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Digital Color Halftoning with Generalized Error
Diffusion and Multichannel Green-Noise Masks
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Abstract—In this paper, we introduce two novel techniques for
digital color halftoning with green-noise—stochastic dither pat-
terns generated by homogeneously distributing minority pixel clus-
ters. The first technique employs error diffusion with output-de-
pendent feedback where, unlike monochrome image halftoning, an
interference term is added such that the overlapping of pixels of
different colors can be regulated for increased color control. The
second technique uses a green-noise mask, a dither array designed
to create green-noise halftone patterns, which has been constructed
to also regulate the overlapping of different colored pixels. As is the
case with monochrome image halftoning, both techniques are tun-
able, allowing for large clusters in printers with high dot-gain char-
acteristics, and small clusters in printers with low dot-gain charac-
teristics.

Index Terms—AM, color, dither techniques, FM, green-noise,
halftoning.

I. INTRODUCTION

D IGITAL halftoning is a technique used by binary display
devices to create, within the human eye, the illusion

of continuous tone. Designed to mimic analog techniques,
dot-clustered ordered dithering or amplitude modulated (AM)
halftoning produces this illusion by varying the size of round
printed dots which are arranged along an ordered grid. When
using AM halftoning, the parameters of particular importance
are the lines-per-inch (lpi) or the number of rows/columns
of the regular grid1 and the screen angle or the orientation
of the regular grid relative to the horizontal axis. Typically,
monochrome screens have an angle ofas the human visual
system is least sensitive to diagonal artifacts [1].

In color printers, the illusion of continuous shades of color is
produced by superimposing the binary halftones of cyan, ma-
genta, yellow, and black (CMYK) inks. As the dots of an AM
halftone form a regular grid, clustered-dot dithering suffers from
moiré—the secondary interference patterns created by superim-
posing two or more regular patterns. In order to minimize the
appearance of moiré, the screens of cyan, magenta, yellow, and
black are typically oriented at the angles of , , , and

to create a pleasantrosettepattern.
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1The highest quality AM halftones will have 150 lpi or more.

The problems of moiré and screen angles are avoided in
frequency modulated halftoning where continuous tone is
produced by varying the distance between printed dots and
not varying the size. Typically, FM halftones are produced
by the process of error diffusion which creates a stochastic
arrangement of dots. Besides avoiding moiré, FM halftoning,
by isolating minority pixels, maximizes the spatial resolution
of the printed image relative to the printer [2], but this distri-
bution also maximizes the perimeter-to-area ratio of printed
dots [3]—making FM halftones more susceptible to printer
distortions such as dot-gain, the increase in size of a printed
dot. Whether a function of the printing process (mechanical
dot-gain) or of the optical properties of the paper (optical
dot-gain), dot-gain causes the printed halftone to appear darker
than the original ratio of white-to-black pixels [4]. In printers
with high dot-gain characteristics, AM halftoning, with its
lower spatial resolution and moiré, may be the preferred tech-
nique, as its clustered-dots have the lower perimeter-to-area
ratio.

An alternative to AM and FM halftoning, Levien’s [5] error
diffusion with output-dependent feedback is an AM-FM hybrid
which creates the illusion of continuous tone by producing a sto-
chastic patterning of dot clusters which vary in both their size
and in their separation distance. The major advantage, of this
new technique over prior error diffusion schemes, is that by ad-
justing a single parameter, the output is tunable—capable of cre-
ating halftones with large clusters in printers with high dot-gain
characteristics and small clusters in printers with low dot-gain
characteristics. Error diffusion with output-dependent feedback,
therefore, can trade halftone visibility for printer robustness.

Studied by Lauet al. [2], Levien’s technique creates patterns
described in terms of their spectral content as green-noise—con-
taining no low or high frequency spectral components. This
green-noise model is presented in accordance with Ulichney’s
[6] blue-noise model which describes the spectral characteris-
tics of the ideal error-diffused halftone patterns as having no
low-frequency content. Furthermore, as Mitsa and Parker [7]
used the spectral characteristics of blue-noise to generate the
blue-noise mask, a binary dither array which greatly reduces
the computational complexity associated with FM halftoning,
Lau et al. [8], using the spatial and spectral characteristics of
green-noise, have introduced the green-noise mask.

The problem yet to be addressed in the evolution of green-
noise halftoning is its application to color. FM halftoning has
been studied in great detail with respect to color printing. The
techniques introduced range from simply halftoning each color
independently to more complex model-based techniques which
transform the CMYK color space to alternate spaces such as the
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CIE La*b* space [9]. Yao and Parker [10] have even introduced
the blue-noise mask to color halftoning.

This paper introduces, to color printing, green-noise
halftoning. The first technique extends error diffusion with
output-dependent feedback to not only cluster pixels of like
color but also to regulate the clustering of pixels of different
colors. That is, with this new technique, the halftoning of
different colors can be correlated such that the superimposing
of different inks can be increased or decreased. This is in direct
contrast to independently halftoning each channel—offering
far greater control of resulting halftone patterns.

A second technique, to be introduced in this paper, incorpo-
rates a desired correlation between colors to construct a mul-
tichannel green-noise mask—extending the capabilities of the
prior work in [8] to include color halftoning. By design, this new
mask maintains all the desirable attributes of the monochrome
mask (isotropic, tunable coarseness) while also regulating the
overlapping of pixels of different colors.

II. HALFTONE STATISTICS

Point process statistics have a long history in stochastic geom-
etry [11]–[13] and were recently introduced to digital halftoning
by Lauet al. [2] for the study of periodic dither patterns. In this
framework, is a stochastic model governing the location of
points in . , a sample of , is the set
where is a point in , and the scalar quantity repre-
sents the number of ’s in , a subset of . In terms of a
monochrome digital halftone pattern, a point is defined to be a
minority pixel [a white (1) pixel for gray level and
a black (0) pixel for ].

So given , a binary dither pattern representing a mono-
chrome image of constant gray level, indicates that
the pixel is a minority pixel; otherwise, . As a
random quantity, the first order moment or the expected value of

is its intensity , which is the unconditional probability
that is a minority pixel with for
and for . For a stationary point
process where the statistical properties ofare independent of

, .
A second metric for characterizing the statistical properties

of is thereduced second moment measure defined
as

(1)

the ratio of the probability that pixel is a minority pixel
under the condition that is a minority pixel to the un-
conditional probability that is a minority pixel.
can be interpreted as a measure of the influence of a minority
pixel at on the pixel with indicating
that is more likely to be a minority pixel given and

indicating that is less likely to be a minority
pixel. indicates that has no influence on

, and in the case of a dither pattern constructed from un-
correlated (white) noise, for all and .

For a stationary point process, where is
the distance from to and is the direction. For an isotropic

Fig. 1. Spatial ringR (r) = fn: r � jn�mj < r+ drg used to calculate
the pair correlationR(r) for a binary dither pattern.

point process, the statistical properties ofare invariant to ro-
tation, and therefore, for an isotropic process is written
as and is referred to as thepair correlation. is ex-
plicitly defined as

(2)

the ratio of the expected number of minority pixels located in
the ring (Fig. 1) under
the condition that is a minority pixel to the unconditional
expected number of minority pixels located in . is
also the average of all pixels in the set .

offers an especially useful tool for characterizing a pe-
riodic dither patterns as illustrated in Fig. 2 where three dither
patterns representing gray level are shown with
their corresponding pair correlations (both the calculated and
the ideal). The first pattern (left) is a white-noise dither pattern,
and as such has a pair correlation for all as the
value of any single pixel in is independent of all other pixels.
The name (white-noise) derives from the fact that the resulting
power spectrum remains constant for all frequencies [6].

The second pattern (center) is composed of blue-noise which
represents gray levelby distributing the minority pixels within

as homogeneously as possible—resulting in a dither pattern
where minority pixels are placed, on average, a distance of
apart where

for
for

(3)

and is the minimum distance between addressable points on
the display [6], [7]. Referred to as theprinciple wavelengthof
blue-noise, is illustrated in as series of peaks at integer
multiples of . The term “blue-noise” denotes that the spectral
components of a blue-noise dither pattern lie almost exclusively
in the high (blue) frequency range.

The final pattern (right) is green-noise where gray levelis
represented by homogeneously distributed minority pixel clus-
ters. These clusters are separated, center-to-center, by an av-



LAU et al.: DIGITAL COLOR HALFTONING WITH GENERALIZED ERROR DIFFUSION AND MULTICHANNEL GREEN-NOISE MASKS 925

Fig. 2. Pair correlations,R(r), for (left) white-noise, (center) blue-noise and (right) green-noise dither patterns representing gray level15=16.

erage distance of , theprinciple wavelengthof green-noise,
where

for

for
(4)

and is the average number of minority pixels per cluster.
In , it is the separation of clusters apart that leads to
a series of peaks at integer multiples of; furthermore, it is the
clustering of minority pixels that leads to a nonzero component
for near zero with for . The parameter

is thecluster radiusand is related to as

(5)

where is the area covered by a circle with radius. Lau
et al. [2] note the is most apparent in when the varia-
tion in cluster size is small as increasing the variation leads to a
“whitened” dither pattern where the peaks and valleys of
become blurred. The term “green” refers to the resulting pat-
terns’ predominantly mid-frequency spectral components with
the blue-noise model a limiting case ( ).

A. Color Halftoning

In the case of a color halftone, the monochrome model
must be revised as a dither pattern is now composed ofcolors
where, for generality, the quantity is an arbitrary integer. For
RGB and CMYK, where images are composed of the additive
colors red, green and blue or the subtractive colors cyan, ma-
genta, yellow, and black, and 4, respectively. So for
color images, the halftone pattern is now composed of the

monochrome binary dither patterns where
is the gray level of pattern and is the corresponding point
process.

In this new framework, the quantity is the reduced
second moment measure between colors such that

(6)

is the ratio of the conditional probability that is a minority
pixel given that a minority pixel exists at sample of to
the unconditional probability that is a minority pixel [8].
Similar to , indicates that the location
of minority pixels in colors and are uncorrelated. The pair
correlation between colors and follows as

(7)

the ratio of the expected number of minority pixels of color
located in the ring
under the condition that is a minority pixel to the un-
conditional expected number of minority pixels with color
located in .

III. GENERALIZED ERRORDIFFUSION

A. Monochrome

In error diffusion (Fig. 3), the output pixel is determined
by adjusting and thresholding the input pixel such that

if
else

(8)
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Fig. 3. Error diffusion algorithm as introduced by Floyd–Steinberg [14].

where is the diffused quantization error accumulated
during previous iterations as

(9)

with and . Using
vector notation, (9) becomes

(10)

where and
.

In [5], Levien adds an output-dependent feedback term
(Fig. 4) to (8) such that

else
(11)

where is the hysteresis or feedback term defined as

(12)

with and is an arbitrary constant. Referred to as
thehysteresis constant, acts as a tuning parameter with larger

leading to coarser output textures [5] asincreases ( )
or decreases ( ) the likelihood of a minority pixel if the
previous outputs were also minority pixels. Equation (12) can
also be written in vector notation as

(13)

where and
. The calculation of the parameters and

remains unchanged in Levien’s approach. So in summary
of Levien’s error diffusion with output-dependent feedback, the
binary output pixel is determined as

if
else

(14)

where such
that and

.

B. Color

Now consider the -channel case where an output pixel is not
the binary pixel but the -dimensional vector such that

...
(15)

Fig. 4. Error diffusion with output-dependent feedback algorithm as
introduced by Levien [5].

Fig. 5. Generalized error diffusion algorithm.

where is the binary output pixel of color. Assuming all
channels are halftoned independently, the binary output pixel

is determined as

if
else

(16)

where and are the error and hysteresis terms, re-
spectively, for the th color. The error term, being a vector, is
calculated as

...
...

...
...

...

(17)

where are the filter weights regulating the dif-
fusion of error in the th channel and is the
vector com-
posed exclusively from errors in channel such that

. The hysteresis term
, also a vector, is calculated as

...
...

.. .
...

...
...

. ..
...

...

(18)

where are the filter weights and is the hysteresis constant
that regulates the diffusion of feedback in theth channel.
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Fig. 6. Pair correlations for CMYK halftone patterns with no diffusion between colors using: (left) Floyd–Steinberg error diffusion weights and no hysteresis,
(center) Levien diffusion with small hysteresis constant (h = 0:5), and (right) Levien diffusion with medium hysteresis constant (h = 1:0).

Generalized even further, (17) becomes

...
...

.. .
...

...
(19)

where quantization error can now be diffused between channels
through , the error filter weights which regulate the diffusion
of error from channel to channel; furthermore, (18) becomes:

...
...

. . .
...

...
...

. . .
...

...
(20)

where the previous outputs of channelcan impact all other
channels where for as and regulate the
diffusion of feedback from channelto .

Before concluding this section, we make one last, but signifi-
cant, modification to error diffusion (Fig. 5) by first defining the
thresholding function as

(21)

where is theaccumulatedinput
pixel. The interferencematrix is added to (21) as

(22)

such that is the influence on the thresholding function of
color by the accumulated input of color. The effect of
is to increase ( ) or decrease ( ) the likelihood
of a minority pixel at based on thelikelihoodof a minority

pixel at . Finally, we summarize error diffusion by thegen-
eralized error diffusion equation

(23)

C. Simulations

Shown in Fig. 12(a) is the resulting CMYK dither patterns
created by halftoning a pixel color image of con-
stant color value using the
Floyd–Steinberg [14] error filter weights with no hysteresis
and no dependencies between colors. Before halftoning,
low-level white-noise was added to the first scan line of the
original color image in order to minimize edge effects and also
to unsynchronize the resulting dither patterns. Since in this
configuration where all colors are halftoned exactly the same
way and with each color of the original image identical to the
other colors, the resulting pattern of each color will also be
identical (synchronized) to the other patterns. So by adding a
single or even a few lines of low-level noise eliminates this
synchronization between colors; furthermore, adding several
columns of white-noise also minimizes edge effects. In this
paper, dither patterns created by error diffusion are the result
of using a serpentine (left-to-right and then right-to-left) raster
scan on a continuous-tone image where low-level white-noise
( , ) has been added for the sole purpose
of unsynchronizing each channel to both the edge rows and
columns. The halftoned images are then cropped to exclude
those same rows and columns.

For a statistical analysis of the resulting dither pattern, Fig. 6
(left) shows four plots labeled cyan, magenta, yellow, and
black corresponding to the CMYK dither pattern in Fig. 12(a).
Shown in the first plot (labeled cyan) is the pair correlation be-
tween colors cyan versus cyan [ ], cyan versus magenta
[ ], cyan versus yellow [ ] and cyan versus black
[ ]. The small diamonds placed along the horizontal
axis indicate the principle wavelengths and cluster radii for



928 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000

Fig. 7. Pair correlations for CMYK halftone patterns using Levien diffusion with high hysteresis constant (h = 1:5) with: (left) a negative interference term
(S = �0:2), (center) no interference term (S = 0), and (right) a positive interference term (S = +0:2).

. As would be expected for a monochrome image, the
pair correlation exhibits blue-noise characteristics as
the pair correlation shows

1) for near zero;
2) frequent occurrence of the interpoint distance;
3) decreasing influence with increasing.

Having no diffusion between colors and zero interference (
, the identity matrix), the pair correlations between channels

are predominantly flat as minority pixels of colorhave no in-
fluence on minority pixels of color. The remaining plots show
similar relationships for colors magenta, yellow, and black.

Shown in Fig. 6 (center) are the resulting pair correlations
to Fig. 12(b) where Levien’s error diffusion scheme has been
implemented with a low hysteresis constant , no diffu-
sion between colors and zero interference. With a low hysteresis
constant, this scheme generates blue-noise patterns very similar
to that generated using the Floyd-Steinberg filter weights. Fig. 6
(right) [Fig. 12(c)] shows Levien’s error diffusion scheme with a
medium hysteresis constant where the patterns begin to
exhibit clustering as the average size of a minority pixel cluster
is 1.95 pixels. In each color, the pair correlation exhibits strong
green-noise characteristics as each plot shows

1) clustering as indicated by for (
);

2) frequent occurrence of the intercluster distance
;

3) decreasing influence with increasing. As before with
zero influence and no diffusion between colors, the pair
correlations between colors remains predominantly flat
for all .

The dither patterns of Fig. 7 illustrate the effects of, the
interference matrix, with Fig. 7 (left) [Fig. 12(d)] showing the
case where is the matrix defined by for and

for . In all instances where , has
the effect of reducing the superposition of minority pixels of

different colors with lesser leading to lesser overlap. That
is, given that a cyan pixel is very likely to be printed, minority
pixels for magenta, yellow and black are less likely to be printed
at that same pixel location. This behavior is well illustrated in
the pair correlations where for . For com-
parison, Fig. 7 (center) [Fig. 12(e)] shows the case whereis
the identity matrix (no interference) with a flat pair correlation
between minority pixels of different colors. For further compar-
ison, Fig. 7 (right) [Fig. 12(f)] shows the case whereis the
matrix defined by for and for

. Here, the effect of is to increase the superposition of
minority pixels such that a minority pixel of colorwith a high
likelihood of being printed making a minority pixel of any color

more likely.

IV. M ULTI-CHANNEL GREEN-NOISE MASKS

The green-noise mask is a novel approach to dither array
screening where a continuous-tone image is converted to a
binary halftone image by performing a pixel-wise comparison
between the original and the dither array or mask. Previously,
halftoning with green-noise has implied error-diffusion based
methods which although are tunable (capable of creating
halftone patterns with large clusters for printers with high
dot-gain characteristics and small clusters for printers with
low dot-gain characteristics) carry a high computational cost.
Now through the use of a green-noise mask, halftoning can
create a stochastic patterning of dots with adjustable coarseness
but with the same computational freedom as ordered-dither
halftoning schemes—an advantage that, for many printing
devices, overcomes the drawbacks of distortions inherent to
dither array halftoning such as tiling artifacts. Many such
drawbacks, though, can be minimized and sometimes visually
eliminated using device dependent compensation techniques.

Introduced in [8] for monochrome images, the green-noise
mask is defined by the set, , of
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binary green-noise dither patterns with one pattern,, corre-
sponding to each possible discrete gray level(256 patterns
for 8-bit gray-scale images). This set satisfies thestacking con-
straintthat for any two gray-levels and with ,
(if then ). As a consequence, a pixel
of the dither array or mask is defined simply
as the minimum for which . The size parameters

and are arbitrary integers with larger masks constructed
by tiling edge-to-edge the original mask such that the
output pixel, , after halftoning the input pixel, ,
is defined as

mod mod (24)

where is the thresholding function of (21).
For color halftoning, the multichannel green-noise mask is

defined by the set and
where is the binary green-noise dither pattern for color
and intensity level (for 24-bit RGB color this corresponds to
256 patterns per channel or total patterns). Like the
monochrome set, this set must also satisfy the stacking con-
straint but only within a given color such that
if for color and intensity levels and with

. A pixel, , of the multichannel green-noise
mask is therefore defined as:

...
(25)

where the output after halftoning is defined by

mod mod (26)

A. Monochrome BIPPCCA

The physical construction of binary dither patterns for the
monochrome green-noise mask is done through BIPPCCA (the
BInary Pattern Pair Correlation Construction Algorithm). The
basic premise of BIPPCCA is to take an empty array (containing
no minority pixels) and assign, to each element, a probability
of that element becoming a minority pixel. BIPPCCA will then
convert the most likely elements to minority pixels, one at a
time, until the ratio of black to white pixels is, the desired
gray level. The most likely element is the majority pixel with
the highest probability during the current iteration, and in order
for the resulting dither pattern to have desired statistical prop-
erties (i.e., a desired pair correlation), BIPPCCA will adjust, at
each iteration, the probability of each majority pixel in the array
according to the current set of minority pixels.

In BIPPCCA, the initial assignment of probabilities is done in
an uncorrelated manner, but as each new minority pixel is added,
the probabilities of all neighboring majority pixels are adjusted
according to the desired pair correlation of the resulting pat-
tern. As is a function of the radial distance between pixels,
a majority pixel’s probability is increased if its radial distance
from the newest minority pixel,, corresponds to and
decreased if corresponds to . As an example, con-
sider using BIPPCCA to construct a blue-noise pattern where
the pair correlation is zero fornear zero. This feature of
is achieved in BIPPCCA if with each new minority pixel, the

Fig. 8. Pair correlation shaping function,~R(r), used to construct green-noise
with principle wavelength� .

probability of every element directly adjacent is set to zero; fur-
thermore, as has a peak at , the blue-noise principle
wavelength, all elements a distancefrom each new minority
pixel should be increased to ensure a peak exists in the pair cor-
relation of the final pattern.

In practice, how much to increase or decrease a given proba-
bility, in BIPPCCA, is defined according to , thepair cor-
relation shaping function. is a user-defined function based
on the desired pair correlation with increasing leading to
stronger correlations and decreasing leading to reduced.
At , minority pixels are completely inhibited. In de-
signing , it is important to note that does not have ab-
solute control over the resulting , but with careful tuning,

will approximate the shape of . Shown in Fig. 8 is the
shaping function used by Lauet al. [8] to construct green-noise
dither patterns. This function has peaks at integer multiples of

, the green-noise principle wavelength, and valleys mid-way
between. The parameteris a tuning parameter and is shown in
[8] to create visually pleasing patterns when . Being
piecewise linear, this pair correlation shaping function is an es-
pecially simple approximation of the pair correlation of the ideal
green-noise pattern for a given gray level and cluster size, but
by itself, resulting dither patterns tend to look noisy and nonsta-
tionary.

Because stationarity is a necessary property for digital
halftoning [6], the most likely pixel will no longer be the
majority pixel with the highest probability, but instead be the
majority pixel with the highest product
where is the probability of a given pixel and

is a function of the density of minority pixels within
the surrounding area. Referred to as theconcentration matrix,

makes majority pixels more likely to become minority
pixels in areas of low minority pixel concentration and less
likely in areas of high.

In BIPPCCA, the concentration of minority pixels is mea-
sured as the output after applying a low-pass filter, , using
circular convolution. In [8], Lauet al.construct green-noise pat-
terns using the Gaussian filter, , defined as

(27)

where has a wide-spread impulse response for large
where clusters are far apart and a narrow-spread impulse re-
sponse for small where clusters are close together. How much
to increase or decrease a probability according to the minority
pixel concentration is then determined by the user through a
mapping of the filtered output to the concentration matrix. Fig. 9



930 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 5, MAY 2000

Fig. 9. Mapping function used to construct the concentration matrixC

from the output after filtering� with the low-pass filterH using circular
convolution.

shows the mapping of concentration values used in [8] to deter-
mine where represents the output after fil-
tering the binary dither pattern of the current iteration,, with
the low-pass filter . In this mapping, values of
are scaled in a linear fashion such that
and .

In summary, the steps for monochrome BIPPCCA are per-
formed as follows where is initially an array with no
minority pixels.

1) Create an array, , of uniformly distributed
random numbers such that is the
probability that will become a minority pixel.

2) Construct the concentration matrix using a user-de-
fined mapping of , the output after filtering

with the low-pass filter using circular convolu-
tion, and then locate the majority pixel in with the
highest modified probability (the majority pixel
such that
for all and where is
also a majority pixel). Replace that pixel, , with
a minority pixel.

3) Given the new minority pixel, , adjust the proba-
bility of each and every majority pixel, , such that:

(28)

where is the minimum wrap-around distance from
the majority pixel to the new minority pixel

defined for an array as shown in (29)
at the bottom of the page.

4) If the ratio of the total number of minority pixels to the
total number of pixels in is equal to , the desired
gray-level, then quit with the desired dither pattern given
by ; otherwise, continue at step 2.

Fig. 10. Pair correlation shaping functions,~R (r) (solid line) and~R (r)
(dashed line), used to construct color green-noise with principle wavelength�

and decreased overlap of minority pixels of different colors.

As described, the above algorithm is not suited to the design of
green-noise masks as the stacking constraint will not be satisfied
for all patterns. BIPPCCA must, therefore, be constrained to
create a pattern, , which is constructed to have, as a subset,
all constructed patterns for which . must also be a
subset of all constructed patternsfor which .

In order to constrain BIPPCCA, assume first that
and that . The first step in then to initialize
to , where is a minority pixel, instead of an all
majority pixel array. Step 3 is then applied for each and every
minority pixel in to the probability matrix, , of uniformly
distributed random numbers. BIPPCCA then continues at step 2
where, in order to satisfy the constraint that , only those
majority pixels ( ) for which are considered
for swapping. BIPPCCA then continues using these modified
steps until a sufficient number of minority pixels in exist in.
For the case of , the same modifications as above are
used except that is initialized to where minority pixels are
equal to 0. Step 2 is then constrained byand not .

to and applying step 3 for each and every minority
pixel in to the probability matrix, , of uniformly dis-
tributed random numbers. BIPPCCA then continues at step 4.
The second constraint is satisfied in step 2 of BIPPCCA when
locating the maximum likely majority pixel by considering
only those majority pixels in which correspond to minority
pixels in the constructed patterns,, for which .

In applying thisconstrainedBIPPCCA to mask design, note
that the patterns composing the set can be
constructed in any order and that order does have an impact
on the construction of each pattern asis constrained by the
constructed pattern corresponding to the maximum gray level
that is less than and constrained by the constructed pattern
corresponding to the minimum gray level which is greater than
. While no criteria for choosing an optimal ordering, or even

an initial gray level, has been offered, generating patterns in
a random order may offer better results than by constructing
patterns according to consecutive gray levels. As an example,
when constructing green-noise masks [8], use the interleaved
ordering

where .

(29)
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Fig. 11. CMYK green-noise dither patterns created using the VBIPPCCA algorithm with: (left) decreased overlapping, (center) uncorrelated overlapping, and
(right) increased overlapping.

B. Color BIPPCCA

The physical construction of binary dither patterns for the
multichannel green-noise mask is done through MBIPPCCA
(the Multichannel BInary Pair Correlation Construction Algo-
rithm). In color, a binary dither pattern representing the color

is defined by the set of monochrome
images where is the binary
dither pattern corresponding to theth color with intensity .
MBIPPCCA constructs these monochrome images according to
the previous algorithm, but unlike BIPPCCA, when a minority
pixel is added to theth color, the probabilities corresponding to
majority pixels of color are adjusted according to , the
desired pair correlation between minority pixels of colorsand
. So for a CMYK dither pattern, for each minority cyan pixel

added, MBIPPCCA will make use of the user-defined shaping
functions , , , and to adjust the
probabilities of majority pixels in the cyan, magenta, yellow, and
black colors, respectively.

Because stationarity is also a desired property for digital
color halftoning, MBIPPCCA will apply just as in the
monochrome case with each color filtered independently of
the others. Returning to the CMYK case, this implies that
the maximum likely majority pixel of the cyan color is the
majority pixel of the cyan color with the highest product

where is the probability
array for cyan pixels and is the concentration
matrix formed by applying a user-defined mapping to the
concentration of minority cyan pixels.

In summary, the steps for MBIPPCCA are performed as fol-
lows where is the initial set of empty

arrays.

1) Create a set of arrays, , of uni-
formly distributed random numbers such that

is the probability that will become a
minority pixel.

2) For , if the ratio of the total number of
minority pixels to the total number of pixels in is
less than , then

a) Construct the concentration matrix using a
user-defined mapping of , the output
after filtering with the low-pass filter
using circular convolution.

b) Locate the majority pixel in with the
highest modified probability (the majority pixel

such that
for all and

where is also a majority
pixel), and replace that pixel, , with a
minority pixel.

c) Given the new minority pixel, , adjust
the probability of each and every majority pixel,

for , such that

(30)

where is the minimum wrap-around distance
from the majority pixel to the new
minority pixel .

3) If for all colors , the ratio of the total number of minority
pixels to the total number of pixels in is equal to

, the desired intensity of color, then quit with the de-
sired color dither pattern given by the set

; otherwise, continue at step 2b.
Like BIPPCCA, the above algorithm is not suited to the design

of multichannel green-noise masks as the stacking constraint
will not be satisfied for all patterns. MBIPPCCA must, there-
fore, satisfy the same constraints as BIPPCCA in order to be
used for mask construction. The first of these two constraints,

, is satisfied by first initializing to
and applying step 2c for each and every minority pixel in .
MBIPPCCA can then continue at step 3. The second constraint
is satisfied in step 2b of MBIPPCCA when locating the max-
imum likely majority pixel in color by considering only those
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Fig. 12. Color plate 1.CMYK dither patterns with: (a) created via Floyd-Steinberg error diffusion, (b)–(f) created via generalized error diffusion, and (g)–(i)
created via VBIPPCCA.

majority pixels in that correspond to minority pixels in the
constructed patterns, , for which . Note that with these
constraints, patterns of the multichannel green-noise mask can
be constructed in any order, and that the order, to which patterns
of any color are constructed, need not be the same as any other
color .

C. Simulations

Before constructing masks, Fig. 10 shows a set of pair cor-
relation shaping functions where the function shapes
the pair correlation between pixels of the same color and the

function shapes the pair correlation between pixels of
different colors. This pair of shaping functions is used to re-
duce the amount of overlap between pixels of different colors
[Fig. 12(g)]. Using this same pair of shaping functions, but with

for all , patterns with no correlation between
channels [Fig. 12(h)] can be constructed. To create a pattern
where the overlapping of pixels of different colors is increased,
the function is set to have the same shape as
[Fig. 12(i)].

These patterns of Fig. 12(g)–(i), generated by MBIPPCCA,
were constructed to represent a pixel input image of
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Fig. 13. Color plate 2.CMYK green-noise masks constructed from VBIPPCCA such that: (a) minimizes dot overlap, (b) has uncorrelated overlap, (c) maximizes
overlap, and (d) maximizes overlap for colors cyan and yellow.

constant color with an average
of 5 pixels per cluster ( pixels). The statistical mea-
sures of the spatial relationships between pixels for these three
patterns are shown in Fig. 11. The results, shown here, demon-

strate MBIPPCCA’s ability to capture the same spatial relation-
ships between pixels as those created in Fig. 12(d)–(f) via gen-
eralized error diffusion. The key is in the shaping functions, and
through these shaping functions, the same relationships between
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Fig. 14. Color plate 3.CMYK halftoned images of the: (a) original using, (b–d) generalized error diffusion, and (e–h) multichannel green-noise masks.

minority pixels can be encouraged in the design of green-noise
masks.

Mask design can be seen in Fig. 13 (left) where the three
design criteria: 1) decreased; 2) uncorrelated; and 3) increased

pixel overlap are employed in masks (a), (b) and (c), respec-
tively. Mask (d) is a special mask designed more to demon-
strate the range of possibilities for dither array generation. In
this instance, the colors cyan and yellow are designed to overlap
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while not overlapping with black or magenta. The colors black
and magenta are uncorrelated with respect to each other. The
CMYK-color scales shown in Fig. 13 (right) are given to fur-
ther illustrate the clustering behavior of each mask. By design,
each mask has an average cluster size of 2 pixels at extreme
gray levels ( , 1) and an average cluster size of 12 pixels at

.

V. CONCLUSIONS

In summarizing this paper, it is important to note that this
paper does not present a process of optimal color reproduc-
tion but instead offers two new techniques for getting there. Fu-
ture work will look at optimizing the parameters of green-noise
for specific output devices as, again, the advantage to using
green-noise is that it is tunable—allowing for various cluster
sizes for various dot-gain characteristics. Previously, techniques
such as error diffusion with output-dependent feedback and the
green-noise mask could only be optimized or tuned within a
given channel/color. Now both can consider the interactions of
the component colors.

Noting Fig. 14(a) where the continuous tone CMYK image
flowers is shown with its corresponding halftone reproductions,
the generalized error diffusion scheme gives its best reproduc-
tion in Fig. 14(d) where the amount of overlap is increased rel-
ative to the uncorrelated overlap of Fig. 14(c) and the decreased
overlap of Fig. 14(b). In these three instances, the configurations
of parameters (, , , and ) are exactly the same as those
of Section III-C, Fig. 7.

In Fig. 14(e)–(g), the same comparison of overlap is made
using the multichannel green-noise masks of Fig. 13(a)–(c),
respectively, where increased overlap gives the best color
reproduction. Although these patterns appear “grainy” relative
to their error diffused counterparts, this shortcoming is not a
function of masks in general but is a shortcoming of the design
criteria used in the construction of these specific masks. That
is, these masks are composed of clusters which are too large
for the quality of printer being used (Tektronix Phaser 440
dye-sublimation)—resulting in halftone patterns with visually
disturbing artifacts such as the annoying cyan clusters in the
predominantly magenta flower pedals.

A mask such as that (not pictured) used in Fig. 14(h) is
much better suited to this printer as the spatial relationship
between minority pixels is closer to blue-noise; furthermore,
this mask also takes into account the improved color reproduc-
tion achieved by increasing the overlap of minority pixels of
different colors. As this mask makes good use of the printers
ability to print individual pixels, it is a clear example of the
tunability of green-noise for color halftoning.
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