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Digital halftoning by means of green-noise masks
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We introduce a novel technique for generating green-noise halftones—stochastic dither patterns composed of
homogeneously distributed pixel clusters. Although techniques employing error diffusion have been proposed
previously, the technique here employs a dither array referred to as a green-noise mask, which greatly reduces
the computational complexity formerly associated with green noise. Compared with those generated with
blue-noise masks, halftones generated with green-noise masks are less susceptible to printer distortions. Be-
cause green noise constitutes patterns with widely varying cluster sizes and shapes, the technique introduced
here for constructing these green-noise masks is tunable; that is, it allows for specific printer traits, with small
clusters reserved for printers with low distortion and large clusters reserved for printers with high distortion.
Given that blue noise is a limiting case of green noise, this new technique can even create blue-noise masks.
© 1999 Optical Society of America [S0740-3232(99)01807-4]
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1. INTRODUCTION
Digital halftoning is the technique employed to convert
images from continuous tone to binary. Desktop printers
such as laser and ink-jet, as well as commercial plano-
graphic and screen presses capable of only binary output,
rely on digital halftoning to produce the illusion of con-
tinuous tone. Before the advent of digital image setters,
halftoning was done by using analog photomechanical
screening methods, which were later imitated digitally
through clustered-dot dithering.1 Commonly referred to
as amplitude-modulated (AM) halftoning, clustered-dot
dithering produces the illusion of continuous tone by
varying the size of round dots, which are printed along a
regular lattice.

Widely-used today, AM halftoning suffers from several
major drawbacks. The first is moiré, the interference
pattern created by superimposing two or more regular
patterns. Moiré occurs in the printing of color images,
which requires superimposing cyan, magenta, yellow, and
black screens. Minimizing the effects of moiré requires
special care to properly offset the orientation of each
screen—creating a desirable circular pattern called a ro-
sette. The second drawback of AM halftoning is spatial
resolution. By clustering the smallest indivisible printed
dots (pixels) into larger macrodots, AM halftoning, in
many cases, achieves a far lower spatial resolution in
printed images than the resolution of the printer itself.

In 1976 Floyd and Steinberg2 introduced error diffu-
sion, which is today the foundation of frequency-
modulated (FM) halftoning. In FM halftoning, the illu-
sion of continuous tone is achieved by varying the
distance between printed dots, which are themselves held
constant in size. Because the arrangement is a random
pattern of dots, FM halftoning is commonly referred to as
stochastic screening.

FM halftoning offers several advantages over AM half-
toning. The first is that when printed dots are arranged
in a random fashion, superimposing two or more patterns
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does not create moiré—eliminating the need for screen
angles.3 The second advantage is spatial resolution. By
not forming macrodots, FM halftoning maximizes the spa-
tial resolution of printed images relative to the resolution
of the printer. Figure 1 makes the comparison between
AM (top left) and FM (top right) halftoning for a
continuous-tone image, illustrating the superiority of FM
halftoning.

The technique itself, error diffusion, also poses several
advantages over alternative FM techniques, such as Bay-
er’s dither,4 which creates patterns with ‘‘strong periodic
structure that imparts an unnatural appearance to re-
sulting images’’ (Ref. 5, p. 322). Instead, error diffusion,
by diffusing the quantization error to neighboring pixels,
is able to reproduce images with greater fidelity.3 In his
landmark paper on error diffusion, Ulichney6 shows that
the patterns produced by error diffusion closely approxi-
mate blue noise (the high-frequency component of white
noise), with stochastic patterns having a power spectrum
that closely approximates blue noise visually more pleas-
ing than patterns that do not.

The drawback of error diffusion, though, is its high
computational complexity, which requires both processing
and storage of neighboring pixels. Ordered dither tech-
niques such as clustered-dot and Bayer’s dither are
simple and require minimal processing,5 but again, these
techniques suffer from low spatial resolution and strong
periodic structure. To overcome these limitations, Mitsa
and Parker7 introduced the blue-noise mask, a dither ar-
ray designed to generate halftone patterns that closely
approximate blue noise. As a demonstration, Fig. 1
(middle left) also shows the resulting image halftoned by
using a blue-noise dither array. Since its introduction,
halftoning with the use of blue-noise dither arrays has be-
come the preferred stochastic halftoning technique in
printers that reliably reproduce individual pixels.

In printers that do not reproduce pixels reliably, FM
halftoning suffers its major drawback: FM halftones are
more susceptible than AM halftones to printer distortions
1999 Optical Society of America
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Fig. 1. Binary tomato image generated by using (top left) clustered-dot dithering, (top right) error diffusion, (middle left) a blue-noise
dither array, (middle right) error diffusion with printer distortion, (bottom left) error diffusion with output-dependent feedback with
printer distortion, and (bottom right) a green-noise mask with printer distortion.
such as dot gain, the increase in size of a printed dot from
its intended size. Dot gain, in the printing of black on
white, can cause isolated white pixels to fill, or plug,8 with
ink; furthermore, by creating patterns that are darker
than the original ratio of white pixels to black pixels, dot
gain can cause a shift in color.3 When the printing pro-
cess is repeatable, these distortions can be anticipated,
but in instances such as screen printing, where the pro-
cess is not repeatable,9 compensating for printer distor-
tions is a far more difficult task. In these instances
methods that resist printer distortions and are more ro-
bust to variations in the printing process are desirable.10

The major relationship between halftone patterns and
the amount of dot gain seems to be the perimeter-to-area
ratio of printed dots. That is, the halftone screen having
the greatest perimeter-to-area ratio of printed dots will be
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far more susceptible to the distortions caused by dot
gain.8 FM halftoning, having a much higher ratio than
AM halftoning, is, therefore, more susceptible. For this
reason many printers and commercial presses still rely on
AM techniques.

Recently, several variations of error diffusion have
been introduced, such as those using space-filling
curves11 or output-dependent feedback.12 These tech-
niques do not produce a homogeneous arrangement of iso-
lated pixels as suggested by blue noise but, instead, form
pixel clusters that are themselves spaced homogeneously
throughout a dither pattern. In their paper10 Lau et al.
describe these patterns as green noise (the mid-frequency
component of white noise). Still a stochastic patterning
of dots, green noise enjoys the same advantages as those
of blue noise with respect to moiré, but by allowing ad-
justable coarseness, the resulting screens offer a tunable
halftoning technique that can be optimized for specific
printer characteristics such that patterns are composed of
large clusters in printers with high dot gain and small
clusters in printers with low dot gain. The objective of
using green noise is to capture the maximum-dispersion
attributes of blue noise along with the attributes of clus-
tering associated with AM halftoning. Figure 1 shows
the resulting images for printing in the presence of dis-
tortion, where a black dot is modeled as a round dot with
a diameter 10:6 times greater than the minimum distance
between sample points, with the use of (middle right) er-
ror diffusion and (bottom left) error diffusion with output-
dependent feedback, as described by Ref. 12.

The drawback of these variations is again the high
computational complexity associated with error diffusion,
which requires both processing and storage of neighbor-
ing pixels. In this paper we introduce the concept of half-
toning by using green-noise masks, dither arrays de-
signed to generate halftone screens that closely
approximate green noise. While earlier attempts at
green-noise dither arrays have been made,13–16 this is the
first to directly address the desirable characteristics of
the green-noise model as presented by Lau et al.10 What
the new dither arrays being introduced here offer is a
technique for generating halftone patterns that can be
tuned to specific printer characteristics with minimal
computational complexity; furthermore, patterns gener-
ated with the green-noise mask need not be radially sym-
metric. As suggested by the model of the human visual
system,17 diagonal correlations are less objectionable to
the human viewer, and although blue-noise masks have
been designed to have increased diagonal correlation,18

green-noise patterns typically have significantly higher
anisotropic attributes.

In essence, green-noise masks offer far more control of
the spatial arrangement of dots than the static blue-noise
model—allowing for tunable dot size and dot shape. This
paper, along with introducing the concept of green-noise
masks, also introduces a technique for their construction.
Unlike the blue-noise mask, which is constructed based
on spectral domain statistics, the green-noise mask con-
struction algorithm relies on spatial statistics.19–21 Fig-
ure 1 shows the resulting images for printing in the pres-
ence of distortion with the use of (bottom right) a green-
noise mask.
2. SPECTRAL ANALYSIS OF HALFTONES
Discussed in detail by Ulichney,6 the term ‘‘blue’’ denotes
the high-frequency component of the visible-light spec-
trum that makes up white light. To measure the spec-
tral content of these blue-noise dither patterns, Ulichney
first defines Ig as a binary dither pattern generated by
halftoning a continuous-tone monochrome image of con-
stant gray level g. An estimate P̂( f ) of the spectral con-
tent of Ig is then generated through Bartlett’s method of
averaging periodograms, the squared magnitude of the
Fourier transform of the output pattern divided by the
sample size. In this paper P̂( f ) is generated by averag-
ing ten periodograms of size 256 3 256.

Given P̂( f ), Ulichney then defines two one-
dimensional statistics as a means of quantitatively mea-
suring the spectral content of Ig . The first metric is the
radially averaged power spectrum density (RAPSD), de-
fined as

P~ fr! 5
1

N(R~ fr!) (
fPR~ fr!

P̂~ f !, (1)

the average power in a series of annular rings R( fr), as
shown in Fig. 2, which partition the spectral domain such
that each ring has center radius fr and radial width Dr

and is composed of N(R( fr)) frequency samples. The
second statistic is the anisotropy A( fr), defined as

A~ fr! 5
1

N(R~ fr!) 2 1 (
fPN(R~ fr!)

@P̂~ f ! 2 P~ fr!#2

@P~ fr!#2 ,

(2)

the relative variance or the noise-to-signal ratio of
samples within the annular ring of center radius fr .
A( fr) is a measure of how isotropic a dither pattern is,
with low A( fr) indicating an isotropic dither pattern and
high A( fr) being the result of directional artifacts in Ig .

A. Spectral Statistics of Blue Noise
In blue-noise halftoning, the spatial arrangement of pix-
els is such that minority pixels are spread as homoge-
neously as possible—leading to an isotropic arrangement
in which minority pixels are separated by an average dis-
tance of lb . The parameter lb is referred to as the prin-
cipal wavelength of blue noise, and given that the square
of this wavelength is inversely proportional to the gray
level (1 5 white, 0 5 black), lb follows the relationship

Fig. 2. With the spectral domain partitioned into a series of an-
nular rings, the power spectrum P( f ) can be studied by using
P( fr ) and A( fr ).
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lb 5 H D/Ag for 0 , g < 1/2

D/A1 2 g for 1/2 , g < 1
, (3)

where D is the minimum distance between addressable
points on the display. Ulichney6 notes that this separa-
tion should vary in an uncorrelated manner and that the
wavelengths of this variation should not be significantly
larger than lb . If variations are allowed to be signifi-
cantly larger, the dither pattern may appear too white
relative to the optimal blue-noise pattern.

With respect to the spectral content of blue noise, the
optimal blue-noise dither pattern will have a P( fr) as
shown in Fig. 3 (top) with (a) a minimal low-frequency
content, (b) a flat blue-noise region, and (c) a spectral
peak at cutoff frequency fr 5 fb , the principal frequency
of blue noise for gray level g such that

fb 5 HAg/D for 0 , g < 1/2

A1 2 g/D for 1/2 , g < 1
. (4)

(In this and other figures below, a small diamond placed
along the horizontal axis represents principal frequencies
and wavelengths.) Being isotropic, the optimal blue-
noise pattern will also have minimal A( fr), since, as
Ulichney writes (paraphrased), an important property of
visually pleasing dither patterns is isotropy: directional
artifacts are perceptually disturbing (Ref. 6, p. 58).

B. Spectral Statistics of Green Noise
In green-noise halftoning, the spatial arrangement of pix-
els is such that minority pixels form clusters that are
themselves spread as homogeneously as possible—
leading to an arrangement in which clusters are sepa-
rated (center to center) by an average distance of lg .10

The parameter lg is the principal wavelength of green
noise, and given that the square of this wavelength is in-
versely proportional to the gray level divided by M̄, the
average number of pixels per cluster, lg is such that

lg 5 H D/Ag/M̄ for 0 , g < 1/2

D/A~1 2 g !/M̄ for 1/2 , g < 1
. (5)

Lau et al.10 note that in green noise the cluster size/shape
greatly influences the separation between clusters, with
large variation in cluster size/shape leading to large
variations in separation between clusters. Just as with

Fig. 3. Spectral characteristics of (top) a blue-noise halftone
pattern and (bottom) a green-noise halftone pattern.
blue noise, variations significantly longer than lg lead to
a dither pattern that may appear too white relative to the
optimal green-noise pattern.

The spectral content of green-noise patterns is such
that the optimal green-noise pattern has a P( fr) of the
form of Fig. 3 (bottom), showing (a) a minimal low-
frequency content, (b) a minimal high-frequency content,
and (c) a spectral peak at radial frequency fr 5 fg , the
principal frequency of green noise for gray level g such
that

fg 5 HAg/M̄/D for 0 , g < 1/2

A~1 2 g !/M̄/D for 1/2 , g < 1
. (6)

Thus, for a given gray level g, the green-noise and blue-
noise principal frequencies are different. Just as with
lg , cluster size/shape greatly influences isotropy, with
nonisotropic cluster shape leading to nonisotropic lg , but
unlike for blue noise, isotropy is not a prerequisite of vi-
sually pleasing green-noise patterns. Typically, green-
noise patterns have a A( fr) significantly higher than that
of a blue-noise pattern with equivalent g.

3. SPATIAL ANALYSIS OF HALFTONES
Based on radial averages, P( fr) and A( fr) are invariant
to rotation. That is, it is possible for two patterns, one
with diagonal correlations and one with horizontal corre-
lations, to have identical P( fr) and A( fr). According to
the model of the human visual system proposed by Sulli-
van et al.,17 the pattern with diagonal correlations will
appear less objectionable to a human viewer; further-
more, the model suggests that isotropy may not be a re-
quirement of visually pleasing patterns. Green-noise
patterns are such an instance where a visually pleasing
dither pattern need not be isotropic. So, as a supplement
to the spectral analysis proposed by Ulichney, Lau et al.10

propose using the spatial analysis of point processes com-
monly associated with stochastic geometry, the area in-
terested in modeling complicated geometrical patterns.

In this framework an aperiodic halftoning process is
defined as a stochastic model F governing the location of
events, or points xi , within the space R2. As a sample of
F, f is written as f 5 $xi , i 5 1,..., N%, with f(B), a sca-
lar quantity, defined as the number of xi’s in the subset B
of R2. In digital halftoning, f represents a binary dither
pattern, with f(x) 5 1 indicating that the pixel at
sample x is a minority pixel (pixel x is 1 for 0 < g , 1/2
and 0 for 1/2 < g < 1) and f(x) 5 0 indicating that the
pixel at sample x is not.

As a scalar quantity, the first-order moment or the ex-
pected value of f(x) is the intensity I (x), which is the
unconditional probability that sample x is a minority
pixel. For a binary pattern representing gray level g,
I (x) 5 g for 0 < g , 1/2 and 1 2 g for 1/2 < g < 1. A
second statistic for characterizing F is the quantity
K (x; y), defined as

K ~x; y ! 5
E$f~x !u y P f%

E$f~x !%
, (7)

the ratio of the conditional expectation that sample x is a
minority pixel given that sample y is a minority pixel to
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the unconditional expectation that sample x is a minority
pixel. Referred to as the reduced second-moment mea-
sure, K (x; y) is a measure of the influence that a minor-
ity pixel at sample y has on pixel x. K (x; y) . 1 indi-
cates that sample x is more likely to be a minority pixel
given y, and K (x; y) , 1 indicates that sample x is less
likely given y.

For a stationary point process F, K (x; y) 5 K (r, u),
where r is the distance between samples x and y and u is
the direction from y to x. For stationary point processes
that have statistical properties invariant to rotation (iso-
tropic), K (r, u) is independent of u and is commonly re-
ferred to as the pair correlation R (r), which is defined ex-
plicitly as

R ~r ! 5
E$f(Ry~r !)u y P f%

E$f(Ry~r !)%
, (8)

the ratio of the expected number of minority pixels lo-
cated in the ring Ry(r) 5 $x: r , ux 2 yu < r 1 dr% [Fig.
4(a)] under the condition that a minority pixel exists at
sample y to the unconditional expected number of minor-
ity pixels located in the set Ry(r). Like P( fr), R (r) of-
fers a one-dimensional measure of a two-dimensional
quantity, but being invariant to rotation, R (r) offers no
information on the isotropy of F.

Fig. 4. (a) With the spatial domain divided into a series of an-
nular rings centered on location y, the spatial arrangement of
points can be studied through the use of R (r); (b) from the ex-
pected number of points per unit area in the segment Gy

a versus
that in the ring Gy , the spatial arrangement can be studied by
using Dr1 ,r2

(a).

Fig. 5. Pair correlation for (top) a blue-noise process and (bot-
tom) a green-noise process.
To address the need for a spatial measure of isotropy,
Lau et al.10 propose Dr1 ,r2

(a), the directional distribution
function, which is defined as

Dr1 ,r2
~a ! 5

E$f~ Gy
a!u y P f%/N~ Gy

a!

E$f~ Gy!u y P f%/N~ Gy!
, (9)

the expected number of minority pixels per unit area in a
segment Gy

a of the ring Gy 5 $x: r1 < ux 2 yu , r2 , y
P f%, centered on the minority pixel located at point y
such that a < /(x 2 y) , a 1 Da , to the expected num-
ber of minority pixels per unit area in Gy itself [Fig. 4(b)].
Similar to the case of R (r), values of Dr1 ,r2

(a) less than 1
indicate an inhibition of minority pixels in the direction of
a for pixels separated by a distance greater than r1 and
less than r2 . Likewise, Dr1 ,r2

(a) greater than 1 suggests
an increased likelihood of the direction a between minor-
ity pixels. For isotropic dither patterns, Dr1 ,r2

(a) 5 1
for all a.

Fig. 6. Resulting metrics for dither patterns generated with the
use of error diffusion representing gray level g 5 3/4 for (top left)
blue noise, (top right) green noise with small clusters, (bottom
left) green noise with medium clusters, and (bottom right) green
noise with large clusters.
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A. Spatial Statistics of Blue Noise
Given the goal of blue noise to space minority pixels as
homogeneously as possible, the pair correlation of the
ideal blue-noise dither pattern is of the form of Fig. 5
(top), showing (a) a strong inhibition of points near r
5 0, (b) a decreasing correlation of minority pixels with
increasing r, and (c) a frequent occurrence of the inter-
point distance lb , the principal wavelength of blue noise,
as illustrated by a series of peaks at integer multiples of
lb .

Figure 6 (top left) shows the resulting metrics of a blue-
noise halftone pattern for g 5 3/4 generated by error dif-
fusion. Note that P( fr) is shown in units of s 2 5 g(1
2 g) and that A( fr) is shown in units of decibels, with
210 dB considered background noise.6 The pair correla-
tion is taken with Dr 5 D/2, and the directional distribu-
tion function is calculated for da 5 2p/16, with the range
(r1 , r2# indicated by color according to the bar located
across the horizontal axis of the pair correlation (P.C.)
plot.

B. Spatial Statistics of Green Noise
In contrast to blue noise, green noise has a pair correla-
tion of the form of Fig. 5 (bottom), showing (a) clustering
of points for r < rc , the cluster radius, (b) a decreasing
correlation of minority pixels with increasing r, and (c) a
frequent occurrence of the intercluster distance lg , the
principal wavelength of green noise. The parameter rc ,
the cluster radius, is related to the average number of mi-
nority pixels per cluster as

prc
2 5 M̄. (10)

Equation (10) states that the area enclosed by a circle of
radius rc is equivalent to the area covered by a cluster of

size M̄ pixels. Figure 6 shows the resulting metrics for
several green-noise halftone patterns with g 5 3/4 gener-
ated by error diffusion with output-dependent feedback,
with Fig. 6 (top right) having the smallest clusters, with
an average size of 2.2 pixels, and Fig. 6 (bottom right)
having the largest, with an average size of 7.5 pixels.

4. BINARY PATTERN PAIR CORRELATION
CONSTRUCTION ALGORITHM
In their paper Mitsa and Parker7 introduced halftoning
by means of the blue-noise mask, where a binary image is
generated by comparing on a pixel-by-pixel basis a
continuous-tone monochrome image with a dither array
or a mask. A pixel of the resulting binary image is set to
1 if the continuous-tone image is greater than the dither
array; otherwise, the pixel is set to 0. The blue-noise
mask derives its name from the fact that given a
continuous-tone monochrome image of constant gray
level, the resulting dither pattern has spatial and spectral
statistics that approximate blue noise.

To generate this blue-noise mask, Mitsa and Parker in-
troduced the algorithm referred to as the binary pattern
power spectrum manipulation algorithm (BIPPSMA),
which takes a white-noise dither pattern and iteratively
swaps pixels according to the pattern’s spectral content.
Minimizing the low-frequency content, BIPPSMA at-
tempts to generate the optimal blue-noise pattern; fur-
thermore, because BIPPSMA limits which pixels can be
swapped, subsequent dither patterns can be generated
from old patterns until finally all gray levels from 0 to 1
are represented within the mask.

In this paper we introduce an iterative procedure called
the binary pattern pair correlation construction algorithm
(BIPPCCA). Its basic premise is to construct binary
dither patterns with arbitrary reduced second-moment
measures and a given intensity by randomly converting
pixels of an arbitrarily sized array from a majority (0) to a
minority (1) value. Progressively building on the previ-
ous iteration, BIPPCCA begins with an M 3 N all-zero
array f, with one pixel selected at random and converted
to a minority pixel. Given the dither pattern f with mi-
nority pixels $xi , i 5 1, 2,...%, BIPPCCA assigns a prob-
ability of becoming a minority pixel to each majority pixel
in f. BIPPCCA then replaces the maximum likely ma-
jority pixel (the majority pixel with the highest corre-
sponding probability) with a minority pixel. The process
is then repeated until the dither pattern f of size
M 3 N has I 3 M 3 N minority pixels, where I 5 g for
0 < g < 1/2 or I 5 1 2 g for 1/2 , g < 1.

BIPPCCA is able to construct f such that the resulting
dither pattern has a desired reduced second-moment
measure by adjusting the probabilities of majority pixels
being converted to minority pixels at each iteration ac-
cording to the current set of minority pixels in f and
K̃(r, u), the reduced second-moment measure shaping
function. K̃ (r, u) is a user-specified function derived
from K (r, u), with values of K̃ (r, u) . 1 increasing the
likelihood of minority pixels being placed a distance r and
a direction u apart and values of K̃ (r, u) , 1 decreasing
this likelihood. Recall from Section 3 that K (r, u) . 1
indicates that given a minority pixel at location y, all
samples x for which uy 2 xu 5 r and /(x 2 y) 5 u are
more likely to be a minority pixel than any point z for
which K (z 2 y) , K (r, u). So given that a minority
pixel is placed at y, BIPPCCA increases the likelihood of a
pixel becoming 1 for all pixels x for which K̃ (r, u) . 1. It
also decreases this likelihood for all z for which K̃ (z
2 y) , 1.

The function K̃ (r, u) is referred to as the spatial shap-
ing function because of its influence in shaping the re-
duced second-moment measure of the resulting output.
To be used in this paper for K̃ (r, u), in Fig. 7 a simple ap-
proximation is shown of the ideal pair correlation for iso-
tropic green noise with peaks at all integer multiples of
lg , the principal wavelength of green noise as defined in
Eq. (5), and valleys midway between peaks. We note

Fig. 7. Isotropic shaping function K̃ (r) used to construct green-
noise dither patterns in BIPPCCA.
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that although more elaborate K̃ (r, u) could be proposed,
this model was selected because of its simple structure.
In simulations 1.01 proved to be a good value as the maxi-
mum amplitude (labeled G in Fig. 7) for K̃ (r, u).

In addition to K̃ (r, u), the probabilities of majority pix-
els being converted are also influenced at each iteration
by the current concentration of minority pixels in f
through C, the concentration array. C ensures homoge-
neity in f by decreasing the probabilities of becoming a
minority pixel for majority pixels in areas of dense
minority-pixel concentration and increasing the probabili-
ties for majority pixels in areas of sparse minority-pixel
concentration.

In BIPPCCA the concentration of minority pixels is
measured as the output after the low-pass filter HLP is ap-
plied to f. In the selection of a low-pass filter, an obvious
choice for HLP as suggested in Ref. 5 is the Gaussian filter
such that

HLP~r ! 5 expS 2r2

2s 2D (11)

for some constant s. Note that for a minority pixel to
have an influence on neighboring clusters, the filter HLP
should have a higher s for small I, where clusters are far
apart, than for large I, where clusters are close together.
In this paper such a relationship between HLP and I is en-
sured by setting 2s 2 5 lg

2. The concentration matrix is
then constructed from $HLP ^ f%, the output after f is fil-
tered with the low-pass filter HLP by using circular con-
volution, according to the mapping of Fig. 8.

The steps of BIPPCCA for generating an M 3 N binary
dither pattern representing intensity level I are described
as follows:

1. Initialize all pixels of an M 3 N array f to 0.
2. Randomly select one pixel of f, and convert that

pixel, f@m,n#, to 1.
3. Create an M 3 N array U of uniformly distributed

random numbers such that U@i, j# P (0, 1# is the prob-
ability that f@i, j# will become a minority pixel.

4. Given the most recently converted pixel f@m, n#,
scale the value U@i, j# for all pixels f@i, j# 5 0 by

K̃ (r, u) such that (U@i, j#)new 5 (U@i, j#)old 3 K̃ (r, u),
where r2 5 @min(um 2 iu, M 2 um 2 iu)#2 1 @min(un 2 ju, N

Fig. 8. Mapping function used to construct the concentration
matrix C from the output after f is filtered with the low-pass fil-
ter HLP by using circular convolution.
2 un 2 ju)#2 (the minimum wraparound distance between
the two pixels f@m,n# and f@i, j#) and u is the direction
from f@m, n# to f@i, j#.

5. Construct the concentration matrix C with use of
the mapping of Fig. 8 from $HLP ^ f%, the output after f
is filtered with the low-pass filter HLP by using circular
convolution.

6. Locate the majority pixel in f with the highest
probability (the pixel f@m, n# 5 0 such that U@m, n#
3 C@m, n# . U@i, j# 3 C@i, j# for all 1 < i < M and
1 < j < N and that f@i, j# 5 0), and set that pixel,
f@m, n#, to 1.

7. If the number of minority pixels in f is equal to I
3 M 3 N, then the algorithm quits with the output pat-
tern given by f; otherwise, continue at step 4.

As demonstration, Fig. 9 shows the resulting output pat-
terns and corresponding metrics after the use of BIP-
PCCA with the isotropic shaping function of Fig. 7, with
Fig. 9 (top left) having the smallest clusters, with an av-

Fig. 9. Resulting metrics for dither patterns generated with the
use of BIPPCCA representing gray level g 5 3/4 with average
cluster sizes of (top left) 2.0 pixels, (top right) 3.9 pixels, (bottom
left) 6.0 pixels, and (bottom right) 7.9 pixels.
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Fig. 10. Continues on facing page.
erage size of 2.0 pixels, and Fig. 9 (bottom right) having
the largest, with an average size of 7.9 pixels.

The above algorithm, BIPPCCA, shares some similari-
ties with the previously introduced BIPPSMA. One simi-
larity is the two-dimensional wraparound property de-
scribed by Ulichney5; that is, minority pixels placed near
an edge of the dither array influence the placement of pix-
els near the opposing edge. This property allows the out-
put dither pattern to be tiled edge to edge to form larger
images that appear aperiodic; furthermore, the algo-
rithms are not limited to specific array sizes, thereby al-
lowing for arbitrary dimensions.

5. CONSTRUCTING THE GREEN-NOISE
MASK
In this section we describe an algorithm for constructing
green-noise masks, dither arrays that, when thresholded
at gray level g, produce binary green-noise dither pat-
terns appropriate to g. Constructed with the use of BIP-
PCCA, these masks can be of any size, where large im-
ages are halftoned by using new masks formed by tiling
edge to edge the original dither array. The basic premise
of their construction is to generate a set $fg , 0 < g < 1%
of dither patterns by using BIPPCCA from a set
$K̃ (r, u; g), 0 < g < 1% of shaping functions, with one
pattern and one shaping function for each possible dis-
crete gray level g (256 levels for 8-bit gray-scale images).
The dither array is then constructed by assigning to each
pixel a threshold according to the spatial arrangement of
binary pixels within $fg , 0 < g < 1%. Note that because
BIPPCCA generates patterns such that minority pixels
are represented by pixels equal to 1, the dither pattern fg

for 1/2 , g < 1 is generated by inverting the dither pat-
tern created by BIPPCCA for gray level 1 2 g.
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Fig. 10. (a)–(c) Masks generated by BIPPCCA having cluster sizes that increase symmetrically with equal deviations from black and
white toward middle gray, (d) mask generated by BIPPCCA with nonsymmetric deviations with larger clusters for g , 1/2.
To avoid ambiguities in the assignment of thresholds to
the dither array, the dither patterns fg are constructed
under the stacking constraint that fk , fg for all k , g
or that if given fk@m, n# 5 1, then fg@m, n# 5 1 for all
g . k. As a consequence, the threshold assigned to each
dither array pixel DA@m, n# is equal to the minimum g
for which fg@m, n# 5 1. In BIPPCCA a dither pattern
fk can be constructed, given fg such that fk , fg , by
constraining step 6 of BIPPCCA to consider only the most
likely pixel (in fk) as the majority pixel fk@m, n#, such
that fg@m, n# is a minority pixel (51); furthermore, a
dither pattern fg can be constructed, given fk such that
fk , fg , if, in step 1, fg is initialized to fk and each
value U@m, n# is scaled according to the location of mi-
nority pixels in fg as defined by K̃ (r, u). In addition to
the above modifications to BIPPCCA, the shaping func-
tion K̃ (r, u) must also observe the stacking constraint, as
minority-pixel clusters in pattern fg cannot decrease in
size from those in fk .

Note that the patterns forming the set $fg , 0 < g
< 1% need not be generated in any particular order and
that generating patterns in a random order may offer bet-
ter results than those obtained by constructing fg by con-
secutive gray levels. Under the stacking constraint, a
pattern fg is constrained to be a subset of all patterns fh
for which h . g and is constrained to have as a subset
the pattern fk , where k , g. So the ordering in which
patterns are generated defines which patterns fg has con-
straining its construction. As an example of this, Mitsa
and Parker7 construct the blue-noise mask beginning
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with gray level 1/2, with all subsequent patterns fg for
g , 1/2 independent of all fg for g . 1/2. In this paper
masks are generated by first constructing the patterns for
gray levels 0, 1, 1/4, 3/4, and 1/2 in succession. The next
patterns to be constructed have gray levels that fall mid-
way between these constructed patterns. This routine is
continued, with the current set of constructed patterns
falling midway between the existing set until 256 unique
patterns have been constructed.

Without loss of generality, the steps for creating a
green-noise mask described here assume that images are
composed of a discrete set of N gray levels defined by the
monotonically increasing sequence $ gi , i 5 1, 2,..., N%,
with g1 5 0 (black) and gn 5 1 (white). The following
list describes the steps for generating the set $fg , 0
< g < 1%:

1. Given g1 5 0 and gN 5 1, define fg1
as an all-zero

matrix and fgN
as an all-unity matrix.

2. Define the sequence $ gki
, i 5 1, 2,..., N% as a rear-

rangement or a reordering of the sequence $gi , i
5 1, 2,..., N% such that every gray level gi appears once
and only once in the sequence $ gki

, i 5 1,2,..., N%, with
gk1

5 0 and gk2
5 1 (k1 5 1 and k2 5 N).

Fig. 11. Principal wavelengths for masks (a)–(d), with the blue-
noise principal wavelength indicated by a dotted curve.
3. Set j 5 3.
4. Construct the dither pattern fgkj

under the stack-

ing constraint for all patterns fgki
for i 5 1, 2,..., j 2 1

( for all patterns that have been generated up to the cur-
rent iteration).

5. Set j 5 j 1 1. If j 5 N 1 1, the process is com-
plete; otherwise, continue at step 4.

Figure 10 shows four masks of size 150 3 150 created by
using the above algorithm for 8-bit gray-scale images (N
5 256). These masks, labeled (a)–(d), were each de-
signed according to their own isotropic shaping function
sets $K̃ (r; g), 0 < g < 1%, with each shaping function
K̃ (r; g) defined by Fig. 7 and by the plots of lg versus
gray level in Fig. 11. Table 1 lists the average size of
clusters, the principal wavelength, and the principle fre-
quency for each mask at several values of g.

For masks (a)–(c), the average size of clusters [related
to lg by Eq. (5)] were chosen such that M̄( g), the average
size of clusters for gray level g, equals M̄(1 2 g). Spe-
cifically, mask (a) was designed for printers with low dot-
gain characteristics as clusters range in size from 1.3 to
4.1 pixels. Masks (b) and (c) were designed for printers
with medium to high dot-gain characteristics as clusters
range in size from 2.5 to 10.0 pixels for mask (b) and from
3.7 to 14.0 pixels for mask (c). Mask (d) is the resulting
mask when clusters are smaller for black minority pixels
(1/2 , g < 1) than for white minority pixels. As defined
by the dot-overlap model proposed by Pappas and
Neuhoff,22 isolated black dots are not at risk of being lost
because of overlap, and therefore black dots may form
smaller clusters at g near 1 than clusters formed by white
dots at g near 0. Under this criterion mask (d) has, at
g 5 0.25, clusters with an average size of 10.8 pixels and
has, at g 5 0.75, clusters with an average size of 5.3 pix-
els.
Table 1. Average Number of Pixels per Cluster M̄, Principal Wavelength lg , and Principal Frequency fg
for Masks of Fig. 1a

g

Mask (a) Mask (b)

M̄ lg fg M̄ lg fg

1/255 1.3(2.0) 18.2(22.6) 0.05(0.06) 2.5(4.0) 25.7(31.9) 0.04(0.03)
64/255 2.0(2.0) 2.8(2.8) 0.35(0.35) 4.0(4.0) 4.0(4.0) 0.23(0.25)

128/255 4.1(4.0) 2.9(2.8) 0.35(0.35) 10.0(8.0) 4.5(4.0) 0.23(0.25)
192/255 2.0(2.0) 2.8(2.8) 0.35(0.35) 3.9(4.0) 4.0(4.0) 0.22(0.25)
254/255 1.3(2.0) 18.2(22.6) 0.05(0.06) 2.5(4.0) 25.7(31.9) 0.04(0.03)

g

Mask (c) Mask (d)

M̄ lg fg M̄ lg fg

1/255 3.7(6.0) 30.6(39.1) 0.03(0.03) 8.8(10.0) 47.4(50.5) 0.02(0.02)
64/255 6.3(6.0) 5.0(4.9) 0.20(0.20) 10.8(10.0) 6.6(6.3) 0.15(0.16)

128/255 14.0(12.0) 5.3(4.9) 0.19(0.20) 16.0(10.0) 5.7(4.5) 0.18(0.22)
192/255 6.3(6.0) 5.0(4.9) 0.20(0.20) 5.3(5.5) 4.6(4.7) 0.22(0.21)
254/255 3.5(6.0) 30.0(39.1) 0.03(0.03) 1.3(1.0) 18.0(16.0) 0.06(0.06)

a Shown in parentheses are the ideal parameters used to construct K̃ (r; g).
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Fig. 12. Tomato image halftoned by use of the green-noise masks of Fig. 10 [labeled (a)–(d)].
6. CONCLUSIONS
Unlike blue-noise halftoning, which distributes the mi-
nority pixels of a binary dither pattern as homogeneously
as possible, green-noise halftoning forms clusters of mi-
nority pixels that are themselves distributed as homoge-
neously as possible. Typically, green-noise patterns are
generated with error-diffusion-based techniques. One
such technique, Levien’s12 error diffusion with output-
dependent feedback, offers tunable coarseness, with small
clusters reserved for printers with low dot gain and large
clusters reserved for printers with high dot gain. Dot
gain is the increase in size of a printed dot relative to the
intended dot size. The distortion caused by the overlap
of printed dots as a result of dot gain is minimized by
clustering pixels. Hence green-noise patterns are more
robust than blue-noise patterns to these distortions.

In this paper we have constructed green-noise dither
patterns through the algorithm BIPPCCA, which con-
structs binary patterns according to a desired reduced
second-moment measure. Although demonstrated here
for green noise, BIPPCCA can be used to construct blue-
noise patterns as well. Under a stacking constraint, we
have also demonstrated the use of BIPPCCA to build
green-noise masks, dither arrays designed to produce
green-noise halftones by thresholding pixel by pixel a
continuous-tone original. Far less computationally com-
plex than error-diffusion-based algorithms, these green-
noise masks can also be tuned to specific printer charac-
teristics by adjusting pattern coarseness. Figure 12
makes the comparison between green-noise masks for
varying printer characteristics, with images (a)–(c) hav-
ing cluster sizes that increase symmetrically with equal
deviations from black and white toward middle gray.
Image (d) illustrates an instance where white minority
pixels form larger clusters than black minority pixels.

Regardless of cluster size, the masks of images (a)–(d)
in Fig. 12 were all designed according to an isotropic
shaping function. As Ulichney6 writes that directional
artifacts are perceptually disturbing, green-noise pat-
terns constructed with isotropic shaping functions
achieve a far greater degree of isotropy than those typi-
cally associated with error diffusion. Future work with
green noise will address the vector green-noise mask for
efficient halftoning of color images with green noise.
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