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Spectral Super-Resolution in Colored Coded
Aperture Spectral Imaging

Alejandro Parada-Mayorga and Gonzalo R. Arce

Abstract—Colored coded apertures have been recently intro-
duced in compressive spectral imaging as a method to improve the
quality of image reconstructions in terms of signal to noise ratio.
This paper shows that colored coded apertures, in addition, can
also provide a higher number of resolvable spectral bands. Col-
ored coded apertures with real and ideal spectral responses are
both considered. The maximum number of resolvable bands for
the case of nonideal filters is estimated using the coherence of the
sensing matrix which provides a condition that depends only on the
characteristics of the optical filters involved in the colored coded
aperture. Simulations and testbed experimental reconstructions
with real data are presented.

Index Terms—CASSI, coherence, colored coded aperture,
optical filter, sensing matrix, spectral imaging.

I. INTRODUCTION

S IGNIFICANT interest has emerged in compressed spec-
tral imaging [1] and optical architectures like the coded

aperture snapshot spectral imaging (CASSI) [14], [19]. The
CASSI system, illustrated in Fig. 1, encodes the spectral-spatial
information of a hyperspectral scene into 2D compressed pro-
jections. The projections are attained by spatially coding the
optical field using a coded aperture. The coded optical signal
is then dispersed by a prism and integrated by a focal plane
array (FPA) with wide spectral response. The spectral scene is
then reconstructed by solving a �1−minimization problem [1],
[19]. The spectral resolution in CASSI is limited mainly by the
pitch size of the detector and the spectral dispersion of the prism
(Fig. 2(a)).

In the traditional CASSI, the coded aperture is a binary valued
mask which blocks or allows the light in a pixel to pass. A
modified version of CASSI known as colored CASSI (Fig. 1)
has been introduced recently. In the colored CASSI, the coded
aperture is replaced by a colored mask in which each pixel
has a band pass spectral response [18], [2]. The use of this
colored mask has been shown to improve the quality of the
reconstructions [1], [18].

The colored coded aperture is a patterned multilayer optical
coating, which physically allows the pass of specific bandwidths
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Fig. 1. Basic Components of the colored CASSI system. The spatial-spectral
scene f (x, y, λ) is modulated by a coded aperture T (x, y, λ), after that the
modulated field is dispersed by a prism with dispersion curve S(λ) and finally
the whole field is integrated in a detector array. Notice that in the traditional
CASSI T (x, y, λ) ∈ {0, 1} ∀λ.

Fig. 2. (a): The spectral resolution in the traditional CASSI is determined
by the dispersion of the prism, its spectral range and the detector pixel pitch.
(b): The spectral resolution in the colored CASSI is determined by the spectral
response of the optical filters in the colored coded aperture, by the dispersion
of the prism, its spectral range, and the detector pixel pitch.

in different spatial locations [4], [18]. The basic idea is to have
a compact two dimensional array of pixels, each one with a
different spectral response. In the fabrication process of these
devices many technical challenges need to be addressed such
as preserving the spatial resolution that could be affected in the
coating process [4].

This work shows that colored coded apertures in CASSI not
only improve the quality of image reconstruction but, in ad-
dition, they allow the reconstruction of a larger number of
bands, which represents an improvement in the spectral res-
olution. Fig. 2(b) illustrates how colored coded apertures allow
the sensing of smaller regions of the spectrum that cannot be
sensed with the traditional CASSI architecture. This property
is proved in two steps. First, a model of the colored CASSI is
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used to write the reconstruction problem as an inverse prob-
lem. In the second step, a matrix formulation of the system is
used to calculate the coherence of the sensing matrix, which is
used to estimate the value of the super resolution factor. This
relation provides an estimate of the number of additional resolv-
able bands based on the wavelengths provided by the colored
coded aperture. The estimate is valid even when non ideal filters
are used in the colored mask. Numerical simulations confirm
these facts and reconstructions with real data shows the accu-
racy of this approach in a real implementation of the colored
CASSI.

This paper is organized as follows. Section II presents the
modeling of the CASSI system, and the discretization approach
proposed with an analysis of the limits of the integral operators.
It considers the existence of new bands inside the bands attained
by the conventional CASSI. Section III shows how the model
of the colored CASSI allows spectral super resolution and the
super resolution factor for the case of ideal filters is derived. In
Section IV, a matrix formulation of the colored CASSI is
presented and used to analyze the coherence of the sens-
ing matrix. An estimate of the super-resolution factor is pre-
sented when the optical filters involved in the color coded
aperture are non ideal. This estimate is defined in terms
of concentration inequalities of the coherence of the sens-
ing matrices. In Section V, a set of simulation results are
shown confirming the results obtained in previous sections.
Section VI show the results of the reconstruction problem with
real data. A summary and concluding remarks are showed in
Section VII.

II. CASSI MODELING

The basic components in CASSI are shown in Fig. 1. The
coding of the scene f(x, y, λ) is realized by a coded aperture
T (x, y, λ) at the image plane, where (x, y) are the spatial co-
ordinates and λ represents the wavelength components. When
block-unblock coded apertures are used in the CASSI system,
T (x, y, λ) is such that T (x, y, λ) ∈ {0, 1} ∀λ ∈ Λ, where Λ
is the spectral range of f(x, y, λ) [1], [19]. If T (x, y, λ) is
non constant with respect to λ, there is a representation of
the CASSI with a color coded aperture. Once the spectral sig-
nal f(x, y, λ) has been modulated by T (x, y, λ), the optical
field is dispersed by the prism and q(x, y, λ) is obtained as
q(x, y, λ) = f(x + S(λ), y, λ)T (x + S(λ), y, λ), where S(λ)
is the dispersion curve of the prism. The compressed mea-
surements g(x, y) in the Focal Plane Array (FPA) are real-
ized by the integration of q(x, y, λ) across the spectral axes
as g(x, y) =

∫
Λ q(x, y, λ)dλ.

A. Discretization of the Model

Consider the following terminology that is used hereafter.
Definition 1: Let L

′
be the number of bands that can be

reconstructed by the traditional CASSI (block-unblock coded
aperture). These are referred as the basic bands. Its number is
given by the number of discrete detector pixels subtended by
a pixel of the scene that is dispersed throughout all its spectral
components.

Definition 2: Let L be the number of bands that can be re-
constructed using the colored CASSI, the super-resolution factor
d is defined as d = L/L

′
.

Since the FPA is a finite array of pixel sensors, there is just
a finite number of spatial points that can be sensed. To obtain a
discretization, the integral operators and the coded aperture are
approximated [19].

Let Ω ∈ R2 be the spatial domain of the FPA, which can be
written as Ω = ∪m,n∈[N ]Ωm,n , where Ωm,n is defined as

Ωm,n = { (x, y)|Δ(n − 1/2) ≤ x ≤ Δ(n + 1/2) ,

Δ(m − 1/2) ≤ y ≤ Δ(m + 1/2)} ,

and [N ] = {1, 2, . . . N}. The representation of the FPA is then
an array of size N × N conformed by the disjoint union of
N 2 smaller domains of size Δ × Δ, and the pixel (m,n) is
associated with the corresponding domain Ωm,n . The value Δ
represents the size of each pixel in the FPA. Let gm,n be the
value of the measurements at the (m,n) pixel, then

gm,n =
∫∫

Ωm , n

g(x, y)rect
( x

Δ
− n,

y

Δ
− m
)

dydx, (1)

represents the contribution of g(x, y) to each of the disjoint
domains, g(x, y) is the optical field at the image plane summed
over the spectral dimension. Now, the continuous data cube
f(x, y, λ) is modulated by T (x, y, λ) such that

f(x, y, λ)T (x, y, λ) ≈

M −1∑

m=0

N −1∑

n=0

(TF )m,n (λ)rect
( x

Δ
− n,

y

Δ
− m
)

, (2)

where (TF )m,n (λ) = Tm,n (λ)Fm,n (λ) and Tm,n (λ) is the
spectral response of the colored mask at pixel (m,n), and where
Fm,n (λ) is defined by Fm,n (λ) =

∫∫
Ωm , n

f(x, y, λ)dxdy. A
calculation of the limits involved in the spatial integral opera-
tors and its approximation using mid point rules is realized in the
Appendix A, which shows that the value of the measurements
at pixel (m,n) can be written as

gm,n =
∫

Λ
Δ2
(⌊

S(λ)
Δ

⌋

− S(λ)
Δ

+ 1
)

(TF )
m,n+

⌊
S (λ)

Δ

⌋ (λ)dλ

−
∫

Λ
Δ2
(⌊

S(λ)
Δ

⌋

− S(λ)
Δ

)

(TF )
m,n+

⌊
S (λ)

Δ

⌋

+1
(λ)dλ, (3)

where �·	 is the floor function operator. Appendix A also shows
the discretization in λ, where the limits of the new bands in
the super resolution model are used as the limit points of the
intervals and the mid-point rule is used again for the approxi-
mation of the integral operator in Λ, such that the value of the
measurements at pixel (m,n) can be written as

gm,n =
L−1∑

k=0

(
wm,n,k (TF)m,n+� k

d 	,k

)
, (4)

where wm,n,k,u = αm,n,k + βm,n,k for u = 1, . . . , c − 2,
wm,n,k,0 = αm,n,k and wm,n,k,c−1 = βm,n,k . The terms
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αm,n,k ,βm,n,k are weights whose values are

αm,n,k = Δλ(k)Δ
2

(⌊
S(λ̂k )

Δ

⌋

− S(λ̂k )
Δ

+ 1

)

,

βm,n,k = −Δλ(k)Δ
2

(⌊
S(λ̂k )

Δ

⌋

− S(λ̂k )
Δ

)

,

Appendix A provides the definition and calculation of this ex-
pressions. The T m,n,k and Fm,n,k terms are the (m,n, k) ele-
ments of the 3-dimensional arrays T and F, respectively, whose
first two dimensions indicate the spatial location and the third
one indicates the spectral position. The vector T m,n,· is the
discretized version of the spectral response of the color coded
aperture at pixel (m,n). Equation (4) can be represented as the
matrix equation �g = H�F, where �g is the vectorized representa-
tion of g. The matrix H is of dimension KN(N + �L

d 
 − 1) ×
N 2L (see Fig. 4) with K being the number of shots and �F is
the vectorized form of F. Fig. 4 show the structure of H for the
colored CASSI with a super resolution factor d = 2.

In order to use the sparsity properties of the signal �F in a
basis ψ, it is possible to write the problem as

�g = Hψf , (5)

where �F = ψf and f is a column vector whose entries are the
coefficients representation in the basis. The signal recovery of
f can be obtained as the solution of the nonlinear optimization
problem [15], [19]

f̂ = argmin
z

1
2
‖Az − �g‖2

2 + τ ‖z‖1 , (6)

where A = Hψ is the sensing matrix of the problem and τ a
regularization parameter.

III. SUPER-RESOLUTION ANALYSIS

In this section, an estimation of the value of the super reso-
lution factor d is presented. Two cases are separately analyzed.
In the first case, the optical filters in the colored coded aperture
have short transition bands and they are also selected as com-
plimentary on the spectral range of interest, i.e. the supports in
their spectral responses are disjoint from one filter to another. In
the second case, the filters have broad transition bands and are
not necessarily complementary in their spectral response. For
the first case, a simple analysis is used to obtain the number of
attainable new bands, whereas in the second case it is necessary
to define a criteria to evaluate the quality of the reconstructions
[16]. The second case will be presented in the next section after
showing the expression of the coherence of the sensing matrix.

A. Optical Filters With Ideal Transition Bands

The prism in CASSI is used to separate the spectral informa-
tion into bands [1], [19]. If optical filters are added to separate
the spectrum into smaller sections, there is a spectral resolu-
tion increase. There are, however, different cases that depend
on the number of bands and the number of filters in the col-
ored mask. For instance, consider Fig. 3, in which two cases

of optical filtering are considered. In the first case (Fig. 3(a))
the cutoff frequencies of the band pass filter coincide exactly
with the boundaries of the basic bands and therefore there is no
additional separation of the spectral information. In the second
case (Fig. 3 (b)), the cutoff frequencies of the filter do not match
the boundaries of the basic bands and thus there is separation
of the spectral information as a combined effect of the prism
and the filter.

1) When the cutoff frequencies of the filters do not match the
boundaries of the basic bands: Let B = {B0 , B1 , . . . , BL ′−1}
represent the set of basic bands that can be recovered with the
classical CASSI system, and σ the number of optical filters used
in the colored coded aperture. Then, the new number of bands
that can be reconstructed |B̂| is given by

|B̂| = |B| + σ − 1, (7)

where B̂ = {b0 , b1 , . . . , bL−1} is the set of new bands.
2) When the cutoff frequencies of the filters match the bound-

aries of the basic bands: In the case all the boundaries of the
basic bands meet with the boundaries of the bandpass of some
of the filters, the new number of attainable bands is directly
related to the number of filter as

|B̂| =
{
|B| If σ ≤ |B|
σ If σ > |B|. (8)

IV. COHERENCE OF THE SENSING MATRIX

In compressed sensing, two effective measures to predict the
quality of signal reconstruction are the restricted isometry prop-
erty (RIP), and the coherence [13], [15]. The former is in general
difficult to calculate for large size matrices [15]. On the other
hand, the coherence offers a measure of the ill-posedness of the
system, and it must be as small as possible to guarantee unique-
ness of the solution [10]. Additionally, the coherence can be
related with the RIP [7], [10], [13] and, therefore, it is possible
to get an analysis of the problem based on the coherence which
implies an specific behavior of the RIP constant [15], [7]. The
use of the coherence also allows to exploit the structure of the
CASSI and colored CASSI, and to quantify the effects of super-
resolution factor d as function of the spectral response of the
pixels in the coded aperture.

A. Matrix Formulation

The structure of the sensing matrix H for the super-resolution
model can be seen in Fig. 4. The elements that lie on the indicated
diagonals represent the spectral response of the coded aperture
in each band. In Fig. 4 the structure of H indicates that there is no
shifting in the transitions Band 1-Band 2 and Band 3-Band 4.
The reason for this, is that in those transitions the separation
of the spectral information is due to the filters in the coded
aperture and not the prism. The qualitative behavior that can be
appreciated in Fig. 4 can be represented in precise mathematical
terms. The m-th position in the j-th column of the H matrix can
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Fig. 3. (a) A pixel of the scene is filtered by one band pass filter for which
the cutoff frequencies coincide exactly with the boundaries of the basic bands.
(b) A pixel of the scene is filtered by one band pass filter for which the cutoff
frequencies do not coincide with the boundaries of the basic bands. In this case
super resolution is achieved.

be written as

hj (m) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
�T

(s)
� �w�

)

m−N (N +L−1)s−N � �
d 	

If j = m + �N 2 − N
⌊

�
d

⌋
. . .

. . . − N(N + L − 1)s

0 otherwise,

(9)

with s = � m
N (N +L−1) 	, � = � j

N 2 	, and �T
(s)
� represents the vec-

torized version of T (·, ·, �) in the shot s, which is the coded
aperture in band � whereas �w� is the vectorized version of
w(·, ·, �).

B. Analysis of the Coherence

Let H = [h1 h2 . . .hN 2 L ], where each hi is the ith column
vector of H, of dimension KN(N + �L

d 
 − 1) × 1. The ba-
sis matrix Ψ can be written as Ψ = [ψT

1 , ψT
2 , · · · ,ψT

N 2 L ]T ,
where each ψi is of dimension 1 × N 2L. Then, the sensing
matrix can be represented as A = HΨ =

∑N 2 L
i=1 hiψi , and

the element of A in the (m,n) position can be written as

A(m,n) =
∑N 2 L

i=1 hi(m)ψi(n).

Fig. 4. a) The structure of the H matrix of the colored CASSI when a super
resolution factor of d = 2 is considered. b) The spectral response one pixel in
the coded aperture is detailed and how its values are distributed in the H matrix.

The inner product between the columns m and n of A is

〈A(·,m),A(·, n)〉 =
N 2 L∑

i,j

〈hi ,hj 〉ψi(m)ψj (n).

Then, the coherence of the sensing matrix A can be written as

μ (A) = max
m,n
m �=n

∣
∣
∣
∣

〈
A(·,m)
‖A(·,m)‖ ,

A(·, n)
‖A(·, n)‖

〉∣
∣
∣
∣

= max
m,n
m �=n

μmn (A) ,

where

μmn (A) =

∣
∣
∣
∣
∣

N 2 L∑

i,j

ϕi,jR
(m,n)
i,j

∣
∣
∣
∣
∣

(
N 2 L∑

i,j

ϕi,jR
(m,m )
i,j

) 1
2
(

N 2 L∑

i,j

ϕi,jR
(n,n)
i,j

) 1
2
,

(10)
and R

(m,n)
i,j = ψi(m)ψ∗

j (n), ϕi,j = 〈hi ,hj 〉.
Taking into account the structure of the matrix H presented

previously, it is possible to see that there is a set I contained
in the set of all possible inner products of the columns of the
H matrix, that can be written as I = {(i, j)|i �= j, ϕi,j �= 0},
which is the set of all possible inner products that are different
from zero. Considering I , equation (10) can be written as

μmn (A) =
|� (m,n)|

� (m,m)
1
2 � (n, n)

1
2
, (11)
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where

� (m,n) =
N 2 L∑

i=1

ϕi,iR
(m,n)
i,i +

∑

(i,j )∈I

ϕi,jR
(m,n)
i,j . (12)

The coherence is then completely determined by the random
quantities ϕi,j and ϕi,i . In the following subsections a detailed
description and analysis of these two quantities is presented.
The entries of the coded aperture of the traditional CASSI are
modeled using Bernoulli random variables whereas the entries
of the color coded aperture are represented by a uniform random
distribution over the number of filters σ in the colored coded
aperture.

1) Block-Unblock Coded Aperture With d = 1: Consider the
coded aperture modeled as an array of i.i.d random variables.
Then, let ϕi,j =

∑K
r=1 XrYr (i, j) ∈ I, where Xr , Yr are

the i.i.d random variables that represents the value of the
pixels involved in the inner product of the columns i and
j. Notice that Xr, Yr ∈ {0, 1} are Bernoulli random vari-
ables with parameter p. Therefore, the probability mass func-
tion of XrYr is given by fXr Yr

(n) = p2n (1 − p2)1−n n =
0, 1 r = 1, . . . ,K since the sequence of products XrYr are
i.i.d Bernoulli random variables with parameter p2 . Using
Chebyshev’s inequality, it follows that

P (|ϕi,j − E {ϕi,j}| ≥ ε) ≤ 1
ε2

K∑

i=1

Var (XrYr ) (i, j) ∈ I,

which implies

P (|ϕi,j − (Kp) p| ≥ ε) ≤ Kp

ε2 p(1 − p2) (i, j) ∈ I. (13)

In the particular case of p = 1/2, the following expression is
obtained

P

(∣
∣
∣
∣ϕi,j −

(
K

2

)
1
2

∣
∣
∣
∣ ≥ ε

)

≤
(

K

2

)
3

8ε2 (i, j) ∈ I.

This inequality describes the behavior of ϕi,j in terms of its
mean in K shots, and indicates the degree of concentration of
the inner product of two columns of the matrix H. For the norm
of the columns of H, the expression is

P (|ϕi,i − (Kp)| ≥ ε) ≤ Kp

ε2 (1 − p) ∀i. (14)

In the particular case p = 1/2, the expression is

P

(∣
∣
∣
∣ϕi,i −

(
K

2

)∣
∣
∣
∣ ≥ ε

)

≤
(

K

2

)
1

2ε2 . (15)

2) Color Coded Aperture With d = 1: Considering first
short transition bands (ideal filters). In this case, the value of ϕi,j

is given by a Binomial distribution with parameters (K, 1/σ2),
if a uniform distribution1 is used to choose the filters. Using
again the Chebyshev’s inequality

P

(∣
∣
∣
∣ϕi,j −

(
K

σ

)
1
σ

∣
∣
∣
∣ ≥ ε

)

≤
(

K

σ

)
1

σε2

(

1 − 1
σ2

)

, (16)

1The purpose of choosing a uniform distribution for the selection of the filters
is to make a fair comparison with the traditional CASSI in which the entries of
the coded aperture are modeled as two point uniform distribution (i.e. Bernoulli
with parameter p = 1/2).

and for the norm

P

(∣
∣
∣
∣ϕi,i −

(
K

σ

)∣
∣
∣
∣ ≥ ε

)

≤
(

K

σ

)
1
ε2

(

1 − 1
σ

)

. (17)

When wide transition band filters are used, the spectral re-
sponse of one filter Tr (λ) can take L

′
different values in the

interval [0, 1]. These values are given for a particular filter
Tr (λ) as indicated in Fig. 4, in which one pixel has the se-
quence of values Tr (λ1), Tr (λ2), . . . , Tr (λL ′ ) in each band,
respectively. Then, there is a random variable that represents
the entries of the hi column of H and take its values on the set
{T1(λk ), T2(λk ), . . . Tσ (λk )}, k = 1, . . . , L

′
, where k repre-

sents the band that is associated with the hi column. Therefore,
the distribution function for XrYr is given by

fXr Yr
(n) =

σ∑

u,v=1

1
σ2 δ
(
n − Tu

(
λ� i

N 2 	
)

Tv

(
λ� j

N 2 	
))

,

where Xr and Yr represent the random variables involved in
the inner product of the vectors hi and hj , and δ(n) is the
delta Kronecker function. Then, again using the Chebyshev’s
inequality it is possible to get

P

(∣
∣
∣
∣ϕi,j −

(
K

σ

)
q11

σ

∣
∣
∣
∣ ≥ ε

)

≤
(

K

σ

)
1

σε2

(

q22 −
q2
11

σ2

)

,

(18)
where

q11 =
σ∑

u,v=1

Tu

(
λ� i

N 2 	
)

Tv

(
λ� j

N 2 	
)

, (19)

q22 =
σ∑

u,v=1

Tu

(
λ� i

N 2 	
)2

Tv

(
λ� j

N 2 	
)2

. (20)

For the norm of each column the expression is

P

(∣
∣
∣
∣ϕi,i −

(
K

σ

)

q2

∣
∣
∣
∣ ≥ ε

)

≤
(

K

σ

)
1
ε2

(

q4 −
q2
2

σ

)

, (21)

where

q2 =
σ∑

u=1

Tu

(
λ� i

N 2 	
)2

, (22)

q4 =
σ∑

u=1

Tu

(
λ� i

N 2 	
)4

. (23)

3) Color Coded Aperture With d > 1: In this case, two situa-
tions in which ϕi,j could be different from zero are considered.
In the first situation, the inner products between columns are
related to different basic bands, therefore, they can be repre-
sented with the equations (18), (19) and (20). In the second
situation, the inner products for columns inside the basic bands
are considered.

If σ ideal filters with σ > L
′

are used, and their cutoff fre-
quencies match exactly with the boundaries of the basic bands, it
is possible to use equations defined for the analysis with d = 1
and ideal filters. If real filters are used, the inner product be-
tween two columns in the same basic band is described by the
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probability mass function2

σ∑

u=1

1
σ

δ

(

n − Tu

(
λ� i

N 2 	
)

Tu

(

λ� i
N 2 	 ± �

Λ� i
N 2 	
d

))

,

where Λ� i
N 2 	 represents the support of the � i
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shev’s inequality it is possible to get
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q̂1 =
σ∑

u=1

Tu

(
λ� i

N 2 	
)

Tu

(

λ� i
N 2 	 ± �

Λ� i
d N 2 	
d

)

, (25)
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The concentration equations for the norm of the columns are
still the same as when d = 1.

C. Quality of Reconstructions

Given that the coherence μ(A) is a random variable when
the elements of the coded aperture are chosen in a random
way, it is possible to use concentration inequalities in equations
(11) and (12) to compare the coherence of CASSI and colored
CASSI. Since the probability space of μ(A) is contained in R+ ,
it follows that [5]

P (μ(A) > ε) ≤ E(μ(A))
ε

. (27)

Then, given a fixed value of ε, it is possible to compare two con-
figurations of the CASSI using the equation (27), in order to get
a measure of the performance of the system [9], [8]. In this work,
it is taken into account the fact that μ(A) = max m,n

m �=n
μmn (A),

where μmn (A) is specified as before. Thus, is possible to estab-
lish a comparison between two configurations of the CASSI rep-
resented by matrices A and As through a comparison between
μmn (A) and μmn (As). This comparison is done considering
the variables μmn (A)2 and μmn (As)2 , and thus, it implies a
direct comparison between the values of the coherence for the
sensing matrix of both architectures. In this way, it is possible to
know which value of the coherence parameter is concentrated
around an small value with higher probability.

To this end, the relationship between the coherence for the
traditional CASSI and the colored CASSI is determined first.

Theorem 1: Let A be the sensing matrix in the traditional
CASSI system and Aσ be the sensing matrix in the colored
CASSI, considering reconstructions of scenes of dimensions

2This inner product for columns inside the basic bands is the most relevant
because it the represents the worst case scenario in terms of the possible values
of the inner product between any two columns of the H matrix.

N × N × L
′
. There exists a constant ξ ∈ R+ such that

P
{
μmn (A)2 ≥ ε

}
≤

E
{
�(m,n)2

}

ε
ξ (28)

P
{
μmn (Aσ )2 ≥ ε

}
≤

E
{
�σ (m,n)2

}

ε
ξ (29)

∀m �= n.
Proof: See Appendix C.
This result establishes a method to compare the quality of the

reconstructions considering the concentration of the coherence
as a consequence of the concentration of μmn (A)2 . In order to
make this comparison, it is necessary to introduce the following
definitions

Definition 3: Let K be the number of shots in a configu-
ration of the CASSI system for the reconstruction of scenes of
dimensions N × N × L

′
, and let t be the transmittance per shot.

The V factor is defined as V = Kt, where the t is calculated as

t =

⎛

⎝
N 2∑

i=1

∫

Λ

Ti(λ)dλ

⎞

⎠

/

ΛN 2 , (30)

and Ti(λ) is the spectral response of the ith pixel.
Definition 4: Let K be the number of shots used in a CASSI

system for the reconstruction of scenes of dimensions N × N ×
L

′
. The compression factor is defined as C = K/L

′
.

Considering these definitions it is possible to establish the
following result.

Theorem 2: Let ϕi,j be as specified in equation (18) for the
sensing matrix in the CASSI system and consider the recon-
struction of a scene of dimensions N × N × L

′
and factor V .

Let ϕ
(σ )
i,j be as specified in equation (18) for the sensing matrix

of the colored CASSI and consider the reconstruction of scenes
of dimensions N × N × L

′
and factor V . If E(ϕ(σ )

i,j ) ≤ E(ϕi,j )

and Var(ϕ(σ )
i,j ) ≤ Var(ϕi,j ), then

E
{
�σ (m,n)2} ≤ E

{
�(m,n)2} ∀m �= n. (31)

Proof: See Appendix D.
It is important to remark that if the factor V is equal for both

systems, this indicates that the same number of voxels are sensed
in both architectures.

Taking into account this result, it is possible to establish the
relation of the colored CASSI and the CASSI in the following
corollary.

Corollary 3: Let A be the sensing matrix for the CASSI
system, and consider the reconstruction of a scene of dimen-
sions N × N × L

′
. Let Aσ be the sensing matrix of the colored

CASSI and take the same V factor for both systems. If σ > 2
then

E
{
�σ (m,n)2} ≤ E

{
�(m,n)2} . (32)

Proof: See Appendix D.
This corollary and Theorem 1 imply that the quality of the

reconstruction in the colored CASSI is better than in the tradi-
tional CASSI, when the same V factor is considered for both
systems.
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D. On the Super-Resolution Factor d

As shown in the previous theorems, the functions ϕi,j and
ϕi,i , allow to establish a way to compare the performance of
two configurations of the CASSI in terms of the coherence of
the sensing matrix. This fact is used to compare the performance
of the colored CASSI when super resolution is required, with
the traditional CASSI with no super resolution comparing the
functions ϕi,j and ϕi,i of these two configurations. In this man-
ner, the estimate of the maximum value of d is obtained, accord-
ing to the number and characteristics of the spectral responses
of the filters involved in the coded aperture.

In [17], it was proved how the resolution of filter array based
spectrometers, could be recalculated when DSP techniques are
used to process the collected data. The approach used in [17],
show that even in the case of non ideal spectral filter responses,
it is possible to get more resolution. The way the authors of that
work estimate a super-resolution factor, is by brute force search
and do not exploit the properties of the transfer function matrix
of the system. In this Section, an estimate of the super resolution
factor d is proposed analyzing the behavior of the functions
ϕi,j and ϕi,i , always making a comparison with the traditional
CASSI architecture considering t = 1/2, which represents a
transmittance of 50% in the black and white coded aperture.

Before doing this comparison, it is necessary to establish a
relationship between the parameters C and V for CASSI and
colored CASSI with super resolution factor d. The parameter V
gives the proportion of the set of voxels sensed with the total
number of shots used in the measurement process. Therefore,
it is natural to consider the same value of this factor for both
architectures, which implies Kσtσ = Kt, where K,Kσ repre-
sents the number of shots and t, tσ the transmittance per shot in
each architecture, respectively. On the other hand, the compres-
sion factor is also considered as the same for both architectures,
which implies Kσ/dL = K/L and therefore Kσ = dK.

This estimation of d is represented by the following definition.
Definition 5: If d represents the super resolution factor de-

scribed in equations (4) and (6), the value of d when real op-
tical filters are used in the color coded aperture is estimated
as follows: d ∈ N in the model (4) is the highest value such
that

d ≤ min
{

d̂1 , d̂2

}
(33)

with

d̂1 =
σ

4q̂1
, d̂2 =

3σ

16
(
q̂2 − q̂ 2

1
σ

) (34)

where the values of q̂1(d, σ), q̂2(d, σ) are specified by equations
(25) and (26).

The definition of d in equation (33) indicates that it is pos-
sible to get a new number of bands L = dL

′
, always that

the concentration of the random quantities ϕi,j and ϕi,i that
determine the condition of the sensing matrix is tighter than
in the traditional CASSI with no super resolution. The idea is
to make a comparison of the expected value of this quantities
taking into account the variance.

Equation (33) indicates how large d could be in model (4),
with a solution of equation (6) with better quality results than
in the traditional CASSI with no super resolution.

E. Impact of Measurement Noise on d

Previous analysis did not consider the effect of the noise on
the attained super-resolution. Ideally, increasing σ with the ap-
propriate set of filters, and the appropriate C and V would imply
an increased spectral resolution. However, in real implementa-
tions with noise, distortions and other non ideal characteristics
of the hardware are always present. In this situation, increasing
σ could imply a reduction on the bandwidth of the filters used,
which reduces the light throughput and the Signal to Noise Ratio
(SNR) in the captured measurements.

The effect of the noise in super-resolution can introduce a
natural limitation on the super-resolution factor as discussed
next.

Let e be the noise added to the model in (5) which is consid-
ered as independent of the sensing matrix A. The measurements
are given by

�g = Af + e. (35)

For any reconstruction algorithm, represented by the operator
Δ, it follows that [11], [15]

‖Δ(Af + e) − f‖2 ≤ CA‖e‖2 , (36)

for all f ∈ Σ2k , where Σ2k is the set of all 2k−sparse signals and
CA ∈ R+ . The constant CA can be related with the RIP con-
stant as CA = 1/

√
1 − δ2k (A) [11], [15]. Let A be the sensing

matrix of the black and white CASSI, and Aσ be the sensing
matrix of the colored CASSI. A limit of the performance
with Aσ in the presence of e is given by the comparison of
the upper bounds CA‖e‖2 and CAσ

‖e‖2 . Super-resolution is
then achieved whenever CAσ

≤ CA , which can be equivalently
formulated as

√
1 − δ2k (A)
√

1 − δ2k (Aσ )
≤ 1. (37)

When the matrix Aσ has columns with equal norm, (37) can be
written as3

√
1 − δ2k (A)

√
α (1 − (2k − 1)μ(Aσ ))

≤ 1, (38)

where α is the value of the norm of the columns of Aσ . Notice
that Aσ = αÃσ where Ãσ is a normalized column version
of Aσ .

In (38), it is possible to see that two sensing matrices Ãσ and
Aσ with equal coherence μ(Ãσ ) = μ(Aσ ), lead to different
results in the presence of noise, as (38) is satisfied in different
ways for each case. Additionally, when α < 1 there is one point
α0 at which inequality (38) is not satisfied for all α < α0 .

1) About the light throughput: The total energy related with
an specific filter in the coded aperture can be estimated approx-
imately as | supp(T (λ))|tσ , where | supp(T (λ))| is the support

3The fact that in a unit norm column matrix, the coherence and the RIP are
related is used [11], [15].
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Fig. 5. Two different choices of the set of filters σ in the case that σ = 4.
(a) The set of filters cover the spectral range of interest Λ, each filter allows
the transmission of the same amount of energy which corresponds to 50% of
the energy contained in Λ. (b) The set of filters cover the spectral range of
interest Λ, each filter allows the transmission of the same amount of energy
which corresponds to 25% of the energy contained in Λ.

of the filter and tσ the gain (maximum amplitude) of the filter.
Therefore, an scaling of a sensing matrix Aσ can be considered
as an scaling on the product | supp(T (λ))|tσ . In this way it is
possible to see that a reduction in the support of the filters can
be interpreted as an scaling of the sensing matrix with a factor
α < 1. This means that when the number of filters is increased
such that the support of each filter is reduced, the presence of
noise establishes one point α0 at which equation (38) is not
satisfied for all α < α0 . This also indicates that if a given σ is
required, the filters selected should have a support large enough
to deal with the presence of noise.

In Fig. 5 it is possible to see two possible choices for the set of
filters in a colored coded aperture where σ = 4. In Fig. 5(a) the
filters used allow the pass of 50% of the energy in the spectral
range of interest Λ, whereas in Fig. 5(b) the filters selected are
complementary on Λ and allow the pass of just 25% of the
energy in Λ.

It is also important to remark that an scaling of the sensing
matrix Aσ , as an scaling on the product | supp(T (λ))|tσ can be
also considered as an scaling on tσ which means a change in the
gain of the filters. This implies that two different configurations
of the CASSI with filters with identical support but with different
gains could lead to the same values of μ(A) but the quality of
their reconstructions in the presence of noise is different.

In the next section, simulation results showing the effect on
the quality of the reconstructions when complementary filters
are used in presence of noise, with respect to non complementary
filters are presented.

V. SIMULATIONS

A. Parameters of the Simulations

1) Multispectral scene: A datacube of dimensions 128 ×
128 × 10d is generated for d = 2, 3. The RGB representation
of this target can be appreciated in the Fig. 6(a). This target is
artificially crated in order to have spectral responses with peaks
and fast transitions, this is done with the purpose to appreci-
ate the performance of the colored CASSI with respect to the
classical CASSI in the super-resolution problem.

2) Spectral responses of the filters: In order to represent the
spectral responses of the filters, combinations of Butterworth

Fig. 6. Results of the simulations considering a super resolution factor d = 2.
(a) First row: the original target as an RGB representation of the hyperspec-
tral scene. Second row: The RGB representation of the hyperspectral scene
reconstructed by the colored CASSI. Third row: The RGB representation of
the hyperspectral scene reconstructed by the traditional CASSI. (b) Comparison
of the reconstructed spectral responses at points p1 , p2 , p3 , p4 indicated in the
target, using the colored CASSI and the traditional CASSI.

transfer functions with order 3 are used. This is done with the
purpose of modeling realistic optical filters. The set of filters
selected in each simulation covers the spectral range of interest
[450 nm − 689 nm]. The number of these filters is changed in
order to appreciate its effect on the simulations.

3) Prism Curve: The prism curve used for simulations is a
realistic prism curve adapted from [3], in order to emulate as
close as possible the real nonlinear behavior of the prism.

4) Reconstruction algorithm and basis used in simulations:
In order to represent the multispectral scene in terms of a basis, a
DCT basis ΨDCT is selected for the spectral domain, whereas a
wavelet ΨW for the spatial domain, such that the whole basis
is represented as ΨDCT ⊗ ΨW . The GPSR algorithm [12] is
used for the reconstructions. The regularization parameter τ is
chosen in an empirical way, so reconstructions are performed
for different values of τ and the final result is selected as the
one in which higher PSNR is obtained.

5) The measure of the quality: In order to measure the qual-
ity of the reconstructions, the Peak Signal to Noise Ratio (PSNR)
is used. The comparison is made between the reconstructed hy-
perspectral scene and the ground truth, which is given by the
original datacube generated for the simulations. Additionally,
sample points of the image are selected in order to check the
quality of the reconstructions in spectral.

B. Reconstructions

In order to illustrate the performance of the super-resolution,
the case in which d = 2 is considered. In Figs. 6 and 7 the results
of simulations are presented.

In Fig. 6(a) an RGB representation of the target used in simu-
lations is depicted, indicating four points p1 , p2 , p3 , p4 for which
the spectral response is considered. Fig. 6(b) shows the recon-
structed spectrum at points p1 , p2 , p3 , p4 , considering the ground
truth (blue line), the colored CASSI (red line), and the classical
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Fig. 7. Results of the simulations considering a super resolution factor d = 2.
The number of shots used for the traditional CASSI is 5 whereas the number
of shots used for the colored CASSI is 10, such that both architectures have the
same C = 0.5. The first row of each group depict the original bands (ground
truth) of the target. The second row of each group depict the reconstructed bands
using the colored CASSI (CCASSI) considering d = 2. The third row of each
group depict the bands obtained with the traditional CASSI reconstructing 10
bands and interpolating in order to get a new set of bands.

CASSI (black line). Because the CASSI can reconstruct just 10
bands, interpolation is used in order to display 20 bands for the
comparison with the colored CASSI with super-resolution. It is
clear from the pictures that the results obtained with the colored

Fig. 8. Simulation results showing the performance of the colored CASSI
with super-resolution for different values of σ and d. (a) The PSNR of the
reconstructions as a function of σ for d = 2, 3 and different number of shots.
(b) The spectral response at point p1 on the target is reconstructed (blue line)
and compared with the original (black line) for different values of d, while the
number of filters is σ = 6. (c) A comparison of the reconstructions obtained
with the colored CASSI (red line), the traditional CASSI (black line) using the
single shot modality and the real spectral response (blue line) at p1 .

CASSI are closer to the ground truth than the results obtained
by the use of the basic CASSI.

In Fig. 7 it is possible to see all the reconstructed bands
using the colored CASSI and the basic CASSI in compar-
ison with the ground truth. The performance of the col-
ored CASSI with super resolution is consistently better with
respect the basic CASSI. At the 503[nm] band for in-
stance the colored CASSI reconstructs the band accurately.
In the reconstructed band of the basic CASSI, false infor-
mation is present, which is not present in the ground truth.
This same behavior occurs in the results in bands such as
551[nm], 563[nm], 575[nm], 587[nm], 611[nm], 635[nm].

C. Simulations: Mean PSNR vs σ

In Fig. 8(a) it is possible to see how the PSNR of the recon-
structions changes according to the values of σ. In this simu-
lations no noise is added to the measurements. It is clear that
under this context, the quality of reconstructions improve with
higher values of σ with the appropriate factorsV and C. Fig. 8(b)
shows the spectral response at p1 on the target of the reconstruc-
tions, as d changes from d = 2 to d = 3 when σ = 6. Here it is
possible to see how as d is increased with a fixed value of σ the
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TABLE I
THE VALUES OF μ(A) RELATED WITH THE FIG. 8. K AND σ INDICATE THE

NUMBER OF SHOTS AND THE NUMBER FILTERS USED RESPECTIVELY

K \σ 2 4 6 8

4 1 0.8571 0.7599 0.6470
6 1 0.8517 0.7517 0.6460
8 1 0.8529 0.7073 0.6044
10 1 0.8366 0.6664 0.5779

d = 2

4 1 0.9997 0.7902 0.7109
6 1 0.9996 0.7532 0.6580
8 1 0.9996 0.7089 0.6060
10 1 0.9995 0.6810 0.6079

d = 3

Fig. 9. PSNR of the reconstruction results for different values of σ when the
measurements are polluted with additive Gaussian noise. (a) The filters used in
the colored coded aperture are selected in a complementary way (see Fig. 5).
(b) The filters used in the coded aperture are not complementary but cover the
whole spectral range of interest.

TABLE II
THE VALUE OF d̂1 , d̂2

(·)\σ 2 3 4 5 6 7 8

d̂1 0.54 0.83 1.27 1.40 1.73 2.03 2.65
d̂2 1.86 1.67 6.05 2.10 2.89 4.40 8.96

Partitions in 2 parts

d\σ 2 3 4 5 6 7 8
d̂1 0.55 0.74 1.05 1.33 1.60 2.06 2.31
d̂2 0.96 1.18 1.23 1.61 1.85 2.27 2.7

Partitions in 3 parts

d\σ 2 3 4 5 6 7 8
d̂1 0.50 0.73 1.06 1.22 1.69 1.74 1.96
d̂2 1.02 1.06 1.34 1.40 1.96 1.98 2.14

Partition in 4 parts

quality of the reconstructions is decreased. This is consistent
with the nature of the problem, because increasing d rises the
ill posedness of the problem as the number of bands required is
higher, given a fixed value of σ. The values of the coherence of
the sensing matrix μ(A) are presented in Table I. It can be seen
how for a given number of shots K, the values of the coherence
decrease as σ is increased.

In Fig. 9 the effect of additive Gaussian noise in the mea-
surements is considered using the model defined by equations

Fig. 10. Picture of the testbed used in the implementation of the colored
CASSI. In the picture it is also indicated how the colored coded aperture are
implemented for one example of a color coded aperture of 2 filters (See also
Fig. 11).

(5) and (35). In Fig. 9(a) the filters used in the coded aperture
are chosen as complementary filters (see Fig. 5) that cover the
entire spectral range of interest, and the noise measurements
are such that the SNR takes the values SNR = 10[db], 20[db].
It is clear from the simulations, that in the presence of noise
and with the use of complementary filters, as σ is increased
the light throughput is reduced and consequently the results are
affected. On the other hand in Fig. 9(b) noisy measurements are
considered but the filters used in the colored coded aperture are
not complementary, and they cover the spectral range of interest
as well. It is possible to see that in this second case, the recon-
struction results are more robust in the presence of noise when
σ is increased than in the case when complementary filters are
used.

D. Estimates of the Super-Resolution Factor d

The data presented in the Table II, shows the numerical values
involved in the terms d̂1 , d̂2 . In order to check the estimate of
the super-resolution factor d in equation (33), these values were
calculated for different number of filters and three different cases
of partition of the basic bands. When the basic bands are broken
in two parts, the super-resolution factor is achieved when 7 or
more filters are used, and higher values of d are not possible
with less than 8 filters.

VI. EXPERIMENTAL RESULTS

Experimental results were obtained considering the super res-
olution model proposed. The testbed, shown in Fig. 10, is used
to implement the colored CASSI system and to verify the sim-
ulation results. It is composed of a light source, the target, the
objective lens, the Digital micro-mirror device (DMD) which
plays the role of the coded aperture, imaging lenses, a band-
pass filter in which the filters of the colored coded aperture are
contained, the dispersive element and the CCD camera.

The target is illuminated with the source light and the re-
flected light on the target is filtered by the bandpass filter
(25 mm, VIS 400-694 nm CWL Mounted Diameter Filter Kit of
Edmund optics), and then redirected trough the objective lenses
on the DMD. Then, the light reflected on the DMD (Texas instru-
ments DMD) is focused into the prism (Amici prism) imaging
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Fig. 11. Details on the implementation of the colored coded aperture. (a) The
capture of one shot with a colored coded aperture is the sum of the captures
using coded apertures with one single spectral response. (b) In order to get the
capture with each of the patterns with one single spectral response a filter is
located as indicated in the picture.

plane that disperses the light onto the CCD camera (Stingray
F-033C CCD camera), which integrates all information in a
2-dimensional array of data.

The system is characterized in order to reduce non uni-
form conditions and external noise. For that purpose, the light
source intensity distribution and the CCD spectral sensitivity
are characterized analyzing their spectral responses using a
USB2000+VIS-NIR Ocean Optics spectrometer with a known
spectral response. These non-uniform spectral response curves
are taken into account to quantify the whole spectral responses
in the coded aperture. The non flat spectral nature of the light
and the spectral response of the camera, causes a final effect in
the spectral response of each color TT (λ). It is represented as
TT (λ) = Tlight(λ)Tcamera(λ)T (λ), where Tlight(λ) is the spectral
response of the light, Tcamera(λ) is the spectral response of the
camera and T (λ) the spectral response of the filter. The CCD
exposure time is 100 microseconds. The prism is characterized
in order to take into account its non-linear response curve, and
the resultant bandwidth of each spectral basic band. In order to
get an estimate of the values for the weights wi,j,k , the procedure
presented in [3] is followed, in which some measurement shots
are captured using monochromatic light, allowing the estimation
of the effect of a single voxel impinging onto the CCD.

A. Implementation of the Colored Coded Aperture

Fig. 11 shows the physical implementation of one col-
ored coded aperture. It is based on the decomposition of a
measurement shot in the sum of different captures, each of them
involving just one of the spectral responses of the colored coded
aperture, and complementary patterns on the DMD. In Fig. 10 it
is indicated that, there is a fixed position in the testbed in which
the color filters involved in the colored coded aperture are lo-

Fig. 12. Results considering a super-resolution factor of d = 2 and using σ =
6 filters. (a): The spectral responses of two different points are reconstructed.
The original spectrum (blue line) measured with an spectrometer is compared
with the reconstructed spectrum using the colored CASSI (red line), and the
reconstructed spectrum using the traditional CASSI (black line). The number
of shots used with the traditional CASSI is 5 whereas for the colored CASSI
is 10, such that the same value of C = 0.5 is considered in both cases. It can
be appreciated that the curve obtained with the Colored CASSI with super
resolution is closer to the real spectrum than the curve obtained with the basic
CASSI. (b) The reconstructed bands using the traditional CASSI and the colored
CASSI are presented. The first row of each group depict the reconstructed bands
using the colored CASSI (CCASSI). The second row of each group depict the
reconstructed bands using the traditional CASSI.
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cated. Additionally, a set of complementary binary patterns are
associated (one pattern per filter) with the captures according to
the desired filter. The mathematical description of this situation,
taking into account that if T(k) is the colored coded aperture
in shot k, can be represented as T(k) =

∑σ
i=1 Ti(λ)Ti , where

Ti(λ) represents the spectral response of the optical filter i in
the colored coded aperture, and the Ti are binary patterns such
that
∑σ

i Ti = 1n×n . Therefore, for each shot, σ captures are
done putting the DMD with the binary pattern defined by each
Ti and locating the Ti(λ) in the bandpass position respectively.

B. Experimental Results for d = 2

In order to show the experimental results of super-resolution,
a factor d = 2 is considered. According to the characteristics of
the filters, the number of filters required considering equation
(33) is 6. For the reconstructions the GPSR algorithm [12] was
used. The value of the scalar parameter for regularization was
chosen in an empiric way. The wavelet transform was used as a
basis for the spatial domain, and the discrete cosine transform
(DCT) was used for the spectral domain. In Fig. 12, it is possible
to appreciate the reconstruction of the spectrum for some spe-
cific points in the target, considering 20 bands. This reconstruc-
tion is compared with the interpolation of a 10 bands CASSI.
The expected coherence calculated for the sensing matrix using
the basic CASSI is μ(A) = 0.8366 whereas the coherence for
the colored CASSI is μ(Aσ ) = 0.6564.

In Fig. 12(a) the real target used in the experiments is pre-
sented with the spectral responses of some specific points on
the target, and an RGB representation of the reconstructions
as well. It is possible to appreciate how the reconstructions
obtained with the colored CASSI with super-resolution (red
line) match better with the real spectral response (blue line),
than the reconstructions obtained by interpolation with the tra-
ditional CASSI (black line). The RGB mapping of the recon-
structed multispectral images shows also that the results with
the colored CASSI with super-resolution are closer to the real
target, than the reconstructed scene using basic CASSI with
interpolation.

Fig. 12(b) shows the reconstructed bands in both configura-
tions of the CASSI. As can be seen, the bands reconstructed
with the colored CASSI show much more clear details than
the reconstructed bands using basic CASSI with interpolation.
Consider for instance the band at 508[nm], where the details on
the letters on the target are much more clear when the colored
CASSI is used that when basic CASSI is used.

VII. CONCLUSION AND FUTURE WORK

This paper demonstrates that color coded apertures in CASSI
systems can be used to obtain higher spectral resolution than
that achieved by CASSI systems using binary coded apertures.
The increased resolution is related to the number of different
colored filters used in the coded apertures, and on their spectral
responses. An estimate of the super-resolution factor d is ob-
tained using the coherence of the sensing matrix. This, in turn,
provide concentration inequalities on the projection matrices
that involve the characteristics of the set of filters used.

The presence of noise in the measurements is analyzed. It
is shown that filters with complementary spectral responses,
in multi-shot measurements, are more affected by noise than
colored coded apertures whose filters’ spectral responses are
not complementary in the spectral range of interest. It is shown
that two sensing matrices having the same set of filters, but with
different gains, do not guarantee the same performance. Thus,
the spectral shape, the central wavelengths, and their gain are
all important in the design of the sensing matrix.

The distribution of the filters on the colored coded aperture
was defined as uniformly distributed, in order to have a fair
comparison with the traditional CASSI which uses Bernoulli
random variables on the entries of the black and white coded
aperture. A significant improvements can be achieved, however,
when the filters are selected according to some optimal pattern
design. This strategy is left for future work.

APPENDIX A
CALCULATION OF THE INTEGRATION LIMITS

Taking into account that the rect function is separable, it
is possible to determine when the product between the rect
functions involved is different from zero, in order to define the
limits of the integral operators. Because

rect
( y

Δ
− m

′
)

rect
( y

Δ
− m
)
�= 0 ⇐⇒ m

′
= m,

and the product rect ( x
Δ − n) rect (x+S (λ)

Δ − n
′
) is different

from zero when Δ(n
′
+ 1

2 ) − S(λ) > Δ(n − 1
2 ) and Δ(n

′
+

1
2 ) − S(λ) < Δ(n + 1

2 ), it follows that n
′
= �S (λ)

Δ 	 + n. Then,
the integration limits in the x variable are
{

Δ
(

n − 1
2

)

, Δ
(

n +
1
2

)

+ Δ
⌊

S(λ)
Δ

⌋

− S(λ)
}

.

On the other hand, if Δ(n
′ − 1

2 ) − S(λ) > Δ(n − 1
2 ) and

Δ(n
′ − 1

2 ) − S(λ) < Δ(n + 1
2 ), it follows that n

′
= �S (λ)

Δ 	 +
n + 1. Then, the integration limits in the x variable are
{

Δ
(

n +
1
2

)

+ Δ
⌊

S(λ)
Δ

⌋

− S(λ), Δ
(

n +
1
2

)}

.

Putting all this together, it follows that the value of the mea-
surements at pixel (m,n) is

gm,n =

∫

Λ

∫ Δ(n+ 1
2 )+Δ

⌊
S (λ)

Δ

⌋

−S (λ)

Δ(n− 1
2 )

∫ Δ(m+ 1
2 )

Δ(m− 1
2 )

(TF )
m,n+

⌊
S (λ)

Δ

⌋ (λ)dydxdλ

+
∫

Λ

∫ Δ(n+ 1
2 )

Δ
⌊

S (λ)
Δ

⌋

+Δ(n+ 1
2 )−S (λ)

∫ Δ(m+ 1
2 )

Δ(m− 1
2 )

(TF )
m,n+

⌊
S (λ)

Δ

⌋

+1
(λ)dydxdλ,
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and using the mid point rule approximation for the spatial inte-
gral operators, the measurements can be written as

gm,n =
∫

Λ
Δ2
(⌊

S(λ)
Δ

⌋

− S(λ)
Δ

+ 1
)

(TF )
m,n+

⌊
S (λ)

Δ

⌋(λ)dλ

−
∫

Λ
Δ2
(⌊

S(λ)
Δ

⌋

− S(λ)
Δ

)

(TF )
m,n+

⌊
S (λ)

Δ

⌋

+1
(λ)dλ.

(39)

For the discretization in λ, the limits of the new bands in the
super resolution model are used as the limit points of the inter-
vals, and the mid-point rule is used again for the approximation
of the integral operator in the λ variable as

gm,n =

L−1∑

k=0

Δλ(k)Δ
2

(⌊
S(λ̂k )

Δ

⌋

− S(λ̂k )
Δ

+ 1

)

(TF )
m,n+

⌊
S (

ˆλk )
Δ

⌋ (λ̂k )

−
L−1∑

k=0

Δλ(k)Δ
2

(⌊
S(λ̂k )

Δ

⌋

−S(λ̂k )
Δ

)

(TF )
m,n+

⌊
S (

ˆλk )
Δ

⌋

+1
(λ̂k ),

where λ̂k = (λk+1 + λk )/2, Δλ(k) = λk+1 − λk . Taking into

account the properties of the term �S (λ)
Δ 	, which are explained

in Appendix B, it is possible to write equation (3) as

gm,n =
L−1∑

k=0

c−1∑

u ′=0
[

Δλ(k)Δ
2

(⌊
S(λ̂k )

Δ

⌋

− S(λ̂k )
Δ

+ 1

)

(TF )m,n+� k
d 	+u ′ (λ̂k )

− Δλ(k)Δ
2

(⌊
S(λ̂k )

Δ

⌋

− S(λ̂k )
Δ

)

(TF )m,n+�k
d	+u ′+1(λ̂k )

]

,

where c ∈ N. Here c represents the number of pixels of the
detector affected by one voxel of the datacube model [3]. Letting

αm,n,k = Δλ(k)Δ
2

(⌊
S(λ̂k )

Δ

⌋

− S(λ̂k )
Δ

+ 1

)

,

and

βm,n,k = −Δλ(k)Δ
2

(⌊
S(λ̂k )

Δ

⌋

− S(λ̂k )
Δ

)

,

it follows that

gm,n =
L−1∑

k=0

c−1∑

u=0

(
wm,n,k,u (TF)m,n+� k

d 	+u,k

)
,

where

wm,n,k,u =

⎧
⎨

⎩

αm,n,k If u = 0
αm,n,k + βm,n,k If u = 1, . . . , c − 2
βm,n,k If u = c − 1

For the sake of simplicity c = 1 is used for other analysis, there-
fore the index u would not be longer necessary.

APPENDIX B
THE MEANING OF �S (λ)

Δ 	
According to the Weierstrass approximation theorem [6], if

S(λ) is continuous in Λ, then ∀ε > 0 exists a polynomial p(λ)
such that |p(λ) − S(λ)| < ε ∀λ ∈ Λ. Letting ε > 0 be an in-
finitesimal fixed value, it is possible to write S(λ) in an ap-
proximate way as S(λ) ≈

∑Q
r=0 αrλ

r Q ∈ N, αr ∈ R. This
representation allows the separation of the linear and non-
linear components in the dispersion phenomena. Now, with
q(λ) =

∑Q
r=2 αrλ

r , it follows that
⌊

S(λ)
Δ

⌋

=
⌊

α0

Δ
+ α1

λ

Δ
+

q(λ)
Δ

⌋

.

Using the basic properties of the floor function it is possible to
get
⌊

α0

Δ
+

q(λ)
Δ

⌋

+
⌊

α1
λ

Δ

⌋

≤
⌊

S(λ)
Δ

⌋

≤
⌊

α0

Δ
+

q(λ)
Δ

⌋

+
⌊

α1
λ

Δ

⌋

+ 1.

Each term in this last equation has a different meaning. In the

term �α0
Δ + q(λ)

Δ 	, the coefficient α0 includes the effect of the
mismatching in the x axes of the dispersed and modulated hy-
perspectral image on the FPA, whereas q(λ) represents the non-
linearities in the prism curve. The values of this term are repre-
sented by u

′
.

In the classical CASSI system the boundaries of the support

of each basic band Λk are defined by the changes of �S (λ)
Δ 	 from

one integer to another [1], [19]. Now, this concept of bands is
generalized taking into account that the basic bands can be bro-
ken such that a new set of bands is obtained. Because the basic
bands are conformed by d successive new bands, the number of
bands L to reconstruct can be written as L = dL

′
, where d is

the super-resolution factor, which indicates the number of parts
in which the basic bands are separated, and L

′
represents the

number of basic bands, defined by the relation �S (λ)
Δ 	, varying

λ from inf{Λ} to sup{Λ} [1], [19].

In the term �α1
λ
Δ 	, once the value of α1 is fixed, it changes

from one integer to another for the values of lambda that are
multiples integers of Δ/α1 , therefore, this term defines a delay
that it is directly related with the changes from one basic band
to another, but remains invariant when λ changes inside the
support of the basic bands. This value is represented by � k

d 	,
where k is the index that represent the number of the band and
d the super resolution factor.

APPENDIX C
PROOF OF THEOREM 1

Lets consider

μmn (A)2 =
�(m,n)2

�(m,m)�(n, n)
,
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then

P
{
μmn (A)2 > ε

}
= P

{
�(m,n)2

�(m,m)�(n, n)
> ε

}

= P
{
�(m,n)2 > ε�(m,m)�(n, n)

}

=
∑

�

P
{
�(m,n)2 > x�ε

}
P {�(m,m)�(n, n) = x�} .

Taking into account that P{�(m,n)2 > x�ε} ≤ E{�(m,n)2 }
x� ε , it

follows that
∑

�

P
{
�(m,n)2 > x�ε

}
P {�(m,m)�(n, n) = x�}

≤
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E
{
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x�ε
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≤
E
{
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}

ε

∑
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1
min�(x�)

P {�(m,m)�(n, n) = x�}

=
E
{
�(m,n)2

}

ε

1
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.

Therefore

P
{
μmn (A)2 > ε

}
≤

E
{
�(m,n)2

}

ε

1
min�(x�)

.

Following the same steps with Aσ it is possible to get

P
{
μmn (Aσ )2 > ε

}
≤

E
{
�σ (m,n)2

}

ε

1
min�(y�)

,

where y� represents the values of the random variable
�σ (m,m)�σ (n, n). Then, taking

ξ = max
{

1
min�(x�)

,
1

min�(y�)

}

the desired result is obtained.

APPENDIX D
PROOF OF THEOREM 2

In order to simplify the notation for the proof, consider the
following convention ϕi ≡ ϕi,i , R

(m,n)
i ≡ R

(m,n)
i,i and ϕ̂� ≡

ϕi,j , R̂
(m,n)
� ≡ R

(m,n)
i,j (i, j) ∈ I ; where the index � indicates a

numeration of the set I . The quantities ϕi, ϕ̂� are related with the
traditional CASSI and ϕ

(σ )
i , ϕ̂

(σ )
� with the colored CASSI. The

symbols ∼ and � are to be used to represent dependency and
non-dependency between two random variables, respectively.
For instance, in one expression in which the variables ϕi and
ϕj are involved, i ∼ j represents that ϕi and ϕj are dependent
random variables.

Then, lets consider

E
{
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{
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+
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In the following, the analysis of each term of the previous equa-
tion es presented separately.

A. About the Term ©1

Taking into account that E{ϕ(σ )
i } = E{ϕi} = V , Var(ϕ(σ )

i )
= V(1 − 1

σ ) and Var(ϕi) = V
2 the original expression ©2 can be

represented as

= V
(

1
2
− 1

σ

)N 2 L∑

i=1

[
R

(m,n)
i

]2
.

B. About the Term ©2

For the non independent terms i �= j, i ∼ j it follows that

E {ϕiϕj} = E

{(
K∑

i=1

TXi
(λk )2

)(
K∑

i=1

TXi
(λk ′ )2

)}

=
K∑
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E
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TXi

(λk )2TXi
(λk ′ )2}

+
K∑

i �=j

E
{
TXi

(λk )2}E
{
TXj

(λk ′ )2} ,

where k �= k
′ ∈ {1, . . . L

′ }, and TXi
(λk ) represents the spectral

response of the filter Xi in the band λk . The values of this last
expression according to the characteristics of the coded aperture
are: K

2 +
∑K

i �=j
1
4 = V(V + 1

2 ) when the block unblock coded

aperture with transmittance t = 1/2 is used, and
∑K

i �=j
1

σ 2 =
V(V − 1

σ ) when the colored coded aperture is used. Now, cal-
culating the difference between the colored case and the binary
case, and taking into account that E{ϕ(σ )

i } = E{ϕi} = V , it
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follows that

N 2 L∑

i �=j

(
E
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ϕ
(σ )
i ϕ

(σ )
j

}
− E {ϕiϕj}

)
R
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1
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1
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C. About the Term ©3

Notice that

2
N 2 L∑

i=1

∑
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E {ϕiϕ̂�}R
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i R̂
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Now, analyzing the termE{ϕiϕ̂�}when i ∼ � and taking into
account the fact that ϕi ≡ ϕi,i = 〈hi ,hi〉 =

∑K
u=1 TXu

(λk )2 ,

and ϕ̂� ≡ ϕi,j = 〈hi ,hj 〉 =
∑K

u=1 TXu
(λk )TYu

(λk ′ ). It fol-
lows that the product ϕiϕ̂� can be written as

ϕiϕ̂� =
K∑
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TXu
(λk )3TYu

(λk ′ )

+
K∑
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TXu
(λk )2TXv

(λk )TYv
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Using the expectation operator on this expression, it is possible
to get

E {ϕiϕ̂�} =
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u=1

E
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TXu

(λk )3}E {TYu
(λk ′ )}

+
K∑
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For the binary case E{ϕiϕ̂�} = 1
2V2 + 1

4V and for the col-
ored case E{ϕiϕ̂�} = 1

σ V2 + ( 1
σ − 1

σ 2 )V .
Making the difference between binary and colored case,
the expression ©3 is finally represented as

= 2V
(

1
σ
− 1

σ2 − 1
4

)∑

i,�
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R
(m,n)
i R̂
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D. About the Term ©4

Taking into account that
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=
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,

it is possible to make the difference between the colored case
and the binary case, getting a representation of expression ©4 as

=
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V
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1
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σ3 − 3
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E. About the Term ©5

Notice that
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Because of the symmetry of the problem, for � �= �
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follows that
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which is equivalent to V
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2 ) for the binary case, and V
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σ ) for the colored case.

Therefore, it follows that
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Putting all this together, it follows that

E
{
�σ (m,n)2}− E

{
�(m,n)2} = a2V2 + a1V,

where

a2 =
(

1
σ2 − 1

4

)
⎛

⎝
∑

�

[
R̂

(m,n)
�

]2
+
∑

� �=� ′

R̂
(m,n)
� R̂

(m,n)
� ′

⎞

⎠ ,



PARADA-MAYORGA AND ARCE: SPECTRAL SUPER-RESOLUTION IN COLORED CODED APERTURE SPECTRAL IMAGING 455

Fig. 13. Samples of the behavior of the coefficients a2 and a1 . (a): The
behavior of the coefficient a2 and the quotient −a1 /a2 for σ = 3. (b): The
behavior of the coefficient a2 and the quotient −a1/a2 for σ = 5.
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� ′

.

Then, the behavior of the coefficients a2 and a1 completely
determine if the inequality (32) is satisfied or not. In Fig. 13
it is possible to appreciate the most representative values of
the whole set of values for the coefficients a2 and −a1/a2
considering a hyperspectral image of dimensions 64 × 64 × 4,
and the same basis functions used in the simulations and real
reconstructions for different values for σ. It is clear that the value
of a2 is always non positive, which implies that the polynomial
a2V2 + a1V is a parabola that opens downwards. One of the
roots of this polynomial is on V = 0 and the other one is on
−a1/a2 which means that a2V2 + a1V ≤ 0 ∀V ≥ 0 because
−a1/a2 is always non positive .
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