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Optimized Spectrum Permutation for the
Multidimensional Sparse FFT

André Rauh and Gonzalo R. Arce, Fellow, IEEE

Abstract—A multidimensional sparse fast Fourier transform al-
gorithm is introduced via generalizations of key concepts used in
the one-dimensional (1-D) sparse Fourier transform algorithm. It
is shown that permutation parameters are of key importance and
should not be chosen randomly but instead can be optimized. A con-
nection is made between the sparse Fourier transform algorithm
and lattice theory, thus establishing a rigorous understanding of
the effect of the permutations on the algorithm performance. Lat-
tice theory is then used to optimize the set of parameters to achieve
a more robust and better performing algorithm. Other algorithms
using pseudorandom spectrum permutation can also benefit from
the methods developed in this paper. The contributions address the
case of the exact k-sparse Fourier transform but the underlying
concepts can be applied to the general case of finding a k-sparse
approximation of the Fourier transform of an arbitrary signal.
Simulations illustrate the efficiency and accuracy of the proposed
algorithm. The optimizations of the parameters and the improved
performance are shown in simulations for the 2-D case where worst
case and average case peak signal-to-noise ratio (PSNR) improves
by several decibels.

Index Terms—Fast Fourier transforms.

I. INTRODUCTION

THE Discrete Fourier Transform (DFT) calculates the spec-
trum representation of input signals and has become ubiq-

uitous in signal processing applications. It is used broadly
throughout digital signal processing, partial differential equa-
tions, polynomial multiplication [1], and audio processing. In
certain time constrained applications or when the data is very
large, there is a natural desire to accelerate the DFT with al-
gorithms that perform increasingly faster and with less power
usage [2].

Formally the DFT of a one dimensional signal of N elements
is defined as:

x̂j =
N −1∑

n=0

xn · e−2πijn/N , (1)

where xn is the signal in the time domain and x̂k the DFT in
the frequency domain. The complexity of a naive and straight-
forward implementation of the DFT has a runtime complexity
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of O(N 2) for a one dimensional signal of length N . This is
readily noticed by interpreting the calculation as a matrix vector
multiplication.

The FFT reduces the runtime complexity of the DFT to
O(N log N) and is therefore an important algorithm used in
signal processing. While the FFT algorithm does not make any
assumptions about the structure of the signal, very often the
signals of interest are obtained from a structured source result-
ing in a nearly sparse Fourier spectrum. This fact is the basis
for signal compression and is used among others in the popular
MP3 codec. Other examples of structured signals include im-
ages, video and in general samples of most systems over time
or space. In general it is likely that the signals encountered in
nature are often structured unless the signal in question is purely
random and thus just noise. These input signals frequently result
in a sparse spectrum, i.e., most of the Fourier coefficients of a
signal are very small or equal to zero.

Assuming that a signal of length N is k-sparse (k < N ) in
the Fourier domain, the signal can be described with only k
coefficients. And thus it seems natural that there should be a
better performing algorithm that exploits this property of the
signal. The last 20 years has seen advances in algorithms aimed
at improving the runtime for the sparse Fourier transform. The
first notable in [3] and several other algorithms have been pro-
posed with this goal in mind [4]–[7]. A recent approach is the
so called sparse FFT (sFFT) which lowered the computational
complexity significantly. It was introduced in [8] and improved
the runtime complexity to O(k log N) to make it faster than the
FFT for a given sparsity factor k ≤ O(N). A survey of sparse
FFT methods can be found in [9].

The applicability of the sparse FFT is only limited by the
sparseness of the signal in the Fourier domain. For instance,
the standard FFT algorithm could be chosen to perform the
compression of an audio signal for when a high audio quality is
needed during playback. On the other hand, the sparse FFT could
be used if the audio signal is highly compressed into a lower
quality signal which may be desirable for speech. There are
also applications which inherently work on sparse signals. For
instance GPS deals with extremely sparse signals and the sparse
FFT can be used to significantly speed up signal acquisition [2].
Another application is GHz-Wide sensing [10] of signals. Ad-
ditionally, a very popular field that deals with sparse signals
is compressive sensing. Recovery algorithms for compressive
sensing are often limited by the performance of the sparse basis
transformation. This is where the sparse FFT would come into
play and therefore allow faster recovery and recovery of large
problems sizes. One particularly interesting application within
compressive sensing is the reconstruction of Magnetic Reso-
nance Imaging (MRI) images which rely on the two or three
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dimensional Fourier transform. Another similar application is
to apply the 2D sparse FFT to reconstruct a more sparsified
image in 2D Magnetic Resonance Spectroscopy [11]. Com-
putational Lithography uses very large scale two dimensional
Fourier transforms to calculate the intensity of every source
point of the Wafer [12]. A sparse Fourier transform of sizes up
to 1033 or more is necessary for the detection of pulsars [13].

The algorithm introduced in [8] handles only one dimen-
sional signals and does not explicitly state how to extend the
algorithm to solve the multidimensional sparse FFT problem.
Being a separable transform the 1D DFT can easily be extended
to multiple dimension by applying the 1D algorithm multiple
times on each slice along each dimension. Applying the sparse
FFT in this naive way, however, would negate all gains due to
the repetitions necessary along one dimension. Some of the state
of the art sparse FFT algorithms, such as [14], use permutations
in order to obtain well distributed Fourier coefficients. This pa-
per shows that these permutation can be further improved by
choosing permutation parameters that are not randomly chosen
but instead semi-deterministic. Hence, the proposed method can
be applied to a wide range of existing and future algorithms that
use permutations to solve the clustering of Fourier coefficients
which are often found in real world signals.

Assuming a signal of dimensionality d with N elements along
each dimension, the complexity of such a naive algorithm would
be kdN log N . The term N which is introduced by the repeated
computation of the 1D sFFT is prohibitively fast growing com-
pared to the desired logarithmic term log N . Thus, a more ef-
ficient approach is shown in our work by extending the sparse
FFT algorithm itself to multiple dimensions. In addition, the
algorithm in [8] introduces many parameters which are left to
be chosen randomly. This works well for the assumption of a
randomly distributed input spectra but is sub-optimal for signals
inhibiting structure. Often however, choosing those parameters
randomly is far from optimal and becomes a much more pro-
nounced problem with the multidimensional sFFT.

In this paper it is shown that the parameters in question should
not be chosen randomly and Lattice theory is used to optimize
these parameters. In fact, the findings are also applicable to other
algorithms which use pseudorandom spectrum permutation [5],
[8], [15]–[18]. Note that the proposed algorithm and finding in
this paper are not limited to the exact sparse FFT (sFFT-3.0)
but are also applicable to other and more recent developed
algorithms such as [19] which also proposes a multidimensional
sparse FFT. Other multidimensional sparse FFTs employing
Lattices have been proposed [20] but differ in the approach.

II. LATTICES

Lattices have various mathematical definitions depending on
the context and application field. In this work, lattices are used as
a discrete additive subgroup of Rn also known as point lattices.
An additive subgroup has the property:

∀x, y ∈ L → −x, x + y ∈ L (2)

i.e. for any two points in the lattice L, the points −x and x + y
are also part of that lattice.

Equivalently, a lattice is theZ-linear span of a set of n linearly
independent vectors:

L(B) = {a1b1 + a2b2 + · · · + anbn : a1 , a2 , . . . , an ∈ Z}.
(3)

The vectors b1 , b2 , . . . , bn are called the basis vectors of the
lattice and similarly the matrix B is called the basis of the
lattice. In theory a lattice is an infinite set, however in practical
applications the set of numbers will be on a finite domain.

The fundamental parallelepiped of a basis B is defined as:

P(B) =

{
n∑

i=1

cibi : ci ∈
[
−1

2
,
1
2

)}
.

Another fundamental region of particular interest is the
Voronoi cell of a lattice. It is defined as the set of all points
in Rn that are closer to the origin than to any other lattice point:

V(B) = {x ∈ Rn : ||x|| < ||x − v|| ∀v ∈ L \ {0}} . (4)

Note, that the basis of a lattice is not unique. For any matrix
U ∈ Zn×n , det U = ±1 the matrix resulting from B ·U will
also be a basis for the lattice L(B).

Some basis are more desirable and interesting than other
basis due to their mathematical properties. Basis reduction is
the process of taking a base and reducing it such that it still
generates the same lattice. In lattice theory a vast effort has
been made to find such reduced basis sets [21]. Given a basis, the
problem of finding the shortest near-orthogonal vectors is called
the shortest vector problem (SVP). The exact problem of finding
the shortest vector within a lattice is known to be NP-hard [22].
However, various approximate solutions with polynomial time
exist. In fact, this NP-hardness result gave rise to a new field
called lattice based cryptography. However, various algorithms
to find good approximations in polynomial time complexity
have been reported [21], [23], [24].

The minimum basis of a lattice is the basis with the shortest
and nearly orthogonal basis vectors. The fundamental paral-
lelepiped of the minimum basis of a lattice is called the fun-
damental domain of the lattice. The determinant of the fun-
damental lattice is defined as the volume of the fundamental
parallelepiped.

An example of a two dimensional lattice is the well known
hexagonal tiling which is obtained from a lattice with basis
vectors of equal length and an inner angle of 60 deg.

The rank of a lattice is the dimension of its linear span m =
dim(span(B)). In the case of m = n the lattice is called a full
rank lattice. The rank of the lattice is easily visualized: It is
the number of vectors necessary to generate the lattice. In two
dimensions, two well known full rank lattices are the square and
the hexagonal lattice.

Another recently emerging application is the usage in pub-
lic key cryptography due to the high computational complex-
ity of the lattice basis reduction problem [25]. In communica-
tion, lattices find use in demodulation and quantization both of
which seek to solve the closest vector problem. In computer
graphics lattices are applied in sampling patterns and pixel anti-
aliasing [26]. Pseudo random number generators are closely
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Fig. 1. The solid dots (green) are the lattice points generated by the base
vectors shown in the bottom left. The solid connected lines (orange) sur-
rounding the lattice points is the Voronoi tessellation. The straight lines (grey)
crossing through the lattice are the Delaunay tessellation also known as the
dual graph. The fundamental region is spanned by the two basis vectors in
the bottom left. Also note, the lattice points are the centroids of the Voronoi
parallelepiped.

connected to lattices and find applications in numerical integra-
tion [27].

This paper discusses lattices in the context of multidimen-
sional sparse FFT. While the focus is on the two dimensional
case, all arguments are straightforward to extended to arbitrary
dimensions unless otherwise noted. An example of a two dimen-
sional lattice is depicted in Fig. 1. It also depicts the Voronoi
cell, the Delaunay tessellation and the two basis vectors that
generate the lattice points. The fundamental parallelepiped is
spanned by the two basis vectors and the origin.

A. Dual Lattice

The Nyquist-Shannon sampling theorem is the corner stone of
sampling a continuous signal. It states that a signal is completely
determined when sampled at twice the bandwidth. Fulfilling
this constraint, it is possible to reconstruct the signal perfectly.
The original theorem is stated for the one dimensional case
where the samples are equidistant. It is straightforward to extend
the theorem to multiple dimension by treating each dimension
independently. For instance, a two dimensional signal which
has a rectangular shaped spectrum with different bandwidths
along each dimension, implies that the signal can be sampled
at a lower rate along one dimension and must be sampled at a
higher rate along the other dimension.

Naturally, it is interesting to ask what the optimal sampling
lattice is for a given arbitrary shaped spectrum? Note, that any
kind of rectangular sampling in the time domain will result in
the repetition of the spectrum along a rectangular shaped lat-
tice in the frequency domain. Thus, the standard rectangular
sampling grid method does not allow us to answer this ques-
tion in an interesting way. As introduced in the previous sec-
tion, a lattice can be used to sample a continuous signal. This,
in turn, raises the question of the effect on the signal spectra
as it is sampled by a lattice. The answer to this question is
the Dual Lattice.

One well known fact is that the optimal sampling lattice of
circular shaped spectra is the hexagonal lattice. This is due to
two facts:

1) The hexagonal lattice is self-dual, i.e. the dual of a hexag-
onal lattice is again a hexagonal lattice.

2) The hexagonal lattice optimizes the arrangement of
spheres thus achieving the highest density. This fact was
proven by Gauss in 1831 [28].

It is also helpful to think of the Voronoi tessellation of the
hexagonal lattice—which is a hexagon—as the best approxima-
tion to a circle among all two dimensional lattices. Also note
that the hexagonal lattice is popular due to the fact that it is
optimal if the spectrum is assumed to be isotropic which is a
good assumption for most real world signals.

In general, the signal is sampled in such a way that the result-
ing spectra of the samples signals do not overlap and thus the
signal can be reconstructed perfectly. If the sampling constraints
are relaxed from ordinary rectangular lattices to arbitrary lattices
however, the way the signal is sampled is still constrained. As
shown later, the effect of signals that are sampled according to a
lattice in the time domain is that their spectrum is reduplicated
according to the dual lattice in the frequency domain.

Given this constraint it is natural to ask what the optimal
sampling lattice is, given an a priori knowledge of the shape of
the spectrum. Reduplication of the spectrum in the frequency
domain along a lattice L means that overlapping of the spectrum
occurs if the spectrum extends beyond the Voronoi cell of the
lattice L. This is a straightforward result from the definition of
the Voronoi tessellation (4) which quasi tiles the space according
to the proximity to a lattice point. Here, the term “quasi-tiling” is
used since the Voronoi cell does not include the boundary points
so the tiling is not complete. The above assumes symmetric
spectra or else a more general approach must be taken which
will be noted later in this section.

Formally, the dual lattice of the lattice L is denoted as LT . It
is defined as the set of real vectors h ∈ Rn with:

LT := {h ∈ Rn |h · x ∈ Z for all x ∈ L} (5)

which means that the dual of a lattice L is the set of points
whose inner product with any points of the lattice is an integer.
The dual lattice is—as its name suggests—again a lattice. For
instance the dual of the lattice 2Zn is the lattice 1

2 Zn . As this
example shows, it is also common to refer to the dual lattice as
the reciprocal lattice.

If the lattice is a full rank lattice, then the dual lattice can be
generated with the basis matrix of the inverse of the transpose
of B, i.e. (BT )−1 . This follows directly from the definition of
the dual lattice. For the use-case of improving the sparse FFT,
it should be noted that we always deal with full rank lattices.

In general, the algorithm of finding an optimal sampling lat-
tice provided an expected shape of the spectrum is the following:

1) Given the expected shape of the spectrum Sg (which, if
no a-priori information is given, should be chosen as an
n-sphere)

2) find a lattice whose Voronoi tessellation (4) best ap-
proximates the spectrum shape Sg . Let this lattice be
called Lg .

3) Calculate the dual lattice LT
g of the lattice Lg and use the

lattice LT
g to sample the signal.

Step 2 of the algorithm follows from the sampling theorem
and can be done by a simple brute force search by generating
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Fig. 2. The proposed iterative algorithm which generates an infinite sequence
of candidates for permutation matrices P̃ . The only parameter needed is the
lattice basis approximating the expected spectrum shape. Note that the evalu-
ation of the “goodness” of the candidates is deferred until it is defined what
constitutes a good permutation matrix. Also note that despite generating an
infinite sequence an actual implementation would not realize the candidates in
the sequence eagerly.

lattices and their Voronoi tessellation and measuring the error.
The error can be measured according to some user defined er-
ror measure, for instance by calculating the area of the given
spectrum that lies outside the Voronoi tessellation. This is a sim-
ple and effective approach if the dimensionality of the signal is
low, otherwise this approach suffers from the popular curse of
dimensionality and more sophisticated approaches must be em-
ployed [29].

Lastly, it is noted that in some cases finding an optimal
lattice requires a more sophisticated algorithm. For instance,
if the spectrum of the signal is non-symmetric the step 2 of
the algorithm tries to match a Voronoi cell—which is always
symmetric—with the non-symmetric spectrum. This, in turn,
will result in a poor fitting lattice which is larger than necessary
and hence results in non-optimal lattice.

In this case it is recommended, that the optimal lattice should
be found by brute force iterating over lattices and reduplicate
the input spectrum around the neighborhood of the origin point
of the lattice. The error measure used to find a good matching
lattice is the intersection of the reduplicated spectra. In general,
more elaborated methods to deal with non-symmetric spectral
characteristics can yield slightly better lattices.

B. Permutation Candidates Algorithm

In this Subsection an iterative algorithm is introduced which is
based on the dual lattice introduced in the previous section. The
pseudo code of the algorithm is given in Fig. 2. The algorithm
takes the basis L of a latticeL and returns a sequence of matrices
of the same size as the basis. Note that, one step within the
algorithm ensures that the determinant of the integer matrix is
odd. An algorithm to ensure an odd determinant is given in
Section III.

To this end, the algorithm first calculates the dual and gen-
erates integer matrices based on this dual. This sequence of
matrices can be used to permute the spectrum of the shape
of the input lattice. Each candidate matrix M is evaluated by

Fig. 3. Good and bad permutation of a permuted input spectrum. Top left: The
original input spectrum generated with a multivariate Gaussian distribution.
Top right: An example of a bad permutation due to choosing the parameters
randomly. Notice the clustering of the lattice points leading to collisions in the
sparse FFT algorithm. Bottom: An example of using a permutation obtained
from using the optimal permutation with Algorithm 2. Note the very uniform
distribution of the coefficients which is desirable to reduce collisions in the
sparse FFT.

applying the permutation operator P ′ to the spectrum:

(P ′x̂)j = x̂Mj . (6)

Each spectrum permutation is then evaluated by measuring the
error. The error measure can vary by the application and is user
defined. For instance it may be preferable to choose the overall
PSNR or a simple inter point distance as an error measure.

Next, the algorithm is evaluated with simulations. To this end,
multiple sparse input spectra are generated whose shape is de-
rived from a multivariate Gaussian distribution. MATLAB was
used for implementing the simulation. The setup was as follow:
The input size was chosen to be N × N = 1024 × 1024 with a
sparsity of 0.01%. One realization of such an input spectrum is
depicted in Fig. 3 (left).

For each input spectrum the simulation permutes the spec-
trum according to (6). The permutation matrix M is either cho-
sen randomly or from the sequence of matrices obtained from
Algorithm 2.

One example of a random permutation is depicted in Fig. 3
(middle) with an example of a good permutation obtained via
the proposed algorithm depicted on the right. Note the struc-
tured layout of the coefficients which are unfavorable to avoid
collisions in the sparse FFT algorithm.

In order to measure the “goodness” of a permuted spec-
trum the distance to the closest neighbor is calculated for each
nonzero coefficient:

Dmin
k = min

j �=k
||x̂k − x̂j ||2 . (7)

Note that, this is different from the minimum distance of a
lattice. This error measure was chosen due to being correlated
to the number of collisions in the sparse FFT algorithm. Close
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Fig. 4. Histograms depicting the difference between using different methods
of choosing permutation parameters. Over 400 input spectra are generated in
the shape of Fig. 3 and permuted them either randomly (left) or according
the dual lattice method (right). The euclidean distance between each non-zero
coefficient in the spectrum and its nearest neighbor is measured of how “good”
a permutation is. The right image has a mean minimum distance of 16:1 which
is a 21% improvement over using random permutation parameters (left) which
has a mean minimum distance of 13:3.

neighbors can lead to collisions which in turn yield to non-
optimal performance. A total of 400 simulations were run and
the results summarized with a histogram which is depicted in
Fig. 4. The result is a 21% improvement in the mean closest
neighbor distance.

C. Complexity Analysis

The proposed algorithm generates a sequence of permuta-
tion matrices. To this end the dual matrix is calculated and
subsequently multiplied by a a factor. The input size is a ma-
trix of d × d integer elements. However, the complexity is not
measured in term of d since d is usually small and considered
constant for the sparse FFT algorithm. The actual complexity
comes from the dimension of the input spectrum that is to be
permuted. That is, the elements of the returned permutation ma-
trix are at most N , where N is the number of elements in each
dimension. It does not make sense for the elements to be >N
since the input spectrum is a cycling signal due to the definition
of the DFT.

A naive algorithm would try all possible permutation matri-
ces which has a complexity of O(Ndd). This means that the
complexity is exponential in the number of dimensions. This
is no surprise due to the well known curse of dimensionality.
However, evaluating all possible matrices is impossible even for
d = 2 unless N is small which is of no interest to the sparse FFT
algorithm. The proposed Algorithm 2 reduces this complexity
for any dimensionality d to a linear search algorithm of O(N)
by only evaluating the matrices that are likely to yield a good
performance. This massive reduction in complexity allows for
a much more sensible subset of possible permutation matrices
which yield good performance as will be shown later. It also
makes the problem tractable for higher dimensions due to being
independent of d.

III. ODD DETERMINANT ALGORITHM

In this Section a novel algorithm is introduced that ensures
that the determinant of a square matrix is odd. This constraint
is to be fulfilled in order for the permutation generated by the
matrix to be invertible. Normally a matrix is invertible if the
determinant is nonzero. However, the permutation applies a

Fig. 5. Recursive algorithm to turn an integer matrix with even determinant
into a similar matrix with odd determinant. Note that the algorithm potentially
recurses on a matrix of the same input size but guarantees termination after only
one more call due to the conditions preceding the recursion. The algorithm works
by flipping bits carefully such that the Laplace expansion of the determinant has
an odd number of odd terms.

modulo N operation to the indices due to the implicitly cyclic
DFT. This results in a system of linear congruences which are
invertible if the determinant is relatively prime to N [30]. Due to
the further constraint of N being a power of two, the constraint
is for the determinant to be odd. The algorithm works with any
square matrix M ∈ Nd×d . The approach is to flip bits of as
few of the matrix entries as possible thus changing some entries
from even to odd and vice versa.

The basis for the algorithm approach is the Laplace expansion
of the determinant calculation of a matrix:

|M | =
d∑

i=1

(−1)i+jmi,jN i,j

where mi,j are the matrix entries and N i,j are the minors of M
obtained by generating a matrix of the elements of M omitting
the entries of the row i and column j. Thus effectively crossing-
out the entries of the ith row and jth column. Note that the
size of the minor N is d − 1 × d − 1. This technique is also
sometimes referred to as the expansion by minors.

The other obvious observation is that only an odd number of
odd terms yield an odd number. The algorithm is most easily
understood with recursion which reduces the problem size in
each iteration by one and ends in the trivial case of a 1 × 1
matrix which is just an integer. Such a matrix can be made odd
by subtracting or adding one in case the number is even.

A full pseudo code description of the algorithm is given in
Fig. 5.

A detailed description of the algorithm is given: First, the two
trivial cases which stop the recursion: 1. The determinant of the
input is odd 2. The input size is a single number (d = 1).
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The second case can be solved by adding one to the input
number which makes the number odd. The algorithm proceeds
with inspecting the input’s Laplace expansion. Subsequently,
the number of odd terms in the expansion are counted. Note
that, at that stage of the algorithm the number of odd terms
must be even. If the number of odd terms is two or more, the
solution is easy: Make one of the terms even and the overall
determinant will become odd. Note, however, that the minor
matrices of the terms are not disjoint and have common ele-
ments. Thus, flipping one of the elements of the minor ma-
trices can result in a change in multiple terms. This in turn
means that a flip in the matrices could result in the determinant
staying even. For this reason, the factor m1,i of the expan-
sion is used to make the overall term odd. It is know—due
to the term being odd—that the factor m1,i must be odd as
well. This stage solves the problem and terminates the recursive
algorithm.

The next stage is to handle the case if the number of odd terms
is zero. This means that the determinant can be made odd by
making one single term odd. Overall, it is desirable to change
the least amount of matrix entries which implies that the focus is
on changing the factors m1,i as opposed to the minor matrices.
Thus, the algorithm tries to find a term with a minor matrix
which has an odd determinant. If successful, the factor m1,i is
made odd as well. This terminates the algorithm since this will
make one term odd and thus the overall determinant odd.

At this stage, there is no minor matrix with odd determinant,
which implies that recursion on one minor matrix is necessary.
The first step however, is to ensure that at least one factor m1,j

exists which is odd. If this fails, then the first factor m1,1 of
the matrix is set to become odd. The next step is to find an
odd factor m1,j and its accompanying minor matrix N 1,j . It
is known that the minor matrix N 1,j has an even determinant.
Thus, the algorithm calls itself recursively which ensures that
minor matrix has an odd determinant. Note that the problem
size is now reduced by one since the minor matrix has size
d − 1 × d − 1.

The final line of the algorithm requires some attention: As
noted earlier, changing a minor matrix’s entries affects the other
d − 2 minor matrices’ entries. This, in turn, can lead to other
terms of the expansion become odd. For instance, if there were
no terms which were odd and one minor matrix is modified then
this modification could yield two 2 odd terms. Thus effectively
negating what was desired: An overall odd determinant. Inter-
estingly, the case of two or more odd terms was already covered
earlier in the algorithm. The matrix can be made odd by simply
calling the algorithm recursively. Note that, the recursive call is
not being done with a reduced input size but with the same d × d
input matrix size. It first seems that this could potentially result
in an infinite loop. However, the recursive call will never call
itself recursively and is thus safe to do. This observation also
proves the termination of the algorithm since the other recursion
reduces the problem size each time.

Note that, there is a slightly more complex version of this
algorithm possible. The proposed algorithm only does one
Laplace expansion along the first row of the input matrix.
A more sophisticated algorithm could potentially reduce the

number of bit flips even more by considering other expansion
along the rows and columns.

A. Error and Complexity Analysis

In this Section the runtime complexity of Algorithm 5 as
well as the error introduced by the bit flipping is analyzed. The
worst case runtime of the proposed algorithm is O(d!). This is
due to the complexity of the Laplace expansion which also has a
complexity of O(d!). In the worst case the algorithm recurses on
one smaller minor matrices and expands each. Note, however,
that for the use case of generating permutation matrices this
seemingly high complexity is not an issue. For instance for a
3-dimensional sparse FFT the input matrix is only 3 × 3 and in
fact considered constant for the algorithmic complexity of the
sparse FFT algorithm.

Since the algorithm changes the entries of the input matrix it
is of interest how much the output of the algorithm differs from
the input. The absolute maximum error is bound by one. This is
due to the careful choice of adding one to the even entries and
subtracting one from the odd entries which effectively can be
implemented as a bit flipping operation. This means, that even if
the recursive algorithm changes entries multiple times the error
is guaranteed to be at most one.

IV. SPARSE FFT ALGORITHM

In this Section the core ideas of the one dimensional sparse
FFT algorithm as introduced by [8] in 2012 are described. A
more in depth explanation of all steps is described in Section V.
Specifically, the proposed algorithm is based on what is often
referred to as the exact k-sparse algorithm also called sFFT-3.0.
However, the proposed changes to the algorithm are not specific
to this version and are also applicable to the general k-sparse al-
gorithm which is also sometimes referred to as sFFT-4.0. Firstly,
the notation is introduced. The notation will partly be re-used
for the multidimensional version of the algorithm in Section V.

Given a signal x of length N its discrete Fourier transform is
denoted as x̂. A signal is considered to be k-sparse if there are
only k non-zero components in x̂. Furthermore ω = e−2π ı/N is
defined as the N th root of unity. The set {0, . . . , N − 1} is de-
fined as [N ] and further [N ] × [N ] as [N ]2 . The number of bins
that are used to hash the Fourier coefficients is denoted by B.

The following paragraph describes the main ideas of one
iteration of the sFFT-3.0 algorithm. The key idea of the sFFT
algorithm is to hash the k coefficients into few buckets in sub-
linear time. This is achieved by using a carefully designed filter
that is concentrated in time as well as in the frequency domain.
Due to the sparsity of the signal and the careful selection of the
number of bins, each bin is likely to only contain one coefficient
after being hashed. After the coefficients of each bin are obtained
the actual positions in the frequency domain are recovered by
locating and estimating. The algorithm does this hashing twice
and “encodes” the frequency of the coefficient into the phase
difference between the two hashed coefficients. This technique
achieves the locating part of the algorithm by decoding the phase
and obtaining the frequency. Before the coefficients are hashed
into buckets, the procedure (HASHTOBINS) permutes the signal
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x in the time domain by applying the permutation operator Pσ,a,b

which is defined as

(Pσ,a,bx)i = xσ (i−a)ω
σbi , (8)

where the parameter b is uniformly random between 1 and N ,
σ is uniformly random odd between 1 and N , and a is 0 for
the first hashing operation (HASHTOBINS) and 1 for the second
call to HASHTOBINS. The constraining to odd values for σ is
necessary in order for the permutation to be invertible.

With the use of some basic properties of the Fourier transform
the following can be proved (page 5 of [8]):

̂Pσ,a,bxσ (i−b) = x̂iω
aσi . (9)

Later a multidimensional version of this equation is derived.
Informally, this equation states the following: A permutation,
defined by equidistant sub-sampling in the time domain in addi-
tion to applying a linear phase, results in a (different) permuta-
tion in the frequency domain with a (different) linear phase. By
carefully choosing the parameters of (9) it is possible to design
the permutation such that the phase difference between the two
hashed coefficients is linear in frequency. This property is then
used to recover the coefficient exactly by using the quotient of
two measurements with different parameter a.

A high level overview of the functions that divide the key
steps of the sFFT-3.0 algorithm are the following [8]:

� HASHTOBINS permutes the spectrum of x̂ − z, then hashes
to B bins, where z is the already recovered signal which
is initially all zero.

� NOISELESSSPARSEFFTINNER runs HASHTOBINS twice and
estimates and locates “most” of x̂ − z’s coefficients.

� NOISELESSSPARSEFFT runs NOISELESSSPARSEFFTINNER

multiple times until it finds x̂ exactly.
The function NOISELESSSPARSEFFTINNER generates the ran-

dom parameters for the permutation (among others) and passes
it to HASHTOBINS. The permutations are Pσ,0,b for the first
call of HASHTOBINS and Pσ,1,b for the second call respectively.
The number of bins is denoted by B and gradually reduced
with each call of NOISELESSSPARSEFFTINNER. HASHTOBINS

performs the low pass filtering on the signal which has a com-
plexity of O(B log N). By carefully reducing B per iteration
the 1D sFFT algorithm runs in time O(k log N). The reader is
advised to see [8] for a more in depth description and proves of
the 1D sFFT algorithm.

V. MULTIDIMENSIONAL SPARSE FFT ALGORITHM

In this Section it is described how to extend the one dimen-
sional sparse FFT from Section IV to multiple dimensions. A
comprehensive pseudo code description of the d-dimensional
algorithm is given in Fig. 6. First it is described what extensions
to the concepts are necessary. Consecutively the algorithm is
described in more detail.

As stated earlier, for simplicity the symbols are reused and
the notation is redefined for the d-dimensional case. Let x be an
[N ]d -dimensional signal with sparsity k. It is assumed that each
Fourier coefficient x̂i ∈ −L, . . . , L where L ≤ Nc for some

Fig. 6. Exact k-sparse d-dimensional algorithm.

constant c > 0. Let the number of bins that are used to hash the
coefficients be [B]d .

The low pass filter—which has a general form approximating
a rectangular in one dimension—needs to be extended to mul-
tiple dimensions. There are two popular and straightforward
options: A hypersphere or a hypercube. The extension to mul-
tiple dimensions need to be performed very carefully due to the
constraints of the filter. It is crucial that the filter has limited
support in both, time domain as well as Fourier domain. It turns
out that this poses a significant problem when defining the mul-
tidimensional filter which transition from one to zero not along
a principal axis. For instance, a circular shaped low pass filter
contains transitions along each direction (0◦ to 180◦) whereas
the rectangular filter only contains transitions along 0◦ and 90◦.

Due to this unique limitation the low pass filter is defined as
the dyadic product of the one dimensional low pass filter:

GB,α,δ =
d⊗

i=1

g′
B,α,δ (10)

where g′
B,α,δ denotes the same filter vector as described in

Section VII of [8]. Thus approximating a hypercube.
Note that the actual complexity of this is much less than the

seemingly O(Nd) due to the limited support of the vector g′

which is O(B log N) in the one dimensional case. In d dimen-
sions the support of GB,α,δ is thus O(Bd logd N).

The fact that the phase difference between the two hashes
is always a one dimensional entity even in a d-dimensional
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sample poses a problem. To be able to recover the frequencies
in d-dimensions it is necessary to hash a total of d + 1 times
and encode each dimension in the calls 1, 2, . . . , d to HASH-
TOBINS. This allows to locate the coefficient in d-dimensions
by decoding each frequency component along each dimension
separately.

The most interesting part of the algorithm and the focus of
this paper is the very first part of each outer iteration: The
permutation. It is necessary to extend the permutation (9) to
multiple dimensions which is done with the following definition
of the permutation operator PM ,a,b:

(PM ,a,bx)v = xM(v−a)ω
vT MT b (11)

where M is a matrix of size d × d that stretches the input signal
x. And a and b are the d-dimensional vectors counterparts of
the one dimensional definition in (9). Note also that all of the
vectors and matrices in (11) only contain integers. In order to re-
cover the original Fourier coefficients, i.e. perform a reversible
permutation the determinant of the matrix M needs be odd.
For two dimensions, the matrix M can be interpreted as apply-
ing a shear and scale to the multidimensional input signal. This
interpretation allows for some intuition regarding the optimal
parameter: If the parameters are chosen randomly, and the shear
along one dimension happens to dominate the transformation,
what happens to an isotropic input spectrum? The answer is
that in such an unfortunate case the permuted spectrum would
results in a “banding” like accumulation of Fourier coefficients.
This can be fatal for the performance of the algorithm since
such bands of accumulated coefficients results in many colli-
sions. The answer in choosing the optimal matrix M lies in the
proposed Algorithm 2.

Furthermore, the parameter a is the only parameter that dif-
fers among each call to HASHTOBINS. For a given iteration i
and vector index q:

ai,q =

⎧
⎪⎨

⎪⎩

0 if i = 0
0 if i �= 0 and q �= i

1 if i �= 0 and q = i

(12)

where the iteration index i ranges from 0 to d.
Another part of the multidimensional algorithm requiring spe-

cial attention is one step within NOISELESSSPARSEFFTINNER

where the inverse to above permutation is needed. Again, the
extension to multiple dimensions is not straightforward. Firstly,
note that in the one dimensional sparse FFT algorithm the in-
verse is found with the extended Euclidean algorithm with the
constraint of σ being odd which is the counterpart of the con-
straint that the determinant of the permutation matrix is odd. In
order to simplify this Section the focus is only on the expres-
sion Mv. The result is straightforward to extend to the form of
(11). Remember that all elements in M are integers and further
det M must be odd for the expression to be a bijection. The
goal is to find v in Mv mod N = y. Where the modulo ap-
pears due to the simple fact that the DFT of a signal is implicitly
periodic with the signal length N .

This problem turns out to be a congruence equation which
can be solved by reducing this problem to a linear Diophantine

equation [31]. First, a trick is used to get rid of the modulo
operation:

Mx mod N = y

⎡

⎢⎢⎣

m1,1 · · · m1,d μ1

...
. . .

...
...

md,1 · · · md,d μd

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎣

x1

...

xd

N

⎤

⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎣

y1

...

yd

⎤

⎥⎥⎦M ′v′ = y

(13)
where μ is a vector of arbitrary integers. In this simple form
the solution to the linear Diophantine equation can be found by
computing the Hermite normal form of the matrix M ′ [32]. Note
that the complexity of computing the Hermite normal form is
quite high with O(d6). However, the dimensionality is usually
quite low and considered constant for the complexity of the
sparse FFT algorithm. Thus, it does not increase the complexity
of the overall sparse FFT algorithm. In fact, the permutation
matrices as well as its inverse permutation obtained with the
HNF form can be precomputed by an application.

Next the relationship between the original signal x and the
effect of the permutation (11) to the spectrum is derived:

( ̂PM,a,bx)M T (v−b) =
∑

u∈[N ]d
ωuT M T (v−b)(PM,a,bx)u

=
∑

u∈[N ]d
ωuT M T (v−b)xM (u−a)ω

uT M T b

= ωvT M a
∑

u∈[N ]d
ωvT M (u−a)xM (u−a)

= x̂vω
vT M a

(14)
Again, this states that the applied permutation (11) in the time
domain results in a permutation in the Fourier domain. Both, the
frequency as well as the time domain, also apply a (different)
phase, which is exactly what is needed for the algorithm to
function by encoding the frequency in the phase component.

A. Complexity Analysis

The time complexity of the d-dimensional sparse FFT algo-
rithm is similar to the one dimensional algorithm. Besides the
straightforward extensions of the various parameters and enti-
ties of the one dimensional sparse FFT to multiple dimensions,
there are a few steps that require more careful attention.

First, the d + 1 calls to HASHTOBINS which encode the d
dimensions of each coefficient need to be taken into account.
Secondly, the d-dimensional FFT within HASHTOBINS results
in a complexity of O(Bd log B). Taking into account that B is
chosen as O(k1/d) the result is a complexity of O(k log k1/d)
for the FFT calculation within HASHTOBINS.

The main cost of the algorithm is the first iteration. Within
this first iteration the application of the time domain filter is
the dominating cost with O(Bd logd N). Again, taking into
account that B is chosen as O(k1/d) the result is a com-
plexity of O(k logd N) Thus, given that d + 1 iterations of
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Fig. 7. An example graph depicting the PSNR over 50 iterations. The PSNR
was calculated as the average over 40 generated input spectra. The input size
N × N = 8192 × 8192 and the sparsity k = 1600. Top: In each iteration a
randomly generated permutation Bottom: A subset of the proposed method
DUALPERMCANDIDATES was used. Note: With only very few iteration
the proposed algorithm finds a very good permutation matrix. The proposed
algorithm also avoids bad permutation with low PSNR. A random strategy
might or might not find a good permutation. This non-deterministic behavior is
undesirable for real applications.

HASHTOBINS is necessary for one iteration and the fact that the
complexity is dominated by the first iteration of NOISELESSS-
PARSEFFTINNER, the algorithm has an overall time complexity
of O(k logd N).

In comparison, the proposed method in [20] also uses Lattice
theory to find the high-dimensional FFT and achieves a com-
plexity of O(dk3 + dk2k2N log(kN)) for

√
N � k � Nd and

O(dk3) otherwise.

VI. RESULTS

The proposed algorithms are validated by simulating the
sparse FFT algorithm in two dimensions. To this end the 2D
sFFT algorithm was implemented in MATLAB. The simulation
setup was as follows: Input spectra were generated with a given
sparsity k. Each spectrum had an isotropic shape which is the
most common shape among real world signals and should be
assumed if no a-priori knowledge of the input signal is given.
One iteration of the overall algorithm is run, i.e. one call to
NOISELESSSPARSEFFTINNER. This allows one to compare the
performance of the permutation. As an error measure the PSNR
of the recovered signal after one iteration is calculated. A good
permutation will reduce the number of collisions and result in a
higher PSNR. Also note that the algorithm runtime is dominated
by the first iteration.

Algorithm 2 is used to generated candidates for the permu-
tation matrix of Algorithm 6. Each candidate is evaluated with
40 generated input spectra. An example of the evaluation of 50
candidates is depicted in Fig. 7. As a comparison 60 random
candidates where evaluated and are depicted on the left side
of Fig. 7. It can be seen that our proposed algorithm performs
better finding a better maximum PSNR.

Fig. 8 shows the improvements for the proposed algorithm
for different input sizes N . Again, the PSNR is compared to
choosing random permutation matrices. It can be seen that the
proposed algorithm finds permutation matrices that improve the
PSNR of the sparse FFT algorithm by roughly 2 dB across
the shown input sizes.

Similarly, Fig. 9 depicts the PSNR improvement over dif-
ferent sparsity k for and input spectrum of size N × N =

Fig. 8. 40 iterations of the proposed algorithm are used and compared it with
a random strategy. The PSNR was calculated as the average over 40 generated
input spectra. For the each iteration the average PSNR was calculated and the
best performing permutation matrix chosen. For the shown graph the sparsity k
was kept constant at 800. The graph shows that the proposed method improves
the PSNR by roughly 2 dB.

Fig. 9. This graph shows the improvement in PSNR for an input spectrum of
N × N = 8192 × 8192 with different signal sparsity k ranging from 400 to
10000. The test setup is the same as the one of Fig. 8.

Fig. 10. This graph compares two histograms obtained from the optimal
permutation matrix from the proposed method (top) and the optimal matrix ob-
tained from randomly generating permutation matrices (bottom). The histogram
shows the distribution of 2000 generated input spectra. It can be seen that the
PSNR of the proposed method is well contained and improves upon the random
permutation by roughly 2 dB.

8192 × 8192. Again, the improvement is around 2dB compared
to a random permutation strategy.

Fig. 10 depicts the histogram of PSNR values over 2000
simulations. The top histogram shows the distribution of the
PSNR with the permutation obtained from the proposed al-
gorithm whereas the bottom shows the optimal permutation
obtained from randomly selected permutations. Again, 40 itera-
tions where employed. This shows that the PSNR values follow
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Fig. 11. Histograms depicting the difference between using different meth-
ods of choosing permutation parameters. Over 600 input spectra are generated
with an isotropic input spectrum with a sparsity k = 400 and dimensions of
8192 × 8192. The PSNR is measured after one iteration of the sFFT algorithm
in order to compare the performance of the permutation. Left: Choosing a random
element of the DUALPERMCANDIDATES procedure as the permutation matrix.
Right: Choosing a completely random permutation element. The left histogram
shows that the PSNR is concentrated and successfully avoids very poor per-
mutations which can occur with random parameters (right) and result in unpre-
dictable algorithmic performance. The average PSNR is 26.65 dB on the left and
25.97 dB on the right. The minimum PSNR is 23.50 dB on the left and 10.05 dB
on the right.

TABLE I
THIS TABLE SHOW THE IMPROVEMENT OF THE PROPOSED ALGORITHM BY

AVOIDING COLLISION GENERATING PARAMETERS WHICH CAN RESULT IN A

VERY POOR PSNR 600 INPUT SPECTRA WERE GENERATED AND ONE

ITERATION OF THE ALGORITHM WAS RUN. THE TABLE SHOW THE MINIMUM

PSNR ACROSS ALL 600 SIMULATIONS. OP AND OR SHOW THE

CORRESPONDING STANDARD DEVIATIONS OF THE PROPOSED

METHOD AND THE RANDOM METHOD RESPECTIVELY.

a Gaussian like distribution which is desirable for real world
applications that require predictable performance.

Next, a different approach is investigated. Instead of iterating
over the sequence generated by Algorithm 2 and finding the
optimal permutation the strategy of using a random sample of the
sequence is used and is compared to taking a completely random
permutation matrix. This turns out to be a better strategy since
it avoids very poor permutations which in turn result in very
poor PSNR. The result is depicted in Fig. 11. The histogram
shows the PSNR of 600 simulations of an input spectrum of
8192 × 8192 and a sparsity of k = 400. This histogram shows
that the very poor PSNR values are avoided. Note that this does
not increase the runtime since picking a random element of the
sequence of Algorithm 2 does not require generating the entire
sequence and is thus a very cheap (constant time) operation.
Thus, this strategy could be employed by libraries which have
no prior knowledge of the input data.

Furthermore, a comparison of the minimum PSNR is shown
in Table I. Showing that a randomly chosen permutation can re-
sult in poor performance. The proposed method mitigates these
poor permutations successfully which is crucial for real world
applications of the sparse FFT.

Concluding, an example of applying the two dimensional
sparse FFT to an image is shown. Fig. 12. shows a crop of 1000
× 1000 pixels of an image of 32768 × 32768. Note that the

Fig. 12. Left: A 1000 × 1000 pixel crop of a 32768 × 32768 image with a
sparsity of 1%. Right: The image after running the proposed sFFT algorithm.
The PSNR is 27.81 dB when compared to the original image.

sparse FFT was independently applied to each RGB channel.
Other spectral shapes, such as anisotropic shaped spectra were
also evaluated and yielded similar results to the presented ones.

A. Higher Dimensions

Due to implementation details, no higher dimensional simu-
lations (d > 2) were performed. However, intuitively the higher
the dimensions the more likely it is to get a “banding” like accu-
mulation of Fourier coefficients after applying the permutation.
This is due to the fact that the permutation applies a shear to
each dimension and only one unlucky parameter could result in
large shear along one dimension and thus a banding like struc-
ture. This, in turn, would result in many collisions which can be
avoided by using the proposed method.

VII. CONCLUSION

In this paper the one dimensional exact sparse FFT introduced
in [8] is extended to multiple dimensions. Further the focus is on
the permutation part of the algorithm which is the main subtlety
and crucial to achieve good performance. This is well known in
the Computer Science community where good performance for
many algorithms are obtained by minimizing the collision rate of
the hashing functions [1]. The focus is on the shape of the spectra
of real world signals and it is shown that the performance can
be optimized by carefully choosing the permutation parameters
as opposed to the widely spread notion of randomly choosing
the parameters.

The permutation operation is interpreted as generating a lat-
tice which helps to argue the optimal parameters for the shape
of many real world signal spectra. The results showed success-
fully that the proposed method avoids poor hashing permutation
which can result in many collision. This is crucial in real world
applications which often require a reliable performing algo-
rithm. A clear understanding of the permutation and its inverse
for the general d-dimensional case was established by solving a
system of linear congruence equations.

Further, an algorithm was proposed which modifies a matrix
to ensure that the determinant is odd. This novel algorithm was
necessary in order for the congruence equations to be invert-
ible. Practical guidelines were established for the permutation
parameters in our proposed algorithm which are optimized for
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real world signals. The proposed method successfully avoids
“bad” hashing permutation parameters which results in a more
robust and consistent performing algorithm.
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Göttingsche Gelehrte Anzeigen, vol. 2, pp. 188–196, 1831.

[29] S. Dammertz, H. Dammertz, and A. Keller, “Efficient search for two-
dimensional rank-1 lattices with applications in graphics,” in Monte Carlo
and Quasi-Monte Carlo Methods 2008. New York, NY, USA: Springer,
2009, pp. 271–287.

[30] T. M. Apostol, Introduction to Analytic Number Theory. New York, NY,
USA: Springer, 2013.

[31] L. J. Mordell, Diophantine Equations. New York, NY, USA: Academic
Press, 1969, vol. 30.

[32] R. K. Martin, Large Scale Linear and Integer Optimization: A Unified
Approach. New York, NY, USA: Springer, 1999.
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