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In this paper, we introduce the concept of green noise—the
midfrequency component of white noise—and its advantages over
blue noise for digital halftoning. Unlike blue-noise dither patterns,
which are composed exclusively of isolated pixels, green-noise
dither patterns are composed of pixel-clusters making them less
susceptible to image degradation from nonideal printing artifacts
such as dot-gain. Although they are not the only techniques which
generate clustered halftones, error-diffusion with output-dependent
feedback and variations based on filter weight perturbation are
shown to be good generators of green noise, thereby allowing for
tunable coarseness. Using statistics developed for blue noise, we
closely examine the spectral content of resulting dither patterns.
We introduce two spatial-domain statistics for analyzing the spatial
arrangement of pixels in aperiodic dither patterns, because green-
noise patterns may be anisotropic, and therefore spectral statistics
based on radial averages may be inappropriate for the study of
these patterns.

Keywords—Blue-noise dithering, clustered point process, dig-
ital halftoning, green-noise dithering, point process, stochastic
geometry.

I. INTRODUCTION

With the ultimate goal of accurately reproducing an
original continuous-tone photograph without loss of tonal
value or detail, printing devices such as those which rely on
dye sublimation or gravure printing have been developed
that are capable of rendering continuous tone. More often
though, printing devices are capable of only limited-tone
reproduction, and in the case of binary output, intermediate
tones are represented as halftones. Examples of such de-
vices are laser and ink-jet printers and facsimile machines.1

In commercial printing, three printing processes that
produce binary tone are letterpress or relief printing, lithog-
raphy or planographic printing, and screen or porous print-
ing. These printing processes have, in the past, relied on
analog photomechanical screening methods with halftones
consisting of rows of dots fixed along a grid in a regular
pattern, equally spaced center-to-center. These dots vary in
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1Although current technology regarding laser and ink-jet printers does

allow for multilevel output, the number of achievable gray levels is still
too limited to eliminate quantization effects, and in these cases, halftones
are still required in order to produce a sufficient range of intermediate
tones [1].

size depending on the tone being rendered [2]. With the
advent of digital image setters (the device which converts
the original continuous-tone image to binary bitmap and
then from electronic form to physical), printing has been
rapidly moving to digital binary methods [3]. Originally,
these digital methods attempted to imitate photomechanical
screening methods [4] through clustered dot dithering.
This type of digital halftoning is referred to as amplitude
modulated (AM) screening.

As an alternative to AM screening, frequency modulated
(FM) or stochastic screening techniques, where dots are
of constant size but are variably spaced according to
tone, are available to digital printers. Although relatively
rare in commercial printing [5], FM screening avoids the
problems associated with AM methods [4] such as moiré,
the interference pattern created by superimposing two or
more regular patterns. Moiré, a problem associated with
color printing, is minimized in commercial printers by
offsetting the orientation of the halftone screen of each
color-creating a desirable circular pattern called a rosette.
Great care must be taken when aligning these screens;
otherwise, moiŕe will result [2]. A further drawback of
AM screening is image contouring, a visual banding effect
created by an abruptly changing halftone texture. This
artifact is minimized in AM patterns by increasing the
maximum number of gray levels that a cluster can represent,
but in order to increase the number of achievable gray
levels, the total number of pixels that compose a cluster
must also be increased—reducing the spatial resolution of
the resulting halftone image.2

The alternative screening technique, FM screening, elimi-
nates the need for screen angles and screen rulings, resulting
in an image without artifacts and displaying higher spatial
resolution; furthermore, FM screens, by using a statistical
analysis of neighboring pixels, can represent images with
greater fidelity [4]. The major drawback of FM screens is
dot gain—the increase in size of the printed dot relative
to the intended dot size of the original halftone film.

2By dividing a large halftone cell (the sample area belonging to a
single cluster of an AM pattern) into smaller cells, thereby creating a
conglomerate or super cell [6], AM halftone patterns can represent the
same number of gray levels but with greater spatial resolution as the size
of individual clusters is decreased.

0018–9219/98$10.00 1998 IEEE

2424 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 12, DECEMBER 1998



When printing halftones, dot gain creates a reduction or
compression in the printed tonal range leading to a loss of
definition and detail (contrast); furthermore, dot gain can
lead to “plugged” or filled-in screens and cause a shift in
color [7].

Due to the nature of dot gain, FM screens will typically
suffer greater amounts of distortion than AM [4], but it
is not the amount of dot gain which limits the use of
FM halftoning. Instead, it is the reproducibility of the
printed dot. In a repeatable process where the variation
in dot size/shape from printed dot-to-printed dot is small,
printing can rely on dot gain compensation techniques
to minimize introduced distortion, but in a nonrepeatable
process where the variation in dot size/shape is high, pattern
robustness (clustering) becomes a desired, and in many
cases a required, characteristic of the halftoning process [8].
In summary, the choice between AM and FM screens is a
function of the imaging system’s ability to print individual
pixels. If individual pixels can be reliably reproduced, the
halftone can be based on individual pixels. Otherwise, the
halftone must be composed of groups of pixels which,
through clustering, form larger features that can be reliably
reproduced [3].

In this paper, we look at AM–FM hybrids, stochastic
halftoning techniques which create minority pixel clusters
which vary, according to tone, in both their size and
spacing. The advantage to using these techniques is that
as stochastic processes, the superposition of two or more
halftone patterns does not create moiré, thereby alleviating
the need for screen angles; furthermore, by clustering
minority pixels, AM–FM hybrids are also less susceptible
to the effects of dot gain. Techniques which fall in this
category are not new to halftoning literature and include
such techniques as Velho’s and Gomes’ digital halftoning
along space-filling curves (SFC’s) [9], Scheermesser’s and
Bryngdahl’s digital halftoning with texture control [10], and
Levien’s error diffusion with output-dependent feedback
[11]. For reasons to be discussed later, this paper focuses on
Levien’s technique, but the presented aspects of AM–FM
halftoning will apply to many of the halftoning schemes
not presented.

In order to introduce this new screen, consider first the
implementations of AM and FM halftoning. The clustering
of pixels in AM screens has always implied using clustered-
dot dithering techniques for transforming continuous-tone
images to binary form. FM screens, until recently, have
always implied dispersed-dot ordered dithering. Studied in
great detail by Ulichney [12], error diffusion creates dither
patterns which are most pleasant in areas of uniform tone
when these patterns have isotropic (radially symmetric)
blue noise3 spectral characteristics. Ulichney writes the
following on the subject [12].

The purpose of a dither pattern is to represent a
continuous-tone level. It therefore should not have
any form or structure of its own; a pattern succeeds
when it is innocuous. Blue noise is visually pleasant

3Blue noise refers to the high-frequency component of white noise.
Such patterns have a minimal low-frequency spectral component.

because it does not clash with the structure of an
image by adding one of its own or degrade it by
being too “noisy” or uncorrelated.

Therefore compared to dispersed-dot ordered dither, error
diffusion creates patterns which are visually more pleasing.

By adding an output-dependent feedback term to er-
ror diffusion, Levien [11] has shown that pixels can be
clustered, forming a stochastic screen which maintains
properties of both the AM and FM screens. Furthermore,
by adjusting a single parameter, Levien has demonstrated
the ability to increase or decrease the amount of cluster-
ing, thereby allowing for a tunable screen which can be
optimized according to the reliability of an imaging system
to print individual pixels. In this paper we show that the
spectral characteristics of these new patterns are not blue-
noise like traditional error-diffusion halftones but green,
i.e., containing no low-frequency or high-frequency spectral
components.

Introducing the green-noise model to digital halftoning is
the primary focus of this paper. Because of the tunability of
AM–FM hybrids to create varying amounts of clustering,
green noise, as presented here, is a tunable model with
blue noise as a limiting case. In addition to introducing
a new statistical model for digital halftoning, this paper
also introduces new spatial statistics for the evaluation of
produced patterns. Previously, statistics for the analysis
of binary halftone patterns have been based on spectral
domain estimates. These spectral statistics are responsible
for the name “blue noise” given to stochastic patterns
created via error-diffusion and for the name “green noise”
for AM–FM hybrid patterns. Like the spectral statistics,
the newly introduced spatial statistics uniquely identify the
spatial characteristics inherent in a particular halftoning
process; furthermore, being based in the spatial domain,
these new statistics have interpretations which are far more
intuitive to the viewer.

II. STATISTICAL ANALYSIS OF DIGITAL HALFTONES

A. Spectral Statistics

In order to provide a mechanism for studying aperiodic
patterns, Ulichney [12] developed the radially averaged
power spectra along with a measure of anisotropy. Both
rely on estimating the power spectrum through Bartlett’s
method of averaging periodograms, i.e., the magnitude-
square of the Fourier transform of the output pattern divided
by the sample size, to produce the spectral estimate .
Although anisotropies of a dither pattern can be qualita-
tively observed by studying three-dimensional (3-D) plots
of , partitioning the spectral domain into a series of
annular rings of width , as shown in Fig. 1, leads
to two useful one-dimensional (1-D) statistics. The first
statistic is the radially averaged power spectrum density
(RAPSD) , defined for discrete as the average
power in the annular ring with center radius

(1)
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Fig. 1. By partitioning the spectral domain into a series of annular
rings, the power spectrumP (f) can be studied usingP (f�) and
A(f�).

where is the number of frequency samples in
. The second statistic is the anisotropy . It is

defined as

(2)

the relative variance or the “noise-to-signal” ratio [12] of
frequency samples of in .

Built on the premise that aperiodic patterns generated
in areas of uniform gray are most pleasant when patterns
are isotropic, , a measure of how isotropic a dither
pattern is, implies that the pattern with lower anisotropy is
the more visually pleasing of the two if both patterns have
identical . Given that its purpose is to measure the
strength of directional artifacts, does not indicate the
direction. It is therefore possible for a dither pattern with
strong horizontal artifacts to be indistinguishable according
to and from a pattern with strong diagonal
artifacts. The human eye being less sensitive to diagonal
correlations, one may find the difference in appearance far
from indistinguishable.

Note that for either statistic, a rotation in the original
dither pattern has no effect on either or , and
these metrics may therefore be insufficient at describing
patterns uniquely when patterns are allowed and even pre-
ferred to be anisotropic. Additional information pertaining
to the direction of artifacts may then be required. In order
to supplement and , we can use spatial domain
statistics to characterize aperiodic dither patterns. Though
largely ignored in halftone literature, the importance of
spatial domain statistics cannot be overlooked. Found in
the literature of stochastic geometry (the area interested
in modeling complicated geometrical patterns), point pro-
cesses have long been studied by statisticians to model such
things as crystal formation in granite and cell locations
within organic tissue. Because point process statistics are
used to model the location of random points in space, they
are suited perfectly for characterizing digital halftones.

B. Spatial Statistics

Though spectral domain techniques have been proposed,
statisticians are more likely to rely on “nearest-neighbor”
distributions, i.e., the distribution of points relative to a
typical point. Several nearest-neighbor measures are ex-
tremely useful to halftoning, and in this paper we show
two such spatial-statistic metrics which can be very useful
in characterizing halftone patterns. We begin with a more
concise definition of a point process.

The point process is a stochastic model governing the
location of events, or points , within the space [13].
is a sample of and will be written as

. Furthermore, is a scalar quantity defined
as the number of in the subset of . We assume that
the point process is simple, meaning that implies

, which further implies

for
else

(3)

where is the infinitesimally small area around. In
terms of a discrete dither pattern, represents the set of
minority pixels such that , for pixel index
indicates a minority pixel at location. now represents
an aperiodic halftone process with and representing
blue-noise and green-noise halftoning processes, respec-
tively.

From its definition in (3), is a scalar random vari-
able which can be characterized in terms of its moments.
We start with the first-order moment, the intensity

(4)

For a point process to be stationary, the statistical character-
istics of must be invariant to translation. If a process is
stationary, then the intensity is constant for all
where is the expected number of points per
unit area. Furthermore, represents the unconditional
probability that the sample at locationis a minority pixel.

We gain additional insight into by conditioning the
probability distribution of given that a point lies at a given
location. The result is a conditional distribution referred to
as the Palm distribution [14]. A particular measure under
the Palm distribution of is the quantity (or for
discrete space )

(5)

the ratio of the expected number of points in under the
condition to the unconditional expected number of
points in . , referred to as the reduced second-
moment measure, may be thought of as the influence at
location of the point . That is, is a point at more or less
likely to occur because a point exists at? For stationary
processes, may be written as where is
the distance between and while is the direction to
from . For a point process to be isotropic, the statistical
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Fig. 2. By dividing the spatial domain into a series of (left)
annular rings centered around locationy, the spatial arrangement
of points can be studied through the use ofR(r), and by looking
at the expected number of points per unit area in the segment�a

y

versus the ring�y , the spatial arrangement can be studied using
Dr ;r (a).

characteristics of must be invariant to rotation; therefore,
if is also isotropic, then .

From , we can derive two spatial domain statistics
in a similar fashion to and by partitioning
the spatial domain into a series of annular rings
(Fig. 2), with center radius , width , and centered
around location . In this paper, the annular ring
will be the set where

. The first statistic for stationary and isotropic
is the pair correlation , defined as

(6)

the influence that the point athas at any in the annular
ring . Note that for a stationary point process, the
unconditional expected number of points in the ring
is (the intensity times the area of ).
is also the average value of in the ring , and
its usefulness can be seen in the interpretation that maxima
of indicate frequent occurrences of the interpoint
distance while minima of indicate an inhibition of
points at [14].

In addition to the above spatial interpretations,
maintains an intimate link with the spectral domain. In
particular, a frequent occurrence of the interpoint distance
, indicated by maxima in , implies a peak in

for radial frequency proportional in magnitude
to the peak in , meaning that a larger peak leads
to a larger peak in . Take for instance white-noise
halftoning where binary patterns are created by thresholding
an input image with uniformly distributed, uncorrelated
(white) noise.

Deriving its name from its spectral content, white-noise
halftones have a which is flat for all . The lack of
any spectral peaks implies that white-noise halftones have
a pair correlation which is one for all. This is the case
since a completely random,4 stationary, and isotropic point
process with intensity has a reduced second moment

4This is a completely random process ifEf�(dVx) j y 2 �g =
Ef�(dVx)g for all y 6= x; y 2 <.

(a)

(b)

Fig. 3. Dither pattern, pair correlation and directional distribution
function of (a) a dither pattern with small variation in cluster shape
and (b) a dither pattern with high variation in cluster shape.

measure

(7)

for all , and since is the average in
the ring for all for all .

In cases where is stationary but not isotropic,
can be used to investigate anisotropy inby defining the
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(a)

(b)

Fig. 4. Blue-noise halftone of (a) a grayscale image and (b) a
grayscale ramp.

directional distribution function as

(8)

Fig. 5. The spectral characteristics of a blue-noise halftone pat-
tern in units of�2

g
= g(1� g) with: (a) a low-frequency cutoff at

principle frequencyfb; (b) a sharp transition region; and (c) a flat
high-frequency blue-noise region.

Fig. 6. The pair correlation for a blue-noise process showing: (a)
a strong inhibition of minority pixels nearr = 0; (b) a decreasing
correlation of minority pixels with increasingr; and (c) a frequent
occurrence of the interpoint distance�b indicated by a series of
peaks at integer multiples of�b.

Fig. 7. Floyd–Steinberg filter weights.

the expected number of points per unit area in a segment
of the ring , centered
around the point such that
(see Fig. 2), to the expected number of points per unit
area in itself. Note that for isotropic point patterns,

for all , and that indicates
a favoring of points at angles nearwhile

indicates an inhibition of points. Furthermore, the
parameters and allow us to look at point distributions
for various ranges from a point. Most notably, a near
distribution for the range , a far distribution for

, and an overall distribution for .
Compared to the spectral statistics and , the

spatial statistics and together offer a more
intuitive understanding of the underlying point process.
This is perhaps best witnessed in Fig. 3 where minority
pixels form clusters. In this case, clustering results in a
nonzero pair correlation for near zero with

occurring at . This parameter is
proportional to the size of clusters as . That
is, the area covered by the average sized cluster of
pixels is equal to the area covered a circle of radius.
Furthermore, the peaks of , which occur at integer
multiples of , indicate that pixel clusters are
separated center-to-center by an average distance ofwith
the sharpness of peaks inversely proportional to the amount
of variation in cluster size. Fig. 3(a) and (b) shows that
when the variation in cluster size and shape is small, the
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(a) (b)

Fig. 8. Analysis of blue-noise halftone patterns for (a)g = 1=16 and (b)g = 1=8.

pair correlation has very sharp peaks, while large variations
lead to a pair correlation which is blurred (lower contrast
between maxima and minima).

III. B LUE-NOISE HALFTONING

Blue-noise halftoning, labeled as and demonstrated
in Fig. 4, is characterized by a distribution of binary pixels
where the minority pixels are spread as homogeneously
as possible [12]. Distributing pixels in this manner cre-
ates a pattern which is aperiodic, isotropic, and does not
contain any low-frequency spectral components. The result
of halftoning a continuous-tone discrete-space monochrome
image with blue noise is a pattern which, as Ulichney [12]
describes, “is ‘pleasant’—it (blue noise) does not clash with
the structure of an image by adding one of its own, or
degrade it by being too ‘noisy’ or uncorrelated.”

A. Spectral Statistics

Blue noise, when applied to an image of constant gray
level , spreads the minority pixels of the resulting binary

image such that pixels are separated by an average distance

for
for

(9)

where is the minimum distance between addressable
points on the display [12], [15]. The parameter is
referred to as the principle wavelength of blue noise, with
its relationship to justified by several intuitive properties.

i) As the gray value approaches perfect white
or perfect black , the principle wavelength
approaches infinity.

ii) Wavelength decreases symmetrically with equal de-
viations from black and white toward middle gray

.
iii) The square of the wavelength is inversely propor-

tional to the number of minority pixels per unit
area.

Again we note that the distribution of minority pixels is
assumed to be stationary and isotropic.
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(a)

(b)

Fig. 9. Green-noise halftone of (a) a grayscale image and (b) a
grayscale ramp.

Turning to the spectral domain, the spectral characteris-
tics of blue noise in terms of are shown in Fig. 5 and
can be described by three unique features: 1) little or no low

Fig. 10. The spectral characteristics of a green-noise halftone
pattern in units of�2

g
= g(1 � g) with: (a) little or no low

frequency spectral components; (b) high-frequency spectral compo-
nents which diminish with increased clustering; and (c) a spectral
peak atf� = fg.

Fig. 11. The pair correlation for green noise showing: (a) pixel
clustering with cluster radiusrc; (b) decreasing influence asr
increases; and (c) the green-noise principle wavelength�g .

frequency spectral components; 2) a flat, high-frequency
(blue-noise) spectral region; and 3) a spectral peak at cutoff
frequency , the blue-noise principle frequency, such that

for
for

(10)

As will be the convention for this paper, the principle
frequency is indicated in Fig. 5 by a diamond located along
the horizontal axis. Also note that is plotted in units
of , the variance of an individual pixel in .

B. Spatial Statistics

In view of Fig. 5, we can begin to characterize blue-noise
halftones in terms of the pair correlation by noting
that:

1) few or no neighboring pixels lie within a radius of
;

2) for , the expected number of minority pixels
per unit area approacheswith increasing ;

3) the average number of minority pixels within the
radius increases sharply near .

The resulting pair correlation for blue noise is therefore
of the form in Fig. 6 where shows: 1) a strong
inhibition of minority pixels5 near ; 2) a decreasing
correlation of minority pixels with increasing; and 3)
a frequent occurrence of the interpoint distance, the
principle wavelength, indicated by a series of peaks at
integer multiples of . Similar to , the principle
wavelength is indicated in Fig. 6 with a diamond located
along the horizontal axis.

5Such processes are commonly referred to as hard-core, where no two
points of� are within some distancer of each other.
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Fig. 12. Error diffusion with hysteresis algorithm.

Fig. 13. An arrangement of two hystereses and two er-
ror-diffusion coefficients.

Fig. 14. Green-noise halftones of a grayscale ramp using two
hystereses and two error coefficients withH = 1 and a left-to-right
raster scan.

C. Error Diffusion

Although the original error-diffusion algorithm of Floyd
and Steinberg [16] does create blue-noise patterns, Ulichney
[12] shows that with some variations, error diffusion is
an improved generator of blue noise. These variations in-

(a)

(b)

Fig. 15. Green-noise halftones of a grayscale ramp using two
hystereses and two error coefficients with: (a)H = 1=2 and (b)
H = 1=2 with 50% random error filter weights.

clude using a serpentine scan, randomized weight positions,
and perturbed threshold. Another variation of particular
importance involves perturbing the filter weights instead
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(a) (b)

Fig. 16. Green-noise halftone statistics for: (a)g = 1=4 and (b)g = 1=2 using two hystereses
and two error coefficients withH = 1=2.

of the threshold. This perturbation of filter weights is
accomplished by first pairing weights of comparable value.
Then for each pair of weights, a scaled random value
is added to one and subtracted from the other. In order
to prevent negative values, the maximum noise amplitude
(100%) is the value of the smaller weight in each pair.

Using the Floyd–Steinberg filter weights (Fig. 7), Ulich-
ney shows that perturbing each of the two pairs (7/16, 5/16)
and (3/16,1/16) creates a good blue-noise process. In partic-
ular, adding 50% noise to each pair appears to optimize the
tradeoff between graininess and stable texture [12]. Fig. 8
shows the resulting spatial and spectral characteristics for

and using this scheme.

IV. GREEN-NOISE HALFTONING

Just as blue noise is the high-frequency component of
white noise, green noise, labeled as and demonstrated
in Fig. 9, is the mid-frequency component which, like blue,

benefits from aperiodic, uncorrelated structure without low-
frequency graininess, but unlike blue, green-noise patterns
exhibit clustering.6 The result is a frequency content which
lacks the high-frequency component characteristic of blue
noise. Hence the term “green.” Furthermore, green noise
forms aperiodic patterns that are not necessarily radially
symmetric. Since the contrast sensitivity function of the
human visual system is not radially symmetric, we allow
green noise to have asymmetric characteristics. The objec-
tive is to combine the maximum dispersion attributes of
blue noise with that of clustering of AM halftone patterns.

Point process statisticians have long described cluster
processes such as those seen in green noise by examining
the cluster process in terms of two separate processes: 1)

6The use of the word cluster refers to a collection of consecutive four-
neighborhood pixels all of the same value. The definition is the same as
that used in [17] for a clump of marked vertices in a square lattice.
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(a) (b)

Fig. 17. Green-noise halftone statistics for: (a)g = 1=4 and (b)g = 1=2 using two hystereses
and two error coefficients withH = 1=2 and 50% random error filter weights.

the parent process which describes the location of clusters7

and 2) the daughter process, which describes the shape
of clusters. In AM halftoning, clusters are placed along
a regular lattice, and therefore variations in AM patterns
occur in the cluster shape. In FM halftoning, cluster shape
is deterministic, i.e., a single pixel. It is the location of
clusters that is of interest in characterizing FM patterns.
Green-noise patterns, having variation in both cluster shape
and cluster location, require an analysis which looks at both
the parent and daughter processes.

Looking first at the parent process represents a
single sample of the parent process such that

where is the total number of clusters.
For the daughter process represents a single sample
cluster of such that where

is the number of minority pixels in cluster . By first
defining the translation or shift in space of a set

7The location being defined as the centroid of all points within the
cluster.

by , relative to the origin, as

(11)

and then defining as the th sample cluster for
, a sample of the green-noise halftone process

is defined as

(12)
the sum of translated clusters. The overall operation is
to replace each point of the parent sampleof process

with its own cluster of process .
In order to derive a relationship between the total number

of clusters, the size of clusters, and the gray level of a binary
dither pattern, is defined as the binary dither pattern
resulting from halftoning a continuous-tone discrete-space
monochrome image of constant gray level, and is
defined as the binary pixel of with pixel index . From
the definition of as the total number of points of
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in , is the scalar quantity representing the total
number of minority pixels in , and is the total
number of clusters in with . The intensity

being the expected number of minority pixels per unit
area now can be written as

for
for

(13)

the ratio of the total number of minority pixels in to
, the total number of pixels composing . Given

(13), , the average number of minority pixels per cluster
in is

(14)

the total number of minority pixels in divided by the
total number of clusters in .

A. Spectral Statistics

Although obvious, (14) shows the very important rela-
tionship between the total number of clusters, the average
size of clusters, and the intensity for. AM halftoning is
the limiting case where is held constant for varying

, while FM halftoning is the limiting case where is held
constant for varying . In addition, (14) says that the total
number of clusters per unit area is proportional to .
For isolated minority pixels (blue noise), the square of the
average separation between minority pixels () is inversely
proportional to , the average number of minority pixels per
unit area [12]. By determining the proportionality constant
using for , the relationship between
and is determined as .

In green noise, it is the minority pixel clusters which
are distributed as homogeneously as possible, leading to an
average separation (center-to-center) between clusters
whose squares are inversely proportional to the average
number of minority pixel clusters per unit area . Using
the fact that , the proportionality constant
can be determined such that is defined as

for
for

(15)

the green-noise principle wavelength. This implies that the
parent process is itself a blue-noise point process with
intensity .

Assuming that the variation in cluster size is small for
a given , this placement of clusters apart leads to a
strong spectral peak in at , the green-noise
principle frequency

for
for

(16)

From (16) we make several intuitive observations: 1) as
the average size of clusters increases,approaches DC
and 2) as the size of clusters decreases,approaches

. Fig. 10 illustrates the desired characteristics of
for showing three distinct features: 1) little or no low-

(a)

(b)

Fig. 18. Green-noise halftones of a grayscale ramp using two
hystereses and two error coefficients with: (a)H = 1 and (b)
H = 1 with 75% random hysteresis filter weights.

frequency spectral components; 2) high-frequency spectral
components which diminish with increased clustering; and
3) a spectral peak at .
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(a) (b)

Fig. 19. Green-noise halftone statistics for: (a)g = 1=4 and (b)g = 1=2 using two hystereses
and two error coefficients withH = 1.

The sharpness of the spectral peak in at the green-
noise principle frequency is affected by several factors.
Consider first blue noise, where the separation between
minority pixels should have some variation. The wave-
lengths of this variation, in blue noise, should not be
significantly longer than as this adds low-frequency
spectral components to the corresponding dither pattern
[12], causing to appear more white than blue. The same
holds true for green noise with large variations in cluster
separation leading to a spectral peak at which is
not sharp but blurred as the variation in separation adds
new spectral components to. This whitening effect on
is also created by increased variation in the size of clusters
with excessively large clusters leading to low-frequency
components and excessively small clusters leading to high-
frequency components. In summary, the sharpest spectral
peak at will be created when is composed of round

(isotropic) clusters whose variation in size is small and
whose separation between nearest clusters is also isotropic
with small variation.

B. Spatial Statistics

If we assume a stationary and isotropic green-noise
pattern, the pair correlation will have the form of Fig. 11
given the following:

1) daughter pixels, on average, will fall within a circle
of radius centered around a parent point such that

(the area of the circle with radius is equal
to the average number of pixels forming a cluster);

2) neighboring clusters are located at an average distance
of apart;

3) as increases, the influence that clusters have on
neighboring clusters decreases.

The result is a pair correlation which has: 1) a nonzero
component for due to clustering; 2) a decreasing
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(a) (b)

Fig. 20. Green-noise halftone statistics for: (a)g = 1=4 and (b)g = 1=2 using two hystereses
and two error coefficients withH = 1 and 75% random hysteresis filter weights.

influence as increases; and 3) peaks at integer multiples
of indicating the average separation of pixel clusters.
Note that the parameter is also indicated by a diamond
placed along the horizontal axis in Fig. 11.

In the case of stationary and anisotropic green-noise
patterns, the pair correlation will also be of the form of
Fig. 11, but because clusters are not radially symmetric,
blurring occurs in near the cluster radius . In a
similar fashion, because the separation between clusters will
also vary with direction, blurring will occur at each peak
in located at integer multiples of .

C. Error Diffusion w ith Hysteresis

Although error diffusion is a good generator of blue
noise, the nature of green noise to cluster pixels makes error
diffusion inappropriate. As an alternative, Levien [11] has
proposed error diffusion with output-dependent feedback
(Fig. 12) where a weighted sum of the previous output

pixels is used to vary the threshold—making minority pixels
more likely to occur in clusters. Furthermore, the amount
of clustering is controlled through the scalar constant,
the hysteresis constant, with large values of leading
to large clusters and small values of leading to small
clusters.

As mentioned previously, other techniques for creating
binary dither patterns with adjustable coarseness include
Velho’s and Gomes’ digital halftoning along SFC’s [9]
and Scheermesser’s and Bryngdahl’s digital halftoning with
texture control [10]. SFC is a technique where a two-
dimensional (2-D) image is halftoned using a 1-D clustered-
dot dithering approach which traverses the image along a
space filling curve such as the Peano, Hilbert, or Sierpinsky
curve. By manipulating the maximum number of pixels
that can form a cluster, the SFC technique can control the
amount of coarseness in resulting images, and unlike AM
halftoning where the maximum number of pixels that can
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form a cluster limits the number of gray levels that the
pattern can represent, SFC diffuses quantization error from
one cluster to the next. The result is a technique which
combines the benefits of aperiodic structure with those of
clustered dots.

Scheermesser’s and Bryngdahl’s technique attempts to
minimize the cost associated with a particular arrangement
of dots by iteratively turning pixels “on” and “off.” The
cost associated with a particular arrangement of dots is
determined by two factors. The first is an image met-
ric which measures the difference between the perceived
images of the binary halftone pattern and the continuous
tone original. The second cost is a numerical texture
metric which measures the relative orientation of minority
pixels. Scheermesser’s and Bryngdahl’s technique is able
to produce adjustable coarseness by adjusting the weight of
the cost of the texture metric versus the perceived image
metric.

There are, of course, many other algorithms which pro-
duce stochastic arrangements of minority pixel clusters
(green noise). The reason that this paper chooses to look at
Levien’s technique is because it is ideally suited, based so
much on Floyd’s and Steinberg’s original error-diffusion
algorithm [16], to present an evolution of the blue-noise
model originally described by Ulichney [12]—having, like
the green-noise model itself, blue noise as a limiting case

. Furthermore, as will be shown, error diffusion
with output-dependent feedback creates patterns which may
be described as “good” green-noise patterns, i.e., exhibiting
sharp peaks in both the spectral , and spatial
domains.

Mathematically, Levien’s algorithm is defined as follows:

(17)

(18)

(19)

where and are the hysteresis and error-diffusion
coefficients, respectively, such that .
In the following sections, we look at some variations to er-
ror diffusion with output-dependent feedback and compare
their results in terms of the spatial and spectral domain
metrics discussed previously. These variations include the
following.

1) Hysteresis constant.Of paramount importance, the
hysteresis constant controls the amount of clustering,
and therefore it influences greatly the green-noise
characteristics of resulting dither patterns. It is this
parameter that allows for tunable coarseness.

2) Choice of error/hysteresis filter. Within the context
of Levien’s definition of error diffusion with output-
dependent feedback, many choices exist for the error
filter, and coupled with the hysteresis filter, even more
possibilities can occur. For computational efficiency,
as small a filter as possible is always preferred.

(a)

(b)

Fig. 21. Green-noise halftones of a grayscale ramp using two
hystereses and two error coefficients with: (a)H = 3=2 and (b)
H = 3=2 with 50% random hysteresis filter weights.

3) Stochastic error/hysteresis filter perturbation. Intro-
duced by Ulichney [12] to improve the blue-noise
characteristics of error diffusion, random noise can be
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(a) (b)

Fig. 22. Green-noise halftone statistics for: (a)g = 1=4 and (b)g = 1=2 using two hystereses
and two error coefficients withH = 3=2.

added to the weights of both the error and hysteresis
filters. This same process is described in Section III-
C for error diffusion with four weights, and unlike the
previous two variations, the application of filter per-
turbation to either the error diffusion or the feedback
coefficients is new to Levien’s technique.

1) Two Hystereses and Two Error Weights:The scheme
originally proposed by Levien [11], which uses only
two hystereses and two error weights (Fig. 13), has
low computational complexity but coupled with a left-
to-right raster scan (Fig. 14) yields poor results due to
strong diagonal texture patterns, thereby making mandatory
alternate scanning paths such as the serpentine (left-to-right
then right-to-left) raster scan, which is used for this and
all other arrangements of filter weights. Note that in these
and the following figures, the binary dither patterns are
shown under ideal printing conditions unless otherwise
noted.

In addition to the serpentine raster scan, a small hysteresis
constant produces patterns for small which
are very similar to traditional blue noise [Fig. 15(a)], but as

increases and approaches , the amount of clustering
also increases, thereby shifting the spectral content from
blue to green (Fig. 16). This behavior is indicated by

for and where, for blue noise,
and , and for this arrangement of weights,
and (strictly less than ). Furthermore,

as seen in Fig. 15(b), adding a perturbation of 50% ran-
domness to the error filter weights breaks up many of
the directional artifacts, which creates patterns with re-
duced diagonal correlation and increased variation in cluster
size. Resulting patterns (Fig. 17), therefore begin to appear
noisy as the spectral peaks in at are
blurred. Also note that as a result of increased variation
in cluster size, the peaks and valleys of are also
blurred. This further indicates a dither pattern with spatial
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(a) (b)

Fig. 23. Green-noise halftone statistics for: (a)g = 1=4 and (b)g = 1=2 using two hystereses
and two error coefficients withH = 3=2 and 50% random hysteresis filter weights.

and spectral characteristics more similar to white-noise
halftones.

In contrast to a low hysteresis constant, Fig. 18 shows
the resulting patterns generated using a moderate hysteresis
constant . Specifically, in Fig. 18(a), patterns
exhibit clustering at all gray levels with a well-defined
boundary formed between clusters. As is exhibited in
Fig. 19 for where , this
clustering behavior is indicated by the sharp drop in
for and by the ripple formed in with
peaks occurring at integer multiples of .

Figs. 18(b) and 20 illustrate the whitening effect of
adding a perturbation of 75% randomness to the hysteresis
weights. For each instance of, an increased variation in
cluster size is clearly visible, most noticeably for

where clusters of 1, 2, and 3 pixels can be seen
throughout the pattern. Without perturbation at ,
clusters are commonly composed of two pixels with only
a few composed of one. Rarely do clusters of three pixels

occur without perturbation at this low gray level, but also
without this perturbation, patterns exhibit strong direction
artifacts—creating diagonal textures. The perturbation of
hysteresis weights breaks up many of these textures, espe-
cially near .

As a final demonstration of using two hystereses and two
error weights, Fig. 21 shows the resulting dither patterns
using a high hysteresis constant . Illustrated in
Fig. 22 for and , the variation in cluster size
has increased relative to and as clus-
ters are beginning to form long horizontal bars—creating
textures which are not diagonal but horizontal. Adding a
perturbation of 50% randomness to the hysteresis weights
[Fig. 21(b)] in this scheme breaks up many of these hori-
zontal artifacts—reducing for all gray levels but also
whitening the spectral content slightly (Fig. 23).

2) Four Hysteresis and 12 Error Weights:As an investi-
gation of the effects of different filter weights, Fig. 24
shows the combination of the Floyd–Steinberg weights

LAU et al.: GREEN-NOISE DIGITAL HALFTONING 2439



Fig. 24. An arrangement of four hysteresis and 12 error-diffusion
coefficients.

[16] as the hysteresis filter and the Stucki weights [18]
as the error filter. Using a small hysteresis constant

, Fig. 25(a) shows the resulting gray scale ramp which
exhibits a larger degree of clustering relative to using two
hystereses and two error weights with equivalent. Due
to very small variation in cluster size, this method leads to
patterns with very sharp spectral peaks in , as seen
in Fig. 26, but at , the clusters form a pattern with
very distinct horizontal artifacts.

Figure 25(b) shows the same combination of weights
but with an added perturbation of 30% randomness to
the hysteresis weights and 30% randomness to the error
weights. In this case, as seen in Fig. 27, many of the
horizontal artifacts are broken up, and at the same time
only a small amount of spectral whitening has occurred in
patterns for and .

For a comparison of the principle frequencies and average
cluster sizes for patterns generated using the described
variations, see the table of Fig. 28.

V. DOT GAIN

As stated in the introduction, dot gain is the increase
in size of the printed dot relative to the intended size, and
whether a function of the mechanical printing process or the
optical properties of paper, dot gain is present in all printing
processes. Therefore, it cannot be eliminated. Assuming
that the process is repeatable, dot gain can be anticipated
and controlled [7], but in printing processes which are not
repeatable [7], compensating for dot gain is a far more
difficult task. In these instances, it may be more desirable
to use a scheme which resists dot gain, thereby making
the printed output more robust to variations in the printing
process. An example where dot gain is anticipated and
therefore compensated for is Pappas’ and Neuhoff’s [19]
modified error-diffusion algorithm employing a circular
dot-overlap model which models printed dots as round dots
which overlap neighboring pixels, thereby causing printed
halftones to appear darker than the original fraction of ones.

Although for many printers the circular dot-overlap
model is invalid [20], it illustrates an important aspect
of dot gain with regards to digital halftoning. That being
the relationship between dot gain and the perimeter-to-area
ratio of printed dots with higher ratios leading to higher
average dot gain. In dispersed dot halftones (FM), this ratio
is much higher than that for clustered dot halftones, which
creates higher gain for dispersed dots [4]. It is for this

(a)

(b)

Fig. 25. Green-noise halftones of a grayscale ramp using four
hysteresis and 12 error coefficients with: (a)H = 1=2 and (b)
H = 1=2 with 30% random error filter weights and 30% random
hysteresis filter weights.

2440 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 12, DECEMBER 1998



(a) (b)

Fig. 26. Green-noise halftone statistics for: (a)g = 1=4 and (b)g = 1=2 using four hystereses
and 12 error coefficients withH = 1=2.

reason that green-noise halftoning which clusters pixels is
less susceptible to the effects of dot gain, and by varying
the size of clusters, resulting patterns can be optimized for
specific dot gain characteristics with large clusters reserved
for printing processes with high variation from printed
dot-to-printed dot and small clusters reserved for printing
processes with low variation.

Green noise offers a wide range of halftone renditions;
therefore, selecting the optimal hysteresis constant for error
diffusion with output-dependent feedback is an important
problem that must be addressed based on specific printer
traits. As a demonstration of the advantages of using
green noise instead of blue, Fig. 29 shows the resulting
images using the circular dot-overlap model where the
ratio of the diameter of a printed dot to the minimum
distance between samples is 10:6. Note that the blue-noise
image [Fig. 29(a)] appears much darker than the green-

noise image [Fig. 29(b)]. Also note that for blue noise,
isolated white pixels are nearly erased as neighboring black
dots almost completely overlap the white pixels.

VI. CONCLUSION

In addition to introducing green noise, this paper has
introduced the use of the two statistics for the analysis of
digital halftoning techniques: 1) the pair correlation and 2)
the directional distribution function. Being spatial-domain
statistics, both offer a more intuitive understanding of the
underlying point process compared to the conventional
spectral-domain statistics: the radially averaged power spec-
trum and the anisotropy. Also in this paper, we have
presented models in the spatial and spectral domain of both
blue-noise and green-noise dither patterns, and using such,
we have analyzed several variations to error-diffusion with
output-dependent feedback—remarking on the attributes of
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(a) (b)

Fig. 27. Green-noise halftone statistics for: (a)g = 1=4 and (b)g = 1=2 using four hystereses
and 12 error coefficients withH = 1=2 and 30% random error filter weights and 30% random
hysteresis filter weights.

each variation. In effect, we have demonstrated a wide
range of modifications that may be used to optimize a
green-noise processes for specific printer traits.

Fig. 30 shows a comparison of five major classes of
dither patterns: 1) white-noise; 2) blue-noise; 3) green-
noise; 4) dispersed ordered dither; and 5) clustered-dot
dither. Ulichney [12], who makes a similar comparison,
writes that blue noise is pleasant because it does not add
a structure of its own to an image as do dispersed-order
dither and clustered-dot dither, both being arranged to form
a regular pattern. Blue noise also does not look too “noisy”
or uncorrelated as does white noise.

Green noise, being a stochastic patterning of dots, also
does not add structure to an image as does dispersed-
ordered dither or clustered-dot dither. It also does not
appear noisy or uncorrelated as does white, but green

Fig. 28. Table showing the principle frequencyfg and the av-
erage number of pixels per cluster�M for several configurations
of error diffusion with output-dependent feedback employing a
serpentine raster scan.
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(a)

(b)

Fig. 29. The resulting images using: (a) blue noise and (b) green
noise using a circular dot-overlap model such that the ratio of
the diameter of a printed dot to the minimum distance between
samples is 10 : 6.

noise, being composed of pixel clusters, does increase
the visibility of the halftone pattern. Given ideal printing
conditions, blue noise is, therefore, the obvious choice for

(a)

(b)

(c)

(d)

(e)

Fig. 30. Sample halftone patterns of: (a) white-noise; (b)
blue-noise; (c) green-noise; (d) dispersed-dot ordered; and (e)
clustered-dot ordered dithering under (left) ideal printing conditions
and (right) with circular dot-overlap model.

reproducing continuous tone images due to the increased
spatial resolution which it achieves, but when printing
conditions are not ideal, printing distortions such as dot-
gain make clustered-dithering techniques such as green
noise preferable to blue.

In closing, we add that the impact of blue noise on digital
halftoning has been wide spread and has triggered many
advancements. In particular, the blue-noise mask [21] has
greatly decreased the computational complexity of dithering
with blue noise. Equivalent developments can be made for
green noise, as is noted in [22] for the green-noise mask.
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