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Blue-Noise Multitone Dithering
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Abstract—The introduction of the blue-noise spectra—high-fre-
quency white noise with minimal energy at low frequencies—has
had a profound impact on digital halftoning for binary display de-
vices, such as inkjet printers, because it represents an optimal dis-
tribution of black and white pixels producing the illusion of a given
shade of gray. The blue-noise model, however, does not directly
translate to printing with multiple ink intensities. New multilevel
printing and display technologies require the development of cor-
responding quantization algorithms for continuous tone images,
namely multitoning. In order to define an optimal distribution of
multitone pixels, this paper develops the theory and design of mul-
titone, blue-noise dithering. Here, arbitrary multitone dot patterns
are modeled as a layered superposition of stack-constrained binary
patterns. Multitone blue-noise exhibits minimum energy at low fre-
quencies and a staircase-like, ascending, spectral pattern at higher
frequencies. The optimum spectral profile is described by a set of
principal frequencies and amplitudes whose calculation requires
the definition of a spectral coherence structure governing the in-
teraction between patterns of dots of different intensities. Efficient
algorithms for the generation of multitone, blue-noise dither pat-
terns are also introduced.

Index Terms—Blue-noise dithering, digital halftoning, direct bi-
nary search (DBS), error diffusion, multitoning.

I. INTRODUCTION

H ALFTONING is the process of converting a continuous
tone image into a pattern of black and white dots [1],

where the illusion of continuous tone is the result of the low-pass
characteristics of the human eye that make it unable to dis-
criminate printed dots. Ulichney’s introduction of the blue-noise
model [2], later revised by Lau and Ulichney [3], has had a
profound impact in halftoning, since it describes the spectral
and spatial characteristics of a visually pleasant dither pattern.
Blue-noise dithering is characterized by an arrangement where
the minority pixels are spread as homogenously as possible to
create patterns that are aperiodic, isotropic, and do not contain
low-frequency components.

Recent advances in printing technology now allow for the
reproduction of dots of different intensities. Hardware imple-
mentations include the use of several different inks, different
ink concentration, and/or variable dot sizes. The availability of
these techniques poses the problem of reproducing a continuous
tone image with dots of at least three intensities (black, white,
and one or more intermediate gray level inks). Image rendering
via multiple inks is known as multilevel halftoning or multi-
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toning. Several algorithms for multitoning have been proposed
in the literature, mostly as extensions of previously developed
halftoning algorithms. The results obtained with these methods
are compared and evaluated subjectively since they rely on the
blue-noise model for halftones and a comparable theory de-
signed explicitly for multitones is not available. Such theory,
the blue-noise model for multitone dithering, is developed in
this paper.

Multitoning, like halftoning, aims at generating images that
are visually pleasant to the human eye. For this reason, the fun-
damental principles of blue-noise halftoning can be generalized
to the multitoning case. Characteristics like homogeneity and
isotropy are desirable in multitone dither patterns. In the fre-
quency domain, the radial symmetry and a low-frequency re-
sponse close to zero are requirements imposed by the properties
of the human eye and, in consequence, they must be considered
in the development of the theory of blue noise for multitoning.
On the other hand, new challenges arise when dots of interme-
diate intensities are allowed, for example, dot patterns of dif-
ferent inks could interfere with each other creating variations in
the intended average value of the picture or generating low-fre-
quency noise.

To determine the spectral profile of multitones and the char-
acteristics required for its optimality, threshold decomposition
(TD) [4] is introduced as a tool for the analysis of multitone
patterns. TD allows for the representation of multitones as the
superposition of spatially correlated halftone patterns, where

is the number of available inks. Each one of these patterns can
be characterized itself as a blue-noise pattern. The spectral pro-
file of blue-noise multitones is thus defined as the aggregation
of the profiles of these halftones plus the cross spectra gener-
ated by the interaction between dots of different intensities. The
spectral correlation between halftones composing a blue-noise
multitone is characterized by means of their optimal spectral
coherence.

Given the spatial and spectral characterization of optimal
blue-noise multitones, the need for algorithms that generate
such multitones arises. To this end, threshold decomposition
is extended so it can be applied to continuous tone images.
This representation can be used in combination with a given
blue-noise halftoning algorithm to generate multitone dither
patterns that show the spectral characteristics of blue-noise
multitones previously defined. In particular, the application of
such scheme to error diffusion and DBS is shown.

The paper is divided as follows. Section II summarizes the
blue-noise theory for halftones as presented by Ulichney [2] and
Lau and Ulichney [3]. Section III shows the development of the
blue-noise model for multitones, including the new blue-noise
multitoning structure. Section IV shows examples of the mul-
titones obtained with such methods together with their spectral
analysis, and Section V is dedicated to the conclusions.

1057-7149/$25.00 © 2008 IEEE
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Fig. 1. Calculation of the RAPSD of a dither pattern. Ten sections of 256� 256
pixels are extracted from a large dither pattern of the desired gray level, the pe-
riodogram of each pattern is calculated and �� ��� is calculated as their average.
To obtain the RAPSD, the average of �� ��� is taken over annuli of width �� as
indicated.

Fig. 2. Average distance between pixels in a blue-noise halftone pattern. In
areas of constant intensity, minority pixels tend to spread apart an average dis-
tance � in blue-noise dithering.

II. BLUE-NOISE MODEL FOR BINARY DITHER PATTERNS

A. Spectral Statistics of Halftones

Ulichney [2] characterized well formed dither patterns in the
Fourier domain by means of the radially average power spec-
trum density (RAPSD) and anisotropy measures. He focused on
binary patterns resulting from the dithering of an input image
composed of pixels of the same intensity . These patterns can
be characterized as Bernoulli processes with a probability den-
sity function

for
for

(1)

with a second moment (variance) equal to . The
characteristics of a dither pattern in the frequency domain can be
studied using its power spectrum . Ulichney estimated the
power spectrum as the average of ten periodograms ob-
tained from squared dither patterns of 256 256 pixels, cropped
from larger patterns as indicated in Fig. 1. The end result is a
2-D estimate that can be partitioned into annuli of width .
The RAPSD is the radial average of on this annuli calcu-
lated as

(2)

Fig. 3. Ideal radial average of the power spectrum of a blue-noise halftone pat-
tern illustrating its three main characteristics: Low-frequency response close to
zero (1), flat high-frequency region (2), and a peak at the principal frequency of
the pattern (3).

where is the central radius and the number of
samples in the annuli. To measure radial symmetry, Ulichney
defined a spectral measure called anisotropy [2]. In general,
the radial symmetry of the halftoning algorithms used in this
paper has already been proven, making a further analysis of the
anisotropy unnecessary.

B. Blue-Noise Spectra

Ulichney stated that the optimal dither patterns is such that the
average distance between nearest-neighboring minority pixels is
defined according to

for

for
(3)

where is the minimum distance between addressable pixels.
is referred to as the principal wavelength of the pattern. In

the Fourier domain, a well formed dither pattern is characterized
by a low-frequency response close to zero, a flat high-frequency
region, and a peak at the so-called principal frequency of the
pattern. A plot of an ideal RAPSD of a blue-noise dither pattern
is shown in Fig. 3. The principal frequency is the inverse of
the principal wavelength

for
for

(4)

When analyzing the RAPSD of blue-noise patterns of inten-
sity near , Lau and Ulichney [3] noticed that by
forcing a principal frequency greater than , a halftoning
algorithm was sacrificing radial symmetry as the sampling grid
constrained the placement of dots along the diagonals. Lau and
Ulichney argued that, for levels , the grid-de-
fiance illusion of the patterns was lost due to the added diagonal
correlation. So, in order to maintain a continuous wavefront in-
side the baseband, some clustering should be allowed in dither
patterns representing these gray levels. Equations (3) and (4)
were, therefore, modified. The principal frequency is redefined
as

for

for
for

(5)

and the principal wavelength is defined as its inverse.
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Fig. 4. Error diffusion halftoning. The pixel � ��� is passed through a quantizer
to obtain the corresponding pixel of the halftone ����, the difference between
these two is diffused to the neighboring pixels by means of the filter �.

C. Blue-Noise Halftoning

Since the introduction of the blue-noise model, many
halftoning algorithms have been proposed aiming to produce
patterns with such characteristics.1 The simplest are screening
algorithms, implemented by means of a thresholding operation,
like Bayer’s dither array [6]. The use of this kind of array
resulted in the introduction of periodic artifacts. Several algo-
rithms have been proposed to design dither arrays with better
characteristics (Sullivan et al. [7], Chu [8], Mitsa and Parker
[9], Ulichney [10], and Allebach and Lin [11]). A summary of
some of these methods and others applied to multitoning and
color printing can be found in [12].

Alternative halftoning methods affect not only the pixel
being quantized but also its vicinity, resulting in a higher
computational complexity. The earliest of these techniques
is the error diffusion algorithm (Floyd and Steinberg [13]),
summarized in the block diagram in Fig. 4: A quantizer
takes the value of the input pixel and compares it with a
threshold to decide the value of the corresponding pixel in the
halftone. The error introduced is calculated and diffused to the
neighboring, soon-to-be-processed pixels using a filter

. The process is repeated with
the following pixel until the whole image has been halftoned.
The picture is processed on a left-to-right and top-to-bottom
raster scan. The output of this algorithm when applied to a
gray-scale ramp is shown in Fig. 5. The checkerboard patterns
observed around gray level indicate the diagonal cor-
relation introduced by a high cut-off frequency. Other than
that, worms and other geometric artifacts can be appreciated
in different regions of the picture. Fig. 6 shows the RAPSD
of patterns of intensities , and
halftoned with Floyd and Steinberg’s algorithm. The geometric
artifacts in the gray-scale ramp reflect here as spectral peaks at
the principal frequency of the pattern or its multiples.

Several variations of this algorithm have been proposed over
the years, including the use of different filter shapes and number
of weights as proposed by Jarvis et al. [14], Stucki [15] (12
weights), or Shiau and Fan [16] (six weights). The scanning path
can be modified from a traditional raster scan to a serpentine or
others like the Peano [17] and Hilbert paths [18], or paths dic-
tated by a matrix as in dot-diffusion (Knuth [19]). The threshold
of error diffusion can also be modified based on previous out-
puts [20] or the intensity of the current pixel as indicated by Es-
chbach and Knox [21]. Other authors suggest to make the shape

1A summary of the blue-noise principles and some of these methods can be
found in [5]

Fig. 5. Halftone of a gray-scale ramp generated with Floyd–Steinberg error
diffusion.

Fig. 6. RAPSD of halftones generated with Floyd–Steinberg error diffusion for
gray levels ����������������, and ���	�.

of the filter, as well as the weights, input dependant as shown by
Eschbach [22] and Ostromoukhov [23]. A joint optimization of
thresholds and weights based on a model for the human visual
system is presented by Li and Allebach [24]. Error diffusion has
even been modified to generate green-noise as in [25] and [26].
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Fig. 7. Halftone of a gray-scale ramp generated with Ulichney’s error
diffusion.

To improve the radial symmetry and the cut-off frequency of
error-diffusion dither patterns, Ulichney used a serpentine scan
and introduced randomness in the weights of the error filter. The
weights used by Ulichney were calculated as

, where where
, and represents a uniformly dis-

tributed random variable in the interval . The results ob-
tained applying this algorithm are illustrated in Figs. 7 and 8.
The randomness in the weights breaks out most of the geo-
metric patterns present in the halftone in Fig. 5, including the
checkerboards near . The RAPSD plots in Fig. 8 show
that this improvement is linked to a frequency content more
evenly distributed in the band above the principal frequency.
Floyd–Steinberg’s original technique is an implementation of
the original blue-noise model, whereas Ulichney’s is a realiza-
tion of the model by Lau and Ulichney.

Further upgrades in the quality of halftones can be obtained
using algorithms that perform an iterative search whose final
goal is to obtain an improved version of an initial halftone.
These algorithms are the most complex and, even though they
are not practical for implementation, their results serve as
benchmarks and optimization references for other algorithms.
Among them is Analoui and Allebach’s direct binary search
(DBS) [27]. DBS improves the quality of a halftone under an
error measure that can include models of the human visual
system (HVS) and the printing device, and it is summarized in
the following.

Assume a digital image and its corresponding halftone are
represented by and respectively. The HVS model is
represented as a linear filter named , and the printer model
by . The perceived printed image and halftone, represented

Fig. 8. RAPSD of halftones generated with Ulichney’s error diffusion for gray
levels ����������������, and �����.

by and , are obtained by filtering with a linear filter that
comprises the effect of the printing process and the HVS

, where “ ” represents convolution). The perceived error
between the image and the halftone is given by

, with the total squared error defined as

(6)

Consider a trial change of the pixel . This pixel could
be swapped with one of its 8 nearest neighbors, say , or
toggled to a different intensity (1 or 0). The effect of such pixel
change is

(7)

with and defined by

for a swap
for a toggle if
for a toggle if

for a swap
for a toggle

(8)

The change in the error measure defined in (6) is given by

(9)

where is the autocorrelation function of and is the
cross correlation between and . The former remains constant
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Fig. 9. DBS halftoning of a grayscale ramp.

during all the optimization process. The latter has to be updated
every time the halftone is changed according to

(10)

Fig. 9 shows a halftone of the gray scale ramp produced using
DBS. This halftone lacks the geometric artifacts present in
Fig. 5 and looks smoother when compared with Fig. 7. Fig. 10
shows the RAPSD of DBS patterns for gray levels

, and . This plots resemble the best the ideal
characteristics of a blue-noise dither pattern in Fig. 3.

To appreciate the differences between some of the halftoning
algorithms just described, refer to Fig. 11. The left shows a
halftone of a natural image generated with Ulichney’s error
diffusion with perturbed weights, the right is the same image
halftoned with DBS. The characteristics observed previously in
the gray-scale ramp reflect here as well. The image on the left
presents more geometric artifacts and a noisy texture whereas
the one on the right is smooth and presents very few artifacts.

III. BLUE-NOISE MODEL FOR MULTITONE DITHER PATTERNS

A. Spectral Statistics of Multitones

Much like binary dither patterns, multitone dither patterns
representing a constant gray level can be modeled as sto-
chastic processes. Assume that a multitone dither pattern is cre-
ated using different inks of intensities sorted
according to intensity starting with the lightest. A white pixel
(where nothing is printed) is said to have intensity while
a black pixel is printed using intensity . The dither pat-
tern, therefore, contains pixels of different intensities.

Fig. 10. RAPSD of halftones generated with DBS for gray levels
����������������, and �����.

Fig. 11. Section of a blue-noise halftone of a 8-bit grayscale image generated
with: Error diffusion with (left) perturbed weights and (right) DBS.

Each multitone pixel is thus considered a realization of a
discrete random process obeying a probability density function

(11)
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where the probabilities indicate the proportion of pixels
of the corresponding inks included in the multitone, such that

. Furthermore, the probabilities are such that the
mean or expected value of ,
while the variance is given by

(12)

The analysis and synthesis of multitones presents new chal-
lenges when compared to halftones. First, effects in the spatial
domain should be evaluated since the average intensity or the
textures of the dither pattern can be affected by the possible su-
perposition of dots of different intensities or by clustering of
different kinds of pixels. Second, the spectral domain analysis
of multitones becomes more complex as the number of inks in-
creases. Patterns formed with dots of the same ink will have
their own spectral profile and their combination generates spec-
tral cross terms.

A multitone can be thought of as the superposition of a se-
ries of halftone patterns printed on top of each other with dif-
ferent inks. In that sense, it can be related to color halftoning
where three or more halftones, one for each one of the pri-
maries used by the printing system, are superimposed in order
to generate the appearance of a continuous tone color image.
One of the phenomena observed when overlapping halftones
is the appearance of moiré, a low-frequency interference pat-
tern that introduces structural artifacts observed initially in AM
color halftones. Lau et al. [28] showed that the moiré phenom-
enon appears in dispersed dot patterns as random fluctuations
in texture referred to as stochastic moiré. The variations were
shown to come from the lack of correlation between the dot lo-
cations in the different overlapped patterns. A similar observa-
tion was described by Wang and Parker [29]. They noticed that
the superimposition of two blue-noise patterns did not neces-
sarily result on a good quality pattern. In the spectral domain,
they noticed that the spectrum of the combined pattern is a func-
tion of the spectrum of the individual patterns and the correla-
tion between them. Their conclusion was that, in order to obtain
a good quality combined pattern, the energy in the cross corre-
lation must compensate for the energy present in the individual
patterns that should not appear in their superposition.

The observations above provide a strong motivation to incor-
porate the correlation between different inks into the analysis
and synthesis of multitones. To this end, a simple yet elegant
method is proposed based on the threshold decomposition rep-
resentation of signals [30], [39]. Threshold decomposition states
that a discrete signal taken on one of possible values can be
represented as the weighted sum of binary signals. For
the case of multitoning, define as the multitone dither pat-
tern and the series of halftones as

if
else

(13)

The halftone represents the level threshold decomposition
of the multitone . According to this definition, a printed pixel

Fig. 12. Decomposition of a 3-ink multitone� in a series of halftones� �
satisfying the stacking constraint.

in indicates that a printed pixel of intensity or darker ap-
pears in the multitone in the same position. This also implies that
there is a printed pixel in the same position in for all .
That is, the halftones in the threshold decomposition of stack.
The multitone can be described in terms of its threshold decom-
position representation as

(14)

where are the relative differences between
the intensities of the printable inks. An example of how this
decomposition is performed is shown in Fig. 12. The multi-
tone is a 3 3 image printed with three inks with intensities

.
The set of halftones can be described as a set of cor-

related stochastic processes whose marginal densities are

for

for
(15)

with means and variances given by

(16)

The mean of the multitone can be expressed as a function of the
characteristics of the halftones as

(17)

and since the random processes are correlated, the variance
of its linear combination is

(18)

where is the covari-
ance of the random processes and . The product
with is equal to , thus the covariance reduces to

for (19)
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Fig. 13. Optimal RAPSD for a 2-ink multitone dither pattern. The frequencies
� and � are the principal frequencies of the halftone patterns obtained by
the threshold decomposition of the multitone, � is the variance of the mul-
titone and � is the variance of the halftone pattern with the lowest principal
frequency.

Replacing (19) in (18) yields

(20)

The variance of the multitone thus results as the weighted sum
of the variances of each one of the halftones in the threshold
decomposition plus a weighted sum of cross terms that indicate
the interactions between dots of different intensities.

B. Multitone Blue-Noise Spectra

Assume a multitone is represented as the superposition
of a series of halftones as indicated in (14). Suppose the s
are blue-noise binary dither patterns; their spectra will have the
shape indicated in Fig. 3 with amplitudes as in (16) and prin-
cipal frequencies given by

for
for
for

(21)

If the multitone dither pattern was generated as white noise, its
spectrum would be flat and have an amplitude as indicated in
(12). Since the multitone is a linear combination of stacking bi-
nary blue-noise patterns, the spectrum of the aggregate should
preserve some of the spectral characteristics of the individual
patterns. For example, these patterns have a low-frequency re-
sponse close to zero and a flat high-frequency response origi-
nated by the elimination of clustering and the preservation of the
high-frequency components of white noise. These characteris-
tics are also required for a multitone dither pattern. The mid-fre-
quency range, however, should exhibit accumulation (peaks)
of energy around the principal frequencies of each one of the
halftones in the threshold decomposition representation. An ex-
ample for the case of two inks is shown in Fig. 13.

It has been stated earlier that there must be correlation be-
tween the patterns in order for the multitone to be visu-
ally pleasant. That correlation has yet to be characterized. The
theory of statistical signal analysis provides a series of measures

that allow the analysis and quantification of the relationship be-
tween two or more signals in the spectral domain. Since the co-
variance allows us to study the similarities or differences be-
tween two signals in the time/spatial domain, it is natural for its
Fourier transform, the cross-spectral density function (CSD), to
be the first choice when analyzing the correlation of two sig-
nals in the spectral domain. This function is complex-valued
and, in consequence, we should resort to analyze its magni-
tude and phase. The magnitude of the CSD is known as the
cross-amplitude spectrum and it represents the average value
of the product of the components of each signal for each fre-
quency. The phase of the CSD, the phase spectrum, is the av-
erage phase-shift between the components of the two signals
at each frequency [31]. Since the CSD is the Fourier transform
of the cross correlation of the two signals, it can be calculated
directly in the frequency domain by multiplying their PSDs,
in consequence, spectral peaks corresponding to only one of
the two signals can appear in the CSD even when there is no
real relationship between the signals at that point. In order to
avoid these kind of effects, another measure of the correlation of
two signals in the frequency domain is required. The magnitude
squared coherence function (MSC) is defined as the normalized
modulus of the cross-power spectrum [32]

(22)

where is the CSD of the patterns, and are
the PSDs of the signals and respectively. Equation (22) is
the frequency domain equivalent of the correlation coefficient
and it can be interpreted as a measure of the correlation of two
signals at each frequency. The correlation coefficient is defined
as

(23)

Applying this definition to a pair of sub-halftones
and replacing the variances and covariances with the values

calculated previously leads to

(24)

so the terms in the last sum in (20) can be calculated as
.

The MSC has several interesting properties, it is bounded be-
tween 0 and 1, being 0 for independent processes and 1 for sig-
nals that are linearly related (one is the result of filtering the
other with a linear filter). In general, the MSC represents the
portion of power of a signal at a given frequency that can be ac-
counted for by its linear regression on the other. The coherence
is invariant to linear filtration and is symmetric .
To apply the MSC to the analysis of multitones, one must cal-
culate it for the different pairs of halftones defined in
(13). The method of averaged periodograms used to estimate the
PSDs can also be used to estimate the CSDs. Since the patterns
analyzed are isotropic, the radial average of the MSC is repre-
sentative of the behavior of the function in the 2-D plane and can
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Fig. 14. Radial MSC of multitones of gray 150 generated as the superposition of (top-left) two independent white noise patterns, (bottom-left) two independent
blue-noise patterns, (top-right) a suboptimal multitone generated with DBS, and (bottom-right) an optimal blue-noise multitone, with the RAPSD and the radial
MSC of the patterns used for their generation.

be analyzed instead. Assuming that periodograms are used
to estimate the MSC, a value of or dB is considered
noise and indicates that the two patterns are independent.

To study the behavior of the MSC, a series of multitones
were generated using different mechanisms. A representative
example is shown in Fig. 14. The figure shows multitones of
gray 150 generated with the same inks and ink concentrations,
but with different methods. It also shows the RAPSD of the
corresponding sub-halftones and the logarithm of their radial
MSC. The top-left plot is a multitone generated using indepen-
dent white-noise. The RAPSD of the sub-halftones are flat, as

expected and so is their MSC, whose low value dB cor-
responding to periodograms) reflects no correlation
between the patterns for any frequency. The bottom-left plot
corresponds to the superposition of two blue-noise patterns gen-
erated independently. The pattern looks noisy and the lack of
correlation between the patterns shows as an almost constant
low level for the coherence, similar to the one observed for white
noise. On the other hand, the RAPSD plots show that each of the
patterns used to create this multitone are blue-noise, this indi-
cates that some correlation needs to be introduced between the
blue-noise patterns used to generate the multitone. The top-right
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Fig. 15. Radial MSC of an ideal blue-noise multitone. � and � indicate the
principal frequencies of the halftone patterns being evaluated, � is their cor-
relation coefficient, and � is calculated as in (25).

plots show a multitone generated with DBS for multitoning as
in [33]. The pattern looks more uniform but presents clustering
of minority pixels (white pixels for and black pixels for

. Again, the RAPSD of the sub-halftones shows they are
blue-noise but the coherence shows an inadequate correlation
between them (high values for the lower frequency band) that re-
sults in the artifacts mentioned before. The bottom-right pattern
was generated following the blue-noise theory developed in this
work. The pattern is the most visually pleasant of the four. Its
radial MSC plot shows low coherence values for the lower fre-
quencies and an almost constant value for all frequencies above
the lowest cut-off frequency of the multitone. A large value of
the MSC can also be observed in the very low-frequency band.
This is related to the DC component of the patterns and the lack
of energy for very low frequencies. The value in zero can be ob-
tained by evaluating (22) in . The CSD can be replaced
by the product of the PSDs of the subpatterns. The value of the
PSD of each pattern in is the square of their DC value,
that is, the mean of the pattern. This results in

(25)

The conclusion obtained from these results is that the spectral
coherence of the sub-halftones in a blue-noise multitone should
be low for the low-frequency band and rise to the value of the
correlation coefficient for all frequencies above the lowest
principal frequency of the patterns being evaluated. An ideal
plot of this function is shown in Fig. 15.

C. Blue-Noise Multitoning

Several algorithms for multitoning have been proposed in
the literature, mostly as extensions of previously developed
halftoning algorithms. For example, the error diffusion algo-
rithm was modified by replacing the binary thresholding by
a multilevel quantizer (Gentile et al. [34]), correlated error
diffusion was applied to channels that represented the available
inks (Faheem et al. [35]), screening was extended to multi-
toning using Bayer dither arrays [34] and clustered-dot dither
[36]. Iterative algorithms for multitoning have been proposed
based on neural networks [37] or as an extension of DBS [33].
The latter is also applied to the design of a multitoning dither
array. Some of these algorithms introduce the concept of a gray
level schedule/distribution. Its objective is to define and control
the amount of each of the printable inks used to generate a
certain gray level. This concept gives such algorithms some

Fig. 16. Blue-noise multitoning. A continuous tone image Y is divided in �
components that can be halftoned with any algorithm in a correlated fashion
to generate a set of halftones, the threshold decomposition representation of
the final multitone. The set of halftones � � is recombined to generate the
multitone using (14).

Fig. 17. Two different concentrations of (solid) black and (dashed) gray inks
to use with blue-noise multitoning.

extra versatility since these schedules can be defined in several
different ways. On the other hand, the results obtained with
different schedules are compared and evaluated subjectively,
no criteria for optimality is proposed, and the spectral analysis
of the results is absent or very limited.

In order for a multitone to be optimal according to the theory
just shown, the dots of different inks should be located in a cor-
related fashion in order to attain the spectral profile required. In
previous sections, threshold decomposition was used to break
down multitones into halftones in order to facilitate its anal-
ysis. A similar scheme can be applied to the synthesis of multi-
tones of continuous tone pictures to ensure optimality. Assume
a constant patch of intensity is to be reproduced using the inks

, in proportions . The intensity of the patch can be
represented as

(26)

where and . If a patch
of intensity is halftoned using blue noise, the resulting
dither pattern will have the same statistics as , the level one
threshold decomposition representation of an ideal multitone as
defined in (13). The process is repeated for a patch of inten-
sity with the constraint that the resulting halftone should
stack on the first one. The resulting dither pattern holds the same
properties required by . If the procedure is repeated for the
remaining ensuring that the th halftone stacks on the

st, the result is a series of halftones that meet all the
requirements indicated in (13) to (17). In consequence, a linear
combination of these halftones results in an optimal blue-noise
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Fig. 18. Multitones of a gray-scale ramp generated with blue-noise multitoning error diffusion using the gray level concentrations in Figs. 17(a) and (b),
respectively.

multitone. The procedure to multitone a continuous tone image
, shown in Fig. 16, will be as follows.
1) The ink intensities are obtained from the printing mech-

anism to be used and their concentrations should be
determined a priori by the user.

2) Define the set of sub-images , where
, and is defined as in (16).

3) Using the selected halftoning algorithm, halftone to ob-
tain .

4) Halftone to obtain using the same algorithm and
taking into account the stacking constraint. Follow the
same procedure with the remaining (a more detailed
description of this process for error diffusion and DBS is
presented later on.)

5) Use (14) to obtain the final multitone.
The mechanism proposed is fairly simple since its imple-

mentation is based on the repeated execution of well known
halftoning algorithms. The division of the original image into
subimages can be implemented with a look-up table and the
sinthesis of the final multitone from the subhalftones is just a
linear combination. Examples of this structure applied to well-
known halftoning algorithms follow.2

1) Blue-Noise Multitoning With Error Diffusion: In order to
generate blue-noise multitones by means of error diffusion, the
stacking constraint should be involved in the quantization of the
pixels such that

if and
else

(27)

2These algorithms were introduced by the authors in [38], they are reintro-
duced here since the blue-noise multitone theory justifies the results shown in
the previous publication.

where is the error diffused to the pixel and
. If , it is assumed that .

2) Blue-Noise Multitoning With DBS: In order to incorpo-
rate DBS as the halftoning algorithm to use in the multitoning
structure in Fig. 16 a few considerations need to be made.
Assume DBS is applied to the sub-halftone . When a toggle
or a swap is performed, it is mandatory to ensure that the
stacking constraint is maintained. In consequence, a change
of the pixel from a “1” to a “0” will require that all
the pixels are changed to zero. If the change is
the opposite (from a “0” to a “1”), all the pixels
have to be changed to “1.” Since a change in a pixel in one
of the sub-halftones implies a change in several of them, the
quality metric used to determine if a change is accepted needs
to include all sub-halftones. Such a metric could be defined as

where (28)

The efficient implementation of the algorithm described by
Analoui and Allebach should be applied to each sub-halftone
independently, taking into account the previous considerations.

IV. SIMULATIONS

To test the effectiveness of the algorithms described in the
previous section a series of examples is shown as follows: A
grayscale ramp is multitoned using both, error diffusion and
DBS with the gray level concentrations indicated in Fig. 17 and
inks (dashed) and (solid).

Fig. 18 shows the results obtained with blue-noise multi-
toning with error diffusion and Fig. 19 the ones from blue-noise
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Fig. 19. Multitones of a gray-scale ramp generated with blue-noise multitoning DBS using the gray level concentrations in Fig. 17(a) and (b), respectively.

Fig. 20. RAPSD of multitones generated for both gray level distributions in
Fig. 17. Top to bottom: ED for gray level ������, DBS for gray level ������,
ED for gray level �����, DBS for gray level �����.

multitoning with DBS. The improvement in the quality ob-
tained from the introduction of the gray ink is fairly evident
when these plots are compared with Figs. 7 and 9. The RAPSD
of these multitones for gray levels and are shown
in Fig. 20. Only one plot is shown for each intensity/method
since the ink levels for both gray level distributions are the same
for these intensities. These tones are reproduced as patterns of

Fig. 21. RAPSD of multitones for gray level �����. Top to bottom: ED with the
gray level distribution in Fig. 17(a), DBS with the same gray level distribution,
ED with the gray level distribution in Fig. 17(b), DBS with the same gray level
distribution.

gray dots over a white background and, in consequence, their
RAPSD correspond to the ones of blue-noise halftones with the
same principal frequencies, as indicated in the figure. Since this
patterns are created using one ink, no analysis of the spectral
coherence is necessary.

Fig. 21 shows the RAPSD of the multitones obtained with
both methods and both gray level concentrations for gray level
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Fig. 22. MSC of the multitones generated with (top) blue-noise error diffu-
sion and (bottom) DBS for gray level ����� and the gray level distribution in
Fig. 17(a).

. The plots on top correspond to the gray level concentra-
tions in Fig. 17(a). For this case, the patterns are generated using
33% gray pixels and 8.5% black pixels approx. The RAPSD for
this case presents the continuous ascending pattern predicted,
with the steps being more obvious in the picture corresponding
to DBS. The corresponding MSC for these patterns is shown in
Fig. 22. A behavior similar to the one predicted can also be no-
ticed. The patterns present lower values of the MSC for values
under the first principal frequency and higher vaues from there
on. The plots on the bottom of Fig. 21 correspond to the gray
level concentration in Fig. 17(b). In this case, the pattern is still
made up of only gray and white pixels; hence, the RAPSD re-
sembles the one of a blue-noise halftone and the analysis of the
MSC is not applicable.

Figs. 23 and 24 show the RAPSD and MSC of the patterns
obtained when applying both methods with both gray level con-
centrations to a pattern of intensity . For the concentrations
in Fig. 17(a), the multitone is obtained as the superposition of
two halftones with principal frequency 0.5. The RAPSD plots
show an increase in the power around this value of frequency.
This is the case for the plots of the MSC as well. For the concen-
trations in Fig. 17(b), the principal frequencies of the patterns
are almost the same so the behavior of the RAPSD and the ra-
dial MSC are very similar in both cases.

Finally, Fig. 25 shows the results obtained applying blue-
noise multitoning error diffusion and DBS to a natural image
with different gray level concentrations. The improvement of
the textures and the general appearance of the pictures is fairly
evident when compared with the halftones in Fig. 11. One thing
that can be noticed in this figure is the remarkably different re-
sults that can be obtained when multitoning a picture using dif-
ferent gray level concentrations. This leads to a critical ques-
tion: is it possible to find an optimal gray level distribution to
reproduce a tone for a given set of inks? This issue has been re-
searched by the authors and it will be reported elsewhere.

V. CONCLUSION

To date, multitone dither patterns are designed through the
extensions of well-known halftoning algorithms. While binary
halftone patterns are well understood and optimally designed,
the multitone patterns attained through the simple extensions of

Fig. 23. RAPSD of multitones generated with blue-noise error diffusion and
DBS for different gray level concentrations for gray level �����. Top to bottom:
ED for the concentrations in Fig. 17(a), DBS for the same concentrations, ED
for the concentrations in Fig. 17(b), DBS for the same concentrations.

Fig. 24. MSC of multitones generated with blue-noise error diffusion and DBS
for different gray level concentrations for gray level �����. Top to bottom: ED
for the concentrations in Fig. 17(a), DBS for the same concentrations, ED for
the concentrations in Fig. 17(b), DBS for the same concentrations.

binary halftone methods lack a theoretical spectral analysis like
the one developed by Ulichney. Multitoning methods to date
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Fig. 25. Multitones of a natural image generated with: (top) blue-noise multitoning error diffusion and (bottom) DBS using the gray level concentrations in
Fig. 17(a) (right) and Fig. 17(b) (left).

thus generate suboptimal patterns. This paper proposes a multi-
toning blue-noise model to serve as a standard by which multi-
toning algorithms are optimized, qualified, and categorized, in
the same way that the classic blue-noise model for halftones
does for binary patterns, where the better of two algorithms
is the one whose output resembles the most the characteris-
tics described in the model. To do so, we have introduced sta-
tistics for characterizing the spectral properties of multilevel
dither patterns by treating the subject pattern as a stack of bi-
nary halftones, one for each of the available inks. Each one of
these halftones could be characterized using blue-noise halftone
dithering. The statistics of the multitone can be found as func-

tions of the characteristics of these patterns. To characterize the
correlation between them we introduced a new spectral mea-
sure, the radial magnitude squared coherence function.

Using our newly introduced metrics, this paper’s principal
focus has been the introduction of a model characterizing the
ideal spectral statistics of aperiodic, dispersed-dot, multilevel
dither patterns that, like their binary counterparts, minimize
low-frequency graininess.

To illustrate these results, a few examples are presented in
Fig. 26. Here, patches of intensity 236, 19, and 127 are multi-
toned with DBS as presented in Section III-C2 and with DBS as
initially introduced in [33]. The algorithms use the same HVS
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Fig. 26. Combination of stacking blue-noise halftone patterns to generate blue-
noise multitones and final result compared with multitone DBS as in [33].

model and the same ink concentrations: 90% for the majority
pixels and 5% for each one of the other two. The gray ink has
an intensity . The figure shows the sub-halftones
and , followed by the blue-noise multitone and the DBS
multitone. The pictures shown are the 32 32 central sections
of 256 256 original patches. The first column corresponds to
the case of . In this case, the minority pixels in both
sub-halftones will be printed pixels. is created by means
of an unconstrained blue-noise halftoning algorithm to contain
10% printed pixels. is created as a subset of containing
half of its pixels; such subset is chosen by the halftoning algo-
rithm. What a good blue-noise generator will do is to select the
pixels that are further apart from the ones available.

The second column of Fig. 26 corresponds to . This
time is a blue-noise halftone pattern with 5% unprinted
pixels. should contain 10% unprinted pixels but, due to the
stacking constraint, half of them have to be in the same location
than the unprinted pixels in . It is the responsibility of the
halftoning algorithm to add the remaining unprinted pixels such
that they do not form clusters with the original unprinted pixels
in . This is again inherent to a blue-noise generator. The lo-
cation of some of the minority pixels is forced in a pattern that
is already blue-noise. The halftoning algorithm is free to locate
the remaining pixels where necessary to avoid clustering and to
create the required spectra.

Finally, the third column corresponds to . This case
is different from the ones above in that the minority pixels in
each sub-halftone form nonintersecting sets. is composed
of 95% printed and 5% unprinted pixels while is just the
opposite: 95% unprinted, 5% printed. Once is generated,

the halftoning algorithm must choose from the locations of the
printed dots in , where to locate the printed pixels in . A
good blue-noise generator should be able to choose those loca-
tions in such a way that the resulting pattern has its energy con-
centrated on the higher end of the spectrum, that is, avoiding
clustering as much as possible. An algorithm like error-diffu-
sion, that takes into account just a few pixels in the neighbor-
hood of the one being evaluated, may locate minority pixels on

(printed) close to minority pixels on (unprinted), but an
algorithm that takes into account a larger vicinity of the current
pixel (like DBS) should do a better job avoiding such clusters.

Now, compare the final results obtained with blue-noise DBS
(third row of Fig. 26) with multitone DBS as in [33], shown in
the last row of Fig. 26. Looking at the multitones in the first
column, one notices how pixels in the blue-noise multitone are
spread more evenly in the pattern. The minimal distance be-
tween two printed pixels in such pattern is one pixel and it ap-
pears only once (bottom right corner of the pattern). In the DBS
pattern there are several pairs of pixels with such distance and
there is even a pair of pixels located next to each other diago-
nally, that is, there is more clustering. The same happens with
the patterns on the second column. In the third column, even
thought the quality of the blue-noise multitone is slightly lower
than in the other two cases, it can be seen how the inclusion of
the structure in Fig. 16 helps to break the big clusters that appear
on a DBS pattern. These examples illustrate how the inclusion
of the structure in Fig. 16 improves the output of well know mul-
titoning algorithms.
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