
Blue- and Green-Noise
Halftoning Models

A review of the spatial and spectral characteristics of halftone textures.

In this article, we review the spatial and spectral char-
acteristics of blue- and green-noise halftoning mod-
els. In the case of blue noise, dispersed-dot dither
patterns are constructed by isolating minority pixels

as homogeneously as possible, and by doing so, a pattern
composed exclusively of high-frequency spectral compo-
nents is produced. Blue-noise halftoning is preferred for dis-
play devices that can accommodate
isolated dots such as various video dis-
plays and some print technologies
such as ink-jet. For print marking en-
gines that cannot support isolated pix-
els, dispersed-dot halftoning is
inappropriate. For such cases, clus-
tered-dot halftoning is used to avoid
dot-gain instability. Green-noise half-
tones are clustered-dot, blue-noise
patterns. Such patterns enjoy the
blue-noise properties of homogeneity
and lack low-frequency texture but
have clusters of minority pixels on
blue-noise centers. Green noise is
composed exclusively of midfre-
quency spectral components. In addi-
tion to the basic spatial and spectral
characteristics of the halftoning mod-
els, this article also reviews some of the
earlier work done to improve error diffusion as a noise gen-
erator. We also discuss processes to generate threshold ar-
rays to achieve blue and green noise with the com-
putationally efficient process of ordered dither.

What Is Blue Noise?
In halftoning, blue noise is the statistical model describing
the ideal spatial and spectral characteristics of aperiodic
dispersed-dot dither patterns [1], and in essence, the ideal
blue-noise halftoning scheme produces stochastic dither
patterns of the same-sized dots distributed as homoge-
neously as possible. By doing so, the spectral content of

these patterns is composed entirely of high-frequency
spectral components. And as blue is the high-frequency
component to visible white light, blue noise is the
high-frequency component to white noise. Given the
low-pass nature of the human visual system (HVS) [2],
blue noise creates patterns visually appealing simply be-
cause the spectral components of the pattern lie in the re-

gions least visible to the human
viewer; furthermore, the stochastic
distribution of dots creates a grid-de-
fiance illusion where the structure of
the underlying grid on which the pix-
els are aligned is no longer apparent to
the viewer.

In comparison to periodic clus-
tered-dot halftoning schemes, blue
noise maximizes the apparent resolu-
tion of printed images, creating an im-
age that lacks the visually disturbing
texture created by large clusters ar-
ranged along a regular grid. But while
isolating minority pixels makes them
less visible to the human eye, it also
makes the patterns far more suscepti-
ble to printer distortion and the in-
ability of some devices, such as laser
printers, to reproduce dots consis-

tently from dot to dot [3], [4]. So as a way of providing the
benefits of random dot distributions to unreliable devices
while also maintaining the consistency of clustered dots,
Levien [5] introduced error diffusion with output-de-
pendent feedback where a weighted sum of previous out-
put pixels is used to modulate the quantization threshold
with resulting patterns composed of a random arrange-
ment of randomly sized and shaped printed dot clusters.

Green Noise
Lau et al. [6] introduced the green-noise model where the
ideal patterns are composed of homogeneously distrib-
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uted pixel clusters that vary in both their size and spacing
for varying shades of gray. In the Fourier domain,
green-noise patterns are composed almost exclusively
with midfrequency components, and as green is the
midfrequency component to white, green noise is the
midfrequency component to white noise.

Since their introduction, both blue- and green-noise
models have led to innovations in halftoning with im-
provements in both the efficiency at which halftoning is
performed and the visual fidelity of the resulting patterns.
The most noteworthy of these innovations are blue- and
green-noise dithering arrays [7], [9] where a continu-
ous-tone original is converted to a binary image using a
point process that compares the intensity of a given pixel
with a threshold stored in the array. Given their signifi-
cance, the remainder of this article details the blue- and
green-noise halftoning models as well as describes the
spatial and spectral metrics introduced to serve as the ba-
sis for these models. While this material offers historical
perspective, today it is being realized [10], [11] that the
fundamental properties of the various dot distributions
play a fundamental role in the visual pleasantness of color
halftones where the monochrome halftones of cyan, ma-
genta, yellow, and black (CMYK) inks are superimposed.
For the reader interested in these color applications, a ba-
sic fundamental understanding of the principal half-
toning models will serve you well in developing and
understanding future algorithms.

Spatial and Spectral Halftone Statistics
To differentiate between the various schemes, a
halftoning algorithm is classified according to the statisti-
cal relationship between minority pixels in the resulting
dither pattern produced by halftoning images of constant
intensity or gray level. The rendition of edges and other
high-frequency details depend primarily on how sharp
the image is or to what extent high-pass filtering is per-
formed on the image prior to halftoning [1]. By treating
the resulting dither pattern as a set of points where an
event or point is said to occur at the location of a minority
pixel, Lau et al. [6] propose using the spatial statistics
commonly employed in stochastic geometry to study
point processes.

In the point-process framework for continuous spaces,
a point process Φ is defined as a stochastic model govern-
ing the location of events, or points xi , within the two-di-
mensional real space ℜ 2 [12]. We further define φ as a
sample of Φ written as a set of randomly arranged points
such that φ = ∈ℜ ={ : , , }x i Ni

2 1 K , and we define φ( )B as a
scalar quantity defined as the number of events (or
points) in the subset B in ℜ 2 . In terms of a discrete dither
pattern, φ represents the set of minority pixels where
φ[ ]n =1 indicates that the pixel with index n is a minority
pixel in the subject dither pattern. Having Φ for a dis-
crete-space halftoning process, a commonly used tech-
nique for characterizing the corresponding dither

patterns is to look at the relative distribution of minority
pixels around one another. To do so, point processes stat-
isticians define the pair correlation �( )r :
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as the influence of a minority pixel at index m on all other
pixels with index n in the annular ring R rm ( ) with center
radius r, width ∆ r , and centered around location m. �( )r
may be thought of as the influence at all locations a dis-
tance r away of the minority pixel at m. That is, is a minor-
ity pixel at n more or less likely to occur because a
minority pixel exists at m? For a completely uncorrelated
(white) point process, the pair correlation is one for all r.
The usefulness of �( )r can be seen in the interpretation
that maxima of �( )r indicate frequent occurrences of the
inter-point distance r while minima of �( )r indicate an in-
hibition of points at r [13].

In the Fourier domain, the power spectrum of a given
dither pattern can be derived by means of spectral estima-
tion. One technique for spectral estimation is Bartlett’s
method of averaging periodograms [14], [15] where a
periodogram is the magnitude squared of the Fourier
transform of a sample output divided by the sample size.
Since the spectral estimate, $( )P f , is a function of two di-
mensions and although anisotropies in the sample dither
pattern can be qualitatively observed by studying
three-dimensional (3-D) plots of $( )P f , a more quantita-
tive metric of spectral content is derived by partitioning
the spectral domain into annular rings of width ∆ f with a
central radius f ρ , the radial frequency, and N fρ ρ( ) fre-
quency samples.

By taking the average value of the frequency samples
within an annular ring and plotting this average versus the
radial frequency, Ulichney [1] defines the radially averaged
power spectral density (RAPSD), P fρ ρ( ), such that
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Because of the manner in which sampling along a rectan-
gular grid leads to tiling of the base-band frequency on
the spectral plane, rings with radial frequencies beyond
( / )1 2 1D − , where D is the minimum distance between
samples on the display, are cropped into the corners of the
spectral tile leading to fewer spectral samples in these
rings. In all plots of P fρ ρ( ), these regions of cropping will
be indicated along the horizontal axis, while all power
spectral estimates will be divided into annular rings of ra-
dial width ∆ f such that exactly one sample along each fre-
quency axis falls into each ring.

Blue-Noise Halftoning
A common practice for characterizing observed noise
models is to assign a name based on color; the most
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well-known example is “white noise,” so named because
its power spectrum is flat across all frequencies, much like
the visible frequencies of light. “Pink noise” is used to de-
scribe low-frequency white noise, the power spectrum of
which is flat out to some finite high-frequency limit. The
spectrum associated with Brownian motion is (perhaps
whimsically) referred to as “brown noise” [16]. Blue
noise is the high-frequency complement of pink noise
that, due to the low-pass nature of the HVS, posses very
advantageous properties for creating the illusion of con-
tinuous tone in binary halftones.

Blue-noise halftoning is characterized by a distribu-
tion of binary pixels where the minority pixels are spread
as homogeneously as possible [1] such that when applied
to an image of constant gray level g, minority pixels are
separated by an average distance λ b where

λ b

D g g
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and D is the minimum distance between addressable
points on the display [1], [7]. The parameter λ b is referred
to as the principal wavelength of blue noise, with its rela-
tionship to g justified by several intuitive properties:
� As the gray value approaches perfect white ( g =0) or
perfect black ( g =1), the principal wavelength ap-
proaches infinity.
� Wavelength decreases symmetrically with equal devia-
tions from black and white toward middle gray
( g =1 2/ ).
� The square of the wavelength is inversely proportional
to the number of minority pixels per unit area.

In terms of point processes, Φ B is an inhibitive or
soft-core point process that minimizes the occurrence of
any two points falling within some distance λ b of each
other. These point processes are most commonly thought
of as Poisson point processes where all points are approxi-
mately equally distant apart, and as a Poisson point pro-
cess, we can characterize blue-noise halftones in terms of
the pair correlation, �( )r , by noting the following:
� Few or no neighboring pixels lie within a radius of
r b< λ .
� For r b> λ , the expected number of minority pixels per
unit area approaches g for 0 1 2≤ ≤g / or 1− g for
1 2 1/ < ≤g with increasing r.

� The average number of minority pixels within the ra-
dius r increases sharply near r b= λ .

The resulting pair correlation for blue noise is there-
fore of the form in Figure 1(a) where �( )r shows: 1) a
strong inhibition of minority pixels near r =0, 2) a de-
creasing correlation of minority pixels with increasing r,
and 3) a frequent occurrence of the interpoint distance
λ b , the principal wavelength, indicated by a series of
peaks at integer multiples of λ b . In Figure 1(a), the prin-
cipal wavelength is indicated by a small diamond located
along the horizontal axis.

Turning to the spectral domain, the spectral character-
istics of blue noise in terms of P fρ ρ( )are shown in Figure
1(b) and can be described by three unique features: 1) lit-
tle or no low-frequency spectral components, 2) a flat,
high-frequency (blue noise) spectral region, and 3) a
spectral peak at cutoff frequency f b , the blue-noise princi-
pal frequency, such that:
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(4)
as indicated in Figure 1(b) by a diamond located along
the horizontal axis is the principal frequency, and note
that P f( )ρ is plotted in units ofσ g g g2 1= −( ), the variance
of an individual pixel in the subject dither pattern.

Error Diffusion
Error diffusion is a neighborhood operation that
quantizes the current input pixel and then transfers the
quantization error onto future input pixels. Formally,
Floyd and Steinberg [17] define the output pixel y n[ ] by
adjusting and thresholding the input pixel x n[ ]such that

y n
x n x ne[ ]
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,
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where x ne [ ] is the diffused quantization error accumu-
lated during previous iterations as
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with y n y n x n x ne e[ ] [ ] ( [ ] [ ])= − + and ∑ ==i
M

ib1 1. The
original four-weight error filter specified by Floyd and
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� 1. The (a) pair correlation and (b) radially averaged power spectrum for a (blue) blue-noise and a (red) green-noise process.



Steinberg was selected because of the checkerboard pat-
tern it created at gray level g =1 2/ . There are several
comprehensive reviews of error diffusion in halftoning by
Evans et al. [18], Knox [19], and others that cover a great
many improvements that have been introduced since the
work of Ulichney but have been left out of this article.

Looking at the spatial and spectral characteristics of the
resulting dither patterns shown in Figure 2(a), Ulichney
noted that patterns exhibited i) correlated artifacts most no-
ticeable at intensity levels � =1 4/ , 1 3/ , and 1 2/ , ii) direc-
tional hysteresis due to the order in which pixels were
processed (raster order), and iii) transient behavior near
edges or boundaries. To improve the visual quality of dither
patterns produced by error diffusion, Ulichney experi-
mented with modifications to the algorithm that included
changing the raster order, using different error filters, add-
ing a white-noise component to the quantization threshold,
and perturbing the error filter coeffi-
cients at each pixel.

Regarding the order that pixels are
processed, Ulichney introduced the
idea that a serpentine left-to-right and
then right-to-left raster scan was far
superior to the originally prescribed
left-to-right raster. In other works,
Witten and Neal [20] and Velho and
Gomes [21] employed chaotic
space-filling curves. With regards to
the error filter selection, Ulichney
concluded that the 12-weight error fil-
ters of Jarvis et al. [22] and Stucki
[23] improved some shortcomings of
the original four-weight filter of Floyd

and Steinberg but still showed some disturbing or
noticeable artifacts at intensity levels 1 4/ and 1 2/ resulting
in significant energy below f b .

Regarding threshold modulation, Ulichney experi-
mented with varying the quantization threshold at each
pixel by low-variance white noise and found that while this
tended to relax disturbing patterns it did so at the expense
of added low-frequency textures. Beyond that sig-
nal-to-noise ratio, dither patterns became too uncorrelated
and grainy (white). As a side note, Eschbach and Knox
[24] later determined that perturbing the quantization
threshold as equivalent to adding low-variance white noise
to the input image prior to halftoning.

For perturbing error-filter weights, Ulichney pro-
posed pairing filter weights of similar magnitude with a
noise component proportional to a percentage of the
smaller weight added to one weight and subtracted from

JULY 2003 IEEE SIGNAL PROCESSING MAGAZINE 31

� 2. Grayscale images halftoned using (a) Floyd and Steinberg’s original error diffusion
algorithm and (b) Ulichney’s perturbed filter weight scheme.

� 3. The spatial and spectral statistics for Ulichney’s perturbed filter weight scheme at gray levels (a) g =1 32/ and1 16/ (red), (b)1 8/
and1 4/ (red), and (c)1 3/ and1 2/ (red).



the other within the pair. This guaranteed that the sum of
error weights would always be equal to one, and it was
this scheme of perturbing filter weights that led to a much
improved error diffusion scheme where 50% noise added
to Floyd and Steinberg’s original four-weight error filter
and a serpentine raster led to the results demonstrated in
Figure 2(b). Figure 3 shows the corresponding spatial
and spectral characteristics of resulting dither patterns
with all metrics exhibiting improved blue-noise charac-
teristics relative to those produced by Floyd and
Steinberg’s error diffusion.

Blue-Noise Dither Arrays
Blue-noise dithering can also be achieved with the point
process of ordered dither. The trick is using an appropri-
ate dither array. Because of the implementation advan-
tages of ordered dither over neighborhood processes,
this has become an active area of research. In the printing
industry, ordered dither arrays used for this purpose are
often referred to as “stochastic screens.” An overview of
approaches to generating blue-noise dither templates is
presented in [25]. One approach would be to build a
template by directly shaping the spectrum of binary pat-
terns by an iterative process so as to force blue-noise
characteristics [7]. Mitsa and Parker [7] introduced the
BInary Pattern Spectral density Manipulation Algorithm
(BIPPSMA) as a process that builds an ordered dither
threshold array by directly manipulating the frequency
domain shape of the candidate binary pattern. They re-
ferred to the resulting ordered dither array as a “blue noise
mask.”A very straightforward and effective approach to
generating relatively small dither templates of this type is
the void-and-cluster algorithm [8] that looks for voids
and clusters in prototype binary patterns by applying a
void- or cluster-finding filter at the area under consider-
ation. Because of this implied periodicity, a filter extent
will effectively wrap around the intermediate pattern such
that minority pixels along the left edge of the pattern will

influence pixels along the right side such that no seams are
visible in the resulting halftones.

Figure 4 shows the result of dithering an image with a
64 64× void-and-cluster generated dither array.

Green-Noise Halftoning
Just as blue noise is the high-frequency component of
white noise, green noise is the midfrequency component
that, like blue, benefits from aperiodic, uncorrelated
structure without low-frequency graininess. But unlike
blue noise in halftoning, green-noise dither patterns ex-
hibit clustering (a collection of consecutive four-neigh-
borhood pixels all of the same value). The result is a
frequency content that lacks the high-frequency compo-
nent characteristic of blue-noise patterns. Hence the term
“green.”

Point process statisticians have long described cluster
processes such as those seen in green noise by examining
the cluster process in terms of two separate processes: i)
the parent process that describes the location (centroid)
of clusters and ii) the daughter process that describes the
shape of clusters. In periodic clustered-dot halftoning,
clusters are placed along a regular lattice, and therefore,
variations in periodic clustered-dot patterns occur in the
cluster shape. In aperiodic dispersed-dot halftoning, clus-
ter shape is deterministic, a single pixel. It is the location
of clusters that is of interest in characterizing FM pat-
terns. Green-noise patterns, having variation in both clus-
ter shape and cluster location, require an analysis that
looks at both the parent and daughter processes.

Looking first at the parent process Φ p , φ p represents a
single sample such that φ p i cx i N= ={ : , , }1 K where N c is
the total number of clusters. For the daughter processΦd ,
φd represents a single sample cluster of Φd such that
φd jy j M= ={ : , , }1 K where M is the number of minority
pixels in cluster φd . By first defining the translation or
shift in spaceT Bx ( )of a set B y ii= ={ : , , }1 2 K by x, relative
to the origin, as

T B y x ix i( ) { : , , }= − =1 2 K (7)

and then defining φd i
as the ith sample cluster for

i N c=1, ,K , a sample φG of the green-noise halftone pro-
cess ΦG is defined as

{ }φ φ
φ φ
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∈ ∈
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the sum of N c translated clusters. The overall operation is
to replace each point of the parent sample φ p , of process
Φ p , with its own cluster φd i

, of process Φd .
To derive a relationship between the total number of

clusters, the size of clusters, and the gray level of a binary
dither pattern, I g is defined as the binary dither pattern
resulting from halftoning a continuous-tone dis-
crete-space monochrome image of constant gray level g,
and I ng [ ] is defined as the binary pixel of I g with pixel
index n. From the definition of φ( )B as the total number of
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� 4. Dithering with a 64 64× void-and-cluster array.



points of φ in B, φG gI( )is the scalar quantity representing
the total number of minority pixels in I g , and φ p gI( ) is
the total number of clusters in I g with φ p g cI N( )= . The
intensity, �, being the expected number of minority pixels
per unit area can, now, be written as

� = =
< ≤

− < ≤




φG g

g

I
N I

g g
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for
for
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the ratio of the total number of minority pixels in I g to
N I g( ), the total number of pixels composing I g .
Given (9), M, the average number of minority pixels
per cluster in I g , is
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N I
I
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( )

�
,

(10)

the total number of minority pixels in I g divided by the
total number of clusters in I g .

Although obvious, (10) shows the very important re-
lationship between the total number of clusters, the aver-
age size of clusters, and the intensity for I g . Periodic
clustered-dot halftoning is the limiting case where φ p gI( )
is held constant for varying �, while FM halftoning is the
limiting case where M is held constant for varying �. In
addition, (10) says that the total number of clusters per
unit area is proportional to � / M. For isolated minority
pixels (blue noise), the square of the average separation
between minority pixels (λ b ) is inversely proportional to
�, the average number of minority pixels per unit area [1].
By determining the proportionality constant using
λ b = 2 for � =1 2/ , the relationship between λ b and � is
determined as λ b D= / � .

In green noise, it is the minority pixel clusters that are
distributed as homogeneously as possible, leading to an
average separation (center-to-center) between clusters
(λ g ) whose square is inversely proportional to the aver-
age number of minority pixel clusters per unit area,
� / M. Using the fact that lim M g b→ =1 λ λ , the propor-
tionality constant can be determined such that λ g is de-
fined as

λ g
D g M g

D g M g
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the green-noise principal wavelength. This implies that
the parent process, φ p , is itself a blue-noise point process
with intensity � / M.If we assume a stationary and isotro-
pic green-noise pattern, the pair correlation will have the
form of Figure 1(a) given that:
� daughter pixels, on average, will fall within a circle of
radius rc centered around a parent point such that
πr Mc

2 = (the area of the circle with radius rc is equal to
the average number of pixels forming a cluster)
� neighboring clusters are located at an average distance
of λ g apart

� as r increases, the influence that clusters have on neigh-
boring clusters decreases.

The result is a pair correlation that has a nonzero com-
ponent for 0≤ <r rc due to clustering, a decreasing influ-
ence as r increases, and peaks at integer multiples of λ g

indicating the average separation of pixel clusters. Note
that the parameter rc is also indicated by a diamond
placed along the horizontal axis in Figure 1(a).

Assuming that the variation in cluster size is small for a
given I g , the placement of clusters λ g apart leads to a
strong spectral peak in P f( )ρ at f f gρ = , the green-noise
principal frequency:

f
g M D g

g M D g
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( ) / / , / .

for
for

0 1 2
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From (12) we make two intuitive observations: as the av-
erage size of clusters increases, f g approaches DC; and as
the size of clusters decreases, f g approaches f b . Figure
1(b) illustrates the desired characteristics of P f( )ρ for φG
showing three distinct features: 1) little or no low-fre-
quency spectral components, 2) high-frequency spectral
components that diminish with increased clustering, and
3) a spectral peak at f f gρ = .

The sharpness of the spectral peak in P f( )ρ at the
green-noise principal frequency is affected by several fac-
tors. Consider first blue noise where the separation be-
tween minority pixels should have some variation. The
wavelengths of this variation, in blue noise, should not be
significantly longer than λ b as this adds low-frequency
spectral components to the corresponding dither pattern
I g [1], causing I g to appear more white than blue. The
same holds true for green noise with large variations in
cluster separation leading to a spectral peak at f f gρ =
that is not sharp but blurred as the variation in separation
adds new spectral components to I g . This whitening ef-
fect on I g is also created by increased variation in the size
of clusters with excessively large clusters leading to
low-frequency components and excessively small clusters
leading to high. In summary, the sharpest spectral peak at
f g will be created when I g is composed of round (isotro-
pic) clusters whose variation in size is small and whose
separation between nearest clusters is also isotropic with
small variation.

Error Diffusion with Output-Dependent Feedback
Like Floyd and Steinberg’s error diffusion, Levien’s error-
diffusion with output-dependent feedback (EDODF)
predates the stochastic model describing the halftones
that it creates. Here, the weighted sum of previous output
pixels is added back to the accumulated pixel value, x na [ ],
such that

y n
x n x n x n x na e h[ ]

, ( [ ] [ ] [ ] [ ])
,

=
= + + ≥




1 0
0 else (13)
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where x nh [ ]is the hysteresis or feedback term defined as

x n h a y n ih i
i

N

[ ] [ ]= ⋅ −
=
∑

1 (14)

with ∑ ==i
N

ia0 1 and h is an arbitrary constant. Called the
hysteresis constant, h acts as a tuning parameter with larger

h leading to coarser output textures [5] as h increases
(h >0) or decreases (h <0) the likelihood of a minority pixel
if the previous outputs were also minority pixels. The result
is a pattern with clustered ones and zeros with larger hys-
teresis constants leading to coarser halftones as in Figure 6
where the error/feedback coefficients are as shown in Fig-
ure 5 for h =05. , 1.0, 2.0, and 3.0.

Looking at the dither patterns created at extreme val-
ues of h near 0 and 3.0, Lau et al. noted that patterns ex-
hibited strong anisotropic features with clusters
becoming too elongated along either the vertical (h =0)
or horizontal axis (h =30. ). In responses to these arti-
facts, Lau et al. looked at applying the various modifica-
tions first proposed by Ulichney and found that
combining Floyd and Steinberg’s four-weight filter for
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� 5. The two-error and two-feedback coefficient filter first intro-
duced by Levien.

� 6. The image Adrian halftoned using Levien’s error-diffusion with output-dependent feedback for hysteresis values (a) h =10. and (b)
h = 2 0. .

� 7. The image Adrian halftoned using Levien’s error-diffusion with output-dependent feedback for hysteresis values (a) h =10. and (b)
h = 2 0. using balanced weights.



feedback and Stucki’s 12-weight filter for error with
30% perturbation on each filter gave acceptable results
that broke up the long clusters formed at extreme values
of h above 2.0. But in a later paper, Lau and Arce [26]
looked at changing the proportion of feedback from the
horizontal and vertical feedback weights such that they
could improve the radial symmetry of patterns at the
various values of h, and in so doing, they specified the
optimal values of a1 and a 2 versus h. Shown in Figure 7
are the halftone images produced using these balanced
weights for h =05. , 1.0, 2.0, and 3.0, and shown in Fig-
ure 8 are the spatial and spectral statistics for h =25. . As
illustrated, optimizing a1 and a 2 to h greatly improves
the radial symmetry of resulting pattern. As such, Lau
and Arce even suggested employing an adaptive hyster-
esis/feedback parameter that changes either according to
the gray level of the current input pixel (tone dependent
hysteresis) or according to the local frequency content
(frequency dependent hysteresis).

Green-Noise Dither Arrays
Having a statistical model describing the spatial and spec-
tral properties of visually pleasing dither patterns that
cluster minority pixels, Lau et al. [9] introduced the BI-
nary Pattern Pair Correlation Construction Algorithm
(BIPPCCA) as an iterative process for constructing dither
patterns that mimic green noise. By specifying a pair corre-
lation shaping filter, BIPPCCA can construct dither pat-
terns with arbitrary pair correlations and, in the case of
green noise, with varying coarseness. Like BIPPSMA for
blue noise, BIPPCCA also represented a major milestone
for the green-noise model because it was the first direct ap-

plication of the ideal spatial characteristics of green noise as
BIPPCCA iteratively adds points to a dither pattern such
that the resulting pattern has a pair correlation matching
that of the ideal green-noise pattern.

From BIPPCCA, Lau et al. [9], [27] constructed the
first green-noise dither arrays that, like blue-noise dither
arrays, convert a continuous-tone image to binary using a
pixelwise thresholding operation between a pixel in the
original image and the corresponding pixel within the ar-
ray. In [27], multiple dither arrays were constructed in a
correlated fashion to regulate the amount of dot overlap
in color halftones. Figure 9 is an example of a mono-
chrome binary halftone pattern created using a green-
noise dither array.

Conclusions: Blue Versus Green Noise
In devices that can robustly accommodate isolated pixels,
such as various video displays and many ink-jet printers,
blue noise is the preferred halftoning technique. How-
ever, for the many print marking engines that cannot ro-
bustly accommodate isolated pixels, various factors must
be taken into account including the visual pleasantness
and edge detail of the halftone, the variation in the
printed dot and the distortion introduced by the printing
device, and in the case of color the interaction of the over-
lapping patterns/ink. It is also important to remember
that we need not consider the decision as choosing be-
tween blue or green noise, but we should, instead, focus
on the tunability of green noise to range from a fine blue
noise to a coarse pattern closer to locally periodic clus-
tered dot and to optimize the coarseness of green noise to
a specific printing device.
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� 8. The spatial and spectral statistics for Levien’s error-diffusion with output-dependent feedback using balanced weights with h = 25.
at gray levels (a) g =1 32/ and1 16/ (red), (b)1 8/ and1 4/ (red), and (c)1 3/ and1 2/ (red).



Visual Pleasantness
Figure 10 is a diagram illustrating the relationships be-
tween perceived resolution, a measure of visual pleasant-
ness, and halftone robustness (resistance to printer
distortion) for the three halftoning models of amplitude
modulated (AM, a term sometimes used to for locally pe-
riodic classical screen halftoning), blue noise, and
green-noise halftoning. Given that the purpose of a bi-
nary dither pattern is to represent a continuous-tone level,
a dither pattern should not have any form or structure of
its own, and a pattern succeeds when it is innocuous. Blue
noise is visually pleasant because it does not clash with the
structure of an image by adding one of its own or degrade
it by being too “noisy” or uncorrelated. Blue noise even
defies the structure of the underlying grid such that even

though the dots are perfect squares with each precisely
aligned to a given position on a rectangular grid, the col-
lective ensemble tends to destroy this rigorous alignment
creating what can be called a grid defiance illusion [1].

In instances where because of printer distortion mi-
nority pixels must be clustered, the green-noise model has
many benefits for printer distortion such as minimizing
the perimeter-to-area ratio, but primarily it describes the
spatial and spectral properties of the optimal halftones in
terms of visual pleasantness. In its essence, the
green-noise model describes the halftone pattern most
like blue noise under the constraint that minority pixels
must be clustered with an average cluster size greater than
one pixel. At one pixel, the green-noise model is equiva-
lent to blue, and it is, therefore, said that green noise has
blue noise as a limiting case. On the opposite end of the
coarseness spectrum, green noise benefits from its sto-
chastic arrangement of clusters, and because the eye is less
sensitive to the artifacts created by stochastic halftones,
green noise has better visual fidelity than periodic clus-
tered-dot halftones with the same average cluster size.
Green noise maintains the grid defiance illusion, and so in
Figure 10, the line representing green noise is shown as al-
ways having a visual fidelity higher than AM at the same
measure of robustness.

Printer Distortion
Due to various distortions to the printed dot, the gray
level produced by a printed halftone does not equal the ra-
tio of black to white pixels in the dither pattern. As a
means of correcting this disparity in gray level, a means of
tone correction is applied such that each pixel of the input
image with gray level g is replaced by a pixel with some
gray level ′g [21] where the mapping of gray levels from g
to ′g is determined by direct measurement of the input
versus output reflectance curve for a given printer [28] or
is estimated using a printed dot model [29].

Instead of applying tone correction to correct for
printer distortions, model-based halftoning algorithms
have been proposed that take into account a model of the
printed dot to decide when and when not to print a dot in
the halftone [30], [31]. But the problem with many
model-based techniques is that they assume that dots are
printed consistently by relying on an average dot
size/shape, and by assuming reliability in the printing de-
vice, resulting patterns are typically computationally ex-
pensive tone-corrected blue-noise patterns [32]. The
patterns are, therefore, inappropriate in devices that do
not produce isolated pixels reliably such as in laser print-
ers [33], where compensating for distortion is much
more complicated as isolated dots are more sensitive to
process variation [3]. This is clearly evident in laser print-
ers and hence the reason that these devices have relied
upon periodic clustered-dot halftoning for so long.

Noting that periodic clustered-dot halftoning pro-
duces patterns with far less noticeable variation in tone in
laser printers, it is far more advantageous, in unreliable
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� 9. A binary halftone image created using a green-noise dither
array.

� 10. The relationships between spatial resolution and halftone
robustness for the various halftoning paradigms for a fixed
print resolution.



printing devices, to use a halftoning
scheme that resists distortion, mak-
ing the output more robust to varia-
tions in the printing process [6].
How robustness is achieved is
through clustering [35] as it is the
perimeter-to-area ratio of printed dot
clusters that is the most tell-tale char-
acteristic to the impact of printer dis-
tortion on the halftone [3], [4], and a
technique like green noise will always
be more robust than blue with
greater robustness achieved through
increased clustering. Increased ro-
bustness is, therefore, indicated in
Figure 10 with AM halftoning pro-
viding the most robust patterns with green noise bridging
the gap with blue noise.

Color Halftoning: Stochastic Moiré
In traditional color halftoning devices, the binary half-
tones of CMYK are superimposed [36], and in the case of
periodic clustered-dot halftoning, the regular grids of the
halftone screens interact to form periodic moiré patterns
whose visibility are minimized by aligning the CMYK
halftones to screen angles 15°, 75°, 0°, and 45°, respec-
tively [37], [38]. Because it is commonly believed that
moiré is a result of superimposing regular patterns, sto-
chastic halftones such as those produced by blue noise are
believed to avoid the moiré phenomenon allowing for the
introduction of low-cost color ink-jet printers [34]. But
superimposing uncorrelated dispersed-dot patterns does
lead to low-frequency graininess commonly referred to in
halftoning literature as color-noise [39].

The low-frequency graininess created by superimpos-
ing dispersed-dot halftones is, in fact, a product of the
same moiré phenomenon found in periodic clustered-dot
halftones, but because the component colors are stochas-
tic, the resulting moiré is an aperiodic texture referred to
as stochastic moiré [10]. And the visibility of this moiré is
its worst when overlapping halftones are uncorrelated
and have the same principal wavelength. As a response to
stochastic moiré, considerable effort is being made to cor-
relate the CMYK halftones such that patterns form either
perfectly overlapping or perfectly interlocking screens
[38], [40]. A major problem that these overlapping and
interlocking screens create is that they require a very high
degree of control over the alignment of screens in the final
print as even slight misregistration can lead to dramatic
shifts in color/texture.

When looking at the superposition of green-noise half-
tones, the visibility of stochastic moiré is increased by the
lower frequency of the resulting moiré textures. While in-
terlocking the CMYK screens minimizes the visibility of
the extraneous textures, Lau et al. [10], [11] write that
the visibility of stochastic moiré is minimized in
uncorrelated screens by varying the coarseness between

colors such that the probability of overlapping screens
having the same principal wavelength is minimized, as in
Figure 11. Lau et al. argue that the optimal coarseness of
screens is ordered according to the luminance of each
colorant such that, for a given printer, black has the small-
est average cluster size followed by magenta, cyan, and
then yellow with the largest. Because these overlapping
green-noise screens minimize stochastic moiré visibility
without correlation, the constraints regarding registra-
tion are greatly alleviated, and Lau et al. further argue
that, in cases where perfect registration cannot be guaran-
teed, green-noise halftoning is the preferred technique
even in an ideal printing device where traditionally blue
noise would otherwise be considered optimal.
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� 11. Color halftones produced using (a) blue and (b) green noise with no correlation be-
tween colors showing the varying effects of stochastic moiré where the patchiness of moiré
is reduced using green noise by varying the coarseness of patterns between colors.
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