSIS

It has been shown, e.g., in [44], that the average number of
comparisons to find the median using the standard Quickselect
is approximately 3.39N and 2.75N for median-of-3 Quickselect.
The space complexity of our algorithm is since the par-
titioning step can be done in-place and hence does not need ad-
ditional memory. For the first and second partition step the al-
gorithm needs to choose the pivot from a random subset of .
However, this approach would require additional memory and
time to generate the random numbers. In practice it is more effi-
cient to sample uniformly. Selecting an order statistic from this
subset can also be done in-place and hence there is no need to
copy the elements.
Since the most time is spent in the partitioning step, the

time complexity is defined as the number of element-wise
comparisons the algorithm makes until termination. In addi-
tion the comparisons to select the pivots recursively have to
be taken into account. Using a median-of- samples as the
pivot, it was shown in [3] that the number of comparisons is

on average. Simulations in the next section show
that the proposed algorithm beats this result. This is mainly due
to the strategy used for selecting the second pivot. As explained
above, selecting just the median is not optimal in general.
The worst case runtime of the proposed algorithm is

trivially since the algorithm will always do better or equal than
the median-of-3 Quickselect which has the sameworst case run-
time. It is shown in [3] that the worst case runtime for a me-
dian-of- approach is for 2 which is
a similar approach used for the proposed algorithm. This is an
indication that the proposed algorithm’s worst case complexity
is also lower than . Performing theoretical average com-
plexity analysis is not possible due to the complex approach of
choosing the subset size and the pivots. However, given the sim-
ulations from Section VI the complexity can be approximated
by fitting a function. An approximation is useful to give the
reader or programmer an intuitive measure of runtime behavior
of the proposed algorithm. Using the tool Eureqa, which was in-
troduced in [45], we obtain the following formula for the com-
plexity . We ran Eureqa with the
basic building plots and the block “power”. We did not smooth
the data prior and choose the most compact formula over the
most accurate one.

VI. SIMULATION RESULTS

To compare the simulation results among different sample set
sizes the number is used. is the sample mean of
the number of comparisons and the input data set size. The

2We use the notation in the following way: means

TABLE I
NUMBER OF COMPARISONS ARE NOT AFFECTED BY

HEAVY TAILED INPUT DISTRIBUTIONS

Fig. 7. The sample average of the normalized number of comparisons
for the different algorithms.

proposed algorithm was implemented in MATLAB and simu-
lated with different input distributions of . Since WMs are
often used with heavy tailed input distributions, the algorithm
was run on -stable distributions where [1]. As alpha
gets smaller the tails of the distribution get heavier which results
in more outliers present in the input data. For the data is
Gaussian distributed. The results for are depicted
in Table I. Note that the mean does not change and is robust
to heavy tailed inputs. This can be easily explained: After the
first two steps the algorithm makes the problem bounded above
and below and thus all outliers are already discarded. Further-
more due to the approach to pick the first two pivots it is highly
unlikely to select an outlier as the pivot. Uniformly distributed
input data does not change the complexity which is expected
since the design of the proposed algorithm is based on the as-
sumption that the input is uniformly distributed around theWM.

We chose to compare the performance to two other algo-
rithms. The standard median-of-3 Quickselect and Floyd and
Rivest’s SELECT algorithm [38]. Since both algorithms only
solve the more specific problem of finding the order statistic of
a set of samples, a version of the proposed algorithmwhich finds
the median was implemented in the C programming language.
The results are depicted in Fig. 7. The proposed method clearly
outperforms SELECT for smaller and medium input sizes and
both methods converge to optimum for very large input
sizes. The optimum can be explained easily: For very
large input sizes the number of samples removed is almost
after the first partitioning step which does comparisons. The
second pivot will also remove almost samples which cost

comparison to partition. All what is left is a fraction of the
input size and therefore the number of comparisons converge to

. The asymptotic optimality is proved in Appendix B.
To explain why the proposed algorithm performs better we

have to look at how SELECT works: SELECT first chooses two
pivots which lie with high probability just to the left and just
to the right of the sought median. This however is suboptimal
unless the input size is very large since the two pivots have to be
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Fig. 8. Speedup against Floyd and Rivest’s SELECT.

chosen to be relatively far away from the median and therefore
many unnecessary comparisons are done. The proposed method
on the other hand tries to get the first pivot as close as possible
to the median and then chooses the second pivot such that the
median is with high probability between the first and the second
pivot. This explains Fig. 7.
However since the proposed algorithm requires more code

than the other two algorithms, it is of interest to show how the
runtime of the proposed algorithm compares. For these simu-
lations, a C-implementation was run and timed and the sample
averages are compared. The speedup is measured as where

is the runtime of the faster of the two algorithms SELECT
or Quickselect. The tests were carried out on a Linux host on an
AMD Opteron 2376 processor and GCC 4.6 compiler with all
optimizations enabled. Fig. 8 shows in addition to the speedup
as defined above also the theoretical speedup which is defined as

. Similar as above, is the number of comparisons for
the faster of the two algorithms and the number of com-
parisons for the proposed algorithm. The proposed method is up
to 23% faster than SELECT for a wide range of input sizes and
converges to % for very large input sizes. There are subtle
differences in the theoretical and practical speedup which can
be explained. First, the speedup for the input sizes 513, 1025
is smaller due to the involved overhead of the more complex
implementation. This increased complexity however pays off
nicely for larger input sizes. For this reason the proposedmethod
is slower than SELECT for input sizes smaller than 513 sam-
ples. Second, even though the theoretical speedup approaches
zero as becomes large the practical speedup approaches 5%.
It seems that the compiler can optimize our algorithm slightly
better than SELECT. For all simulations the input samples were
i.i.d. normal distributed.

VII. CONCLUSION

A fast new WM algorithm is introduced which is based on
Quickselect. The algorithm is based on the optimality of sev-
eral parameters used to design a set of pivots. In particular, the
set of order statistics and the sample set size are the crucial pa-
rameters for optimal performance. Minimizing cost functions in
combination with a well-approximated model for the cost were
used to develop this novel algorithm. Theory explains that the
proposed method should be faster than Floyd and Rivest’s SE-
LECT unless input sizes are very small. This was backed up

by experiments which showed a speedup of up to 23%. Fur-
thermore the proposed algorithm can compute the median as
well as the WM but the same ideas can be applied to finding the
th-order statistic. The extension is straightforward. In addition
the proposed algorithm can be used to solve multidimensional
selection problems which require medians of large data sets.
A C-implementation can be downloaded from the homepage

of one of the authors at: http://www.eecis.udel.edu/~arce/fqs/

APPENDIX A

The standard Quickselect algorithm was stated in Fig. 2. A
simple overview of the modifications to the standard Quickse-
lect is given:

Step 1: First pivot is chosen as the median of a subset of
size .
Step 2: Second pivot is chosen as the th-order statistic of
a subset of size . Repeat this approach until problem is
bounded.
Step 3: All following pivots are convex combinations of
the maximum and minimum sample in the remaining set.
This is repeated until the size is less than a computer de-
pendent threshold after which the problem is solved with a
median-of-3 Quickselect.

APPENDIX B

This proofs that for
(median):

Proof: As then and hence
. This removes elements with cost . As

then . As then either
or . Hence either (since ) or
(since ). Hence . This

removes elements with cost .
Since the first and second pivot each removed elements,

the number of remaining samples . Hence the total cost
.
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