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Abstract: Optical proximity correction (OPC) methods are resolution
enhancement techniques (RET) used extensively in the semiconductor
industry to improve the resolution and pattern fidelity of optical lithography.
In pixel-based OPC (PBOPC), the mask is divided into small pixels, each
of which is modified during the optimization process. Two critical issues
in PBOPC are the required computational complexity of the optimization
process, and the manufacturability of the optimized mask. Most current
OPC optimization methods apply the steepest descent (SD) algorithm to
improve image fidelity augmented by regularization penalties to reduce the
complexity of the mask. Although simple to implement, the SD algorithm
converges slowly. The existing regularization penalties, however, fall
short in meeting the mask rule check (MRC) requirements often used in
semiconductor manufacturing. This paper focuses on developing OPC op-
timization algorithms based on the conjugate gradient (CG) method which
exhibits much faster convergence than the SD algorithm. The imaging
formation process is represented by the Fourier series expansion model
which approximates the partially coherent system as a sum of coherent
systems. In order to obtain more desirable manufacturability properties of
the mask pattern, a MRC penalty is proposed to enlarge the linear size of the
sub-resolution assistant features (SRAFs), as well as the distances between
the SRAFs and the main body of the mask. Finally, a projection method
is developed to further reduce the complexity of the optimized mask pattern.
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1. Introduction

Dueto the resolution limits of optical lithography systems, the electronics industry has relied
on resolution enhancement techniques (RET) to compensate and minimize mask distortions as
they are projected onto semiconductor wafers [1,2]. Resolution in optical lithography obeys the
Rayleigh resolution limitR = k λ

NA , whereλ is the wavelength,NA is the numerical aperture,
andk is the process constant which can be minimized through RET methods [3–6]. In optical
proximity correction (OPC), mask amplitude patterns are modified by the addition of the sub-
resolution assistant features (SRAFs) that can pre-compensate for imaging distortions [1,2]. In
PBOPC, the mask is divided into small pixels, each of which is modified during the optimiza-
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tion process. The optimized PBOPC is then fabricated by two approaches: the raster scanning
e-beammethod and the vector scanning e-beam method [7]. In raster scanning, each pixel on
the mask pattern is exposed by the electron-beam moving back and forth row by row. Due to
the low throughput of the raster scanning method, the vector scanning approach is now pre-
ferred for mask fabrication. In the vector scanning method, the turned off electron-beam first
moves on a vector path and directly reaches the region to be exposed. Then, the electron-beam
is turned on to expose the nether feature on the PBOPC. After that, the electron-beam is turned
off and moves again until the entire pattern is completely exposed [7]. Tiny features are either
unmanufacturable or disadvantageous for the mask writing accuracy. Since each pixel on the
PBOPC may be flipped independently, the two critical issues in PBOPC are the computational
complexity in the design and the manufacturability of the optimized mask.

Several OPC optimization algorithms have been proposed in the literature. These range from
heuristic and empirically-based design rules to optimization-based inverse algorithms. Sherif,
et al. derived an iterative approach to generate binary masks in incoherent diffraction-limited
imaging systems [8]. Liu and Zakhor developed a binary and phase shifting mask (PSM) design
strategy based on the branch and bound algorithm and simulated annealing [9]. Erdmann pro-
posed the optimization of the mask and illumination parameters with a genetic algorithm [10].
Granik described and compared solutions of inverse mask problems [11,12]. All of the methods
mentioned above, however, are not based on gradient type optimization and thus the searching
process for a suitable solution is either computationally expensive or not efficient.

Poonawala and Milanfar recently introduced a PBOPC optimization framework for coherent
illumination sources relying on the SD algorithm [13]. Ma and Arce generalized this algorithm
to partially coherent illumination (PCI) systems [14]. Subsequently, Ma and Arce proposed a
three-dimensional OPC optimization algorithm, and a simultaneous source and mask optimiza-
tion algorithm [15, 16]. In each iteration of the gradient-based OPC optimization, the aerial
image needs to be recalculated due to the updated pixel values on the mask [14]. The aerial
image calculation is, in particular, the most time-consuming step in the OPC optimization pro-
cess. Thus, the overall runtime of the gradient-based OPC optimization is approximately pro-
portional to the iteration number. It has been proven that the SD solution linearly converges
to the optimal solution with respect to the iteration number, while the Newton’s method has a
quadratic convergence speed, and the nonlinear CG method converges in linear or superlinear
speed [17]. In practice, the CG method has much faster convergence than SD. Since the SD
algorithm has very slow convergence characteristics, as compared to other efficient optimiza-
tion algorithms, the OPC SD optimization framework is not efficient, and other approaches
such as the CG method and Newton’s method are therefore needed [17]. Furthermore, unlike
the Newton-class of optimization algorithms, the CG method only needs the first derivative
of the cost function [17]. This property makes the CG method as simple to implement as the
SD algorithm. In our future work, we plan to study and develop an in-depth analysis of the
convergence properties of CG algorithms, and compose a separate manuscript devoted to this
topic exclusively. To this end, this paper develops OPC optimization based on the CG method
to seek optimal OPC mask patterns. Compared to the SD algorithm, the CG method often leads
to greater image fidelity using much less iterations, thus effectively reducing the overall run-
time. A partially coherent illumination system model is assumed the partially coherent imaging
system is represented by the Fourier series expansion model [14,18].

A second contribution of the paper is to introduce a mask rule check (MRC) penalty to
obtain more desirable manufacturability characteristics for the optimized mask. Currently, a
set of regularization and post-processing techniques have been proposed to reduce the mask
complexity [13, 19, 20]. However, they are inadequate to generate MRC-favorable optimized
masks. MRC is used currently in the mask design process to constrain the mask geometries
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[21, 22]. Usually, the minimum linear size of the SRAFs, and the distance from the SRAFs
to the main body of the mask are forced to be above some prescribed thresholds. However,
most of the existing MRC methods are applied to the post-optimized mask pattern, and serve as
post-processing steps, which lead to sub-optimal solutions. In contrast, the proposed approach
in this paper embeds the MRC penalty in the cost function resulting in MRC-favorable optimal
masks.

A third contribution of this paper is the development of a projection method to further re-
moves the small SRAFs. The projection method projects the pixel values on the mask between
the subspace of the optimal solution and the subspace supported by the low frequency compo-
nents in two-dimensional discrete cosine transform (2D-DCT) domain. Simulation shows that
the resulting optimized OPC has much lower complexity.

The remainder of the paper is organized as follows. The partially coherent imaging model is
discussed in Section 2. The OPC optimization process based on the CG method under partially
coherent system is developed in Section 3. The MRC penalty is introduced in Section 4. The
projection method is proposed in Section 5. Conclusions are provided in Section 6.

2. Partially Coherent Imaging Model

2.1. Partially Coherent Illumination System

Partially coherent illumination has been shown to improve the theoretical resolution limit in
lithography. Thus, practical lithography systems often operate under partially coherent illumi-
nation due to non-zero width sources and off-axis illumination from spatially extended sources.
A schematic of an optical lithography system with partially coherent illumination is illustrated
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Fig. 1. Optical lithography system with partially coherent illuminations.

in Fig. 1. The light source with a wavelength ofλ is placed at the focal plane of the first con-
denser, illuminating the mask. Common illuminations sources include dipole, quadrupole and
annular shapes, all introducing partial coherence. The image of the photomask is formed by
the projection optics onto the wafer [1]. The partial coherence factorσ = a

b is defined as the
ratio between the size of the source image and the pupil. Radiation of partially coherent light
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has been shown to be described as an expansion of coherent modes added incoherently in the
imageplane [18].

According to the Hopkins imaging model, the light intensity distribution exposed on the
wafer in the PCI system is bilinear and described by [2]

I(r) =
∫ ∫

M(r1)M(r2)γ(r1 − r2)h
∗(r− r1)h(r− r2)dr1dr2, (1)

wherer = (x,y) is the coordinate on the image plane located on the wafer.r1 = (x1,y1) and
r2 = (x2,y2) are the coordinates on the object plane located on the mask.M(r) is the mask
pattern,γ(r1 − r2) is the complex degree of coherence, andh(r) represents the amplitude im-
pulse response of the optical system. The complex degree of coherenceγ(r1 − r2) is generally
a complex number, whose magnitude represents the extent of optical interaction between two
spatial locationsr1 = (x1,y1) andr2 = (x2,y2) of the light source [1]. The complex degree of
coherence in the spatial domain is the inverse 2-D Fourier transform of the illumination shape.
The Hopkins imaging model assumes that the light diffraction from the masks is invariant with
respect to the direction of the incident light. The diffraction spectrum for oblique incidence
is obtained by a simple shift of the diffraction spectrum for vertical incident light. This as-
sumption is less accurate for modern high NA projection imaging systems using strong off-axis
illuminations. In such cases, PBOPC optimization with more rigorous imaging models needs
to be explored as this case is left for future research work. In general, Eqn. (1) is tedious to
compute, both analytically and numerically [23]. In the following, the Fourier series expansion
model is applied to formulate the imaging process of a partially coherent system in the discrete
domain, and accelerate the calculation of Eqn. (1) [18].

2.2. Fourier Series Expansion Model

Assume the mask is constrained in the square areaA defined byx,y ∈ [−D
2 , D

2 ]. Thus, for the
computations involved in Eqn. (1), the only values ofγ(r) needed are those inside the square
areaAγ defined byx,y ∈ [−D,D]. Applying the 2-D Fourier series expansion,γ(r) can be
rewritten as

γ(r) = ∑
m

Γmexp( jω0m · r), (2)

and

Γm =
1

D2

∫

Aγ
γ(r)exp(jω0m · r)dr, (3)

whereω0 = π/D, m = (mx,my), mx andmy are integers, and· is the inner-product operation.
Substituting Eqn. (2) into Eqn. (1), the light intensity on the wafer is given by

I(r) = ∑
m

Γm|M(r)⊗hm(r)|2, (4)

where
hm(r) = h(r)exp(jω0m · r). (5)

It is observed from Eqn. (4) that PCI leads to the superposition of coherent systems. Since the
Fourier series expansion model is based on direct discretization of the Hopkins imaging model,
they have the same accuracy. For the annular illumination, the complex degree of coherence is

γ(r) =
J1(2πr/2Dcu)

2πr/2Dcu
−

D2
cu

D2
cl

J1(2πr/2Dcl)

2πr/2Dcl
, (6)
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wherer =
√

x2 + y2. The corresponding Fourier series coefficients are

Γm =

{

4D2
cuD2

cl
πD2(D2

cl−D2
cu)

for D/2Dcl ≤ |m| ≤ D/2Dcu

0 elsewhere
, (7)

whereDcl andDcu are the coherent lengths of the inner and outer circles respectively.σinner =
λ

2DclNA andσouter = λ
2DcuNA are the corresponding inner and outer partial coherence factors. The

convolution kernelh(r) is defined as the Fourier transform of the circular lens aperture with
cutoff frequencyNA/λ [24,25]; therefore,

h(r) =
J1(2πrNA/λ )

2πrNA/λ
. (8)

3. Inverse Lithography Optimization

Let M(x,y) be the input binary mask to an optical lithography systemT{·}, with a partially
coherent illumination. The PCI optical system is approximated by a Hopkins imaging model.
The effect of the photoresist is modeled by a hard threshold operation. The output pattern is
denoted asZ(x,y) = T{M(x,y)}. Given aN×N desired output patterñZ(x,y), the goal of OPC
design is to find the optimizedM(x,y) calledM̂(x,y) such that the distance

F = d(Z(x,y), Z̃(x,y)) = d(T{M(x,y)}, Z̃(x,y)) (9)

is minimized, whered(·, ·) is the square of theL2 norm. The OPC optimization problem can
thus be formulated as the search ofM̂(x,y) over theN ×N real spaceℜN×N such that

M̂(x,y) = arg min
M(x,y)∈ℜN×N

d(T{M(x,y)}, Z̃(x,y)). (10)

The forward imaging process is illustrated in Fig. 2, where the Fourier series expansion
model is used in the image formation stage, and a hard threshold function is used to approximate
the photoresist effect. The output pattern of the optical system is binary. Further, since the

2
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m
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sig{ H {m} }m

m
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Mask Convolution Approximation 

of Image Formation Process

Sigmoid Approximation Output z

Fig. 2. Approximated forward process model.

derivative of the sigmoid function exists, it is used to approximate the hard threshold function.
The sigmoid function is

sig(x) =
1

1+exp[−a(x− tr)]
, (11)

wheretr is the process threshold, anda dictates the steepness of the sigmoid function.
Following the definitions above, the following notations are used:
1) TheMN×N matrix represents the mask pattern with aN2 × 1 equivalent raster scanned

vector representation, denoted asm.
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2) A convolution matrixHm is a N2×N2 matrix with an equivalent two-dimensional filter
hm.

3) The desiredN ×N binary output pattern is denoted asZ̃. It is the desired light distribution
sought on the wafer. Its vector representation is denoted as ˜z.

4) The output of the sigmoid function is theN ×N image denoted as:

Z = sig{∑
m

Γm|H
m{m}|2}. (12)

The equivalent vector is denoted asz.
5) The hard threshold version ofZ is the binary output pattern denoted asZb. Its equivalent

vector is denoted aszb, with all entries constrained to 0 or 1.
6) The optimizedN ×N gray mask denoted aŝM minimizes the distance betweenZ andZ̃,

ie,
M̂ = argmin

M
d(sig{∑

m
Γm|H

m{m}|2}, Z̃). (13)

Its equivalent vector is denoted as ˆm ∈ [0,1].
7) The binary optimized mask̂Mb is the quantization ofM̂. Its equivalent vector is denoted

asm̂b, with all entries constrained to 0 or 1.
Given the gray level patternz = sig{∑

m
Γm|Hm{m}|2}, the ith entry in this vector can be

represented as

zi =
1

1+exp[−a∑
m

Γm|
N2

∑
j=1

hm
i j m j|

2 +atr]

, i = 1, . . .N2, (14)

wherehm
i j is thei, jth entry of the filter. In the optimization process, ˆm is searched to minimize

thesquare of theL2 norm of the difference betweenz andz̃. Therefore,

m̂ = argmin
m̂

{F(m)}, (15)

where the cost functionF(·) is defined as:

F(m) = ‖z̃− z‖2
2 =

N2

∑
i=1

(z̃i − zi)
2, (16)

where‖ · ‖2 is the L2 norm andzi is represented in Eqn. (14). In order to reduce the above
bound-constrained optimization problem to an unconstrained optimization problem, we adopt
the parametric transformation [13]. Let

m j =
1+cos(θ j)

2
, j = 1, . . . ,N2, (17)

whereθ j ∈ (−∞,∞) andm j ∈ [0,1]. Defining the vectorθ = [θ 1, . . . ,θ N2]T , the optimization
problem is formulated as

θ̂ = argmin
θ

{F(θ)}

= argmin
θ



















N2

∑
i=1











z̃i −
1

1+exp[−a∑
m

Γm|
N2

∑
j=1

hm
i j

1+cosθ j
2 |2 +atr]











2
















. (18)
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The CG method is used to optimize the above problem. CG method was originally designed
to solve linear systems with positive definite coefficient matrices [26]. Fletcher and Reeves
generalized the linear CG method to nonlinear problems [27]. The CG method generates a set
of gradient estimate vectors{P0,P1, . . . ,Pl} with some properties, along which the cost function
is successively minimized. Each vectorPi is updated fromPi−1, and is the linear combination
of the past gradients. Thus, each new minimizing directionPi inherits the useful information
from its ancestor. In the past, a variety of CG methods have been proposed, such as Fletcher-
Reeves method, Polak-Ribière method, and so on [17]. In this paper, we adopt the Fletcher-
Reeves method. The comparison among these CG algorithms and the method to select the
proper algorithm are out of the scope of this paper.

Let Θ ∈ ℜN×N is the equivalent matrix ofθ . The gradients∇F(Θ) can be calculated as
follows [14]:

∇F(Θ) = a×sinΘ⊙{∑
m

Γm(hm)◦⊗ [(Z̃−Z)⊙ Z ⊙ (1N×N −Z)⊙ ((hm)∗⊗M)]}

+ a×sinΘ⊙{∑
m

Γm(hm)◦∗⊗ [(Z̃−Z)⊙ Z ⊙ (1N×N −Z)⊙ (hm ⊗M)]}, (19)

where∇F(Θ) ∈ ℜN×N , ⊙ is the element-by-element multiplication operator,(hm)◦ rotates
hm by 180◦ degrees in both row and column directions,∗ is the conjugate operation, and
1N×N ∈ ℜN×N has all entries equal to 1. AssumingΘk is thekth iteration result, then the CG
method is summarized as following:

Iteration 0: Given the desired binary mask patternZ̃, calculate

Θ0(i, j) =

{

4π
5 for Z̃(i, j) = 0
π
5 for Z̃(i, j) = 1

, i, j = 1,2, . . . ,N, (20)

According to Eqn. (19), assigningΘ0(i, j) = π or Θ0(i, j) = 0 would degrade the gradient to
0 and therefore the iteration would be terminated. Thus, we select the angle values4π

5 and π
5 ,

whichare close to the ideal values. In addition, we initialize

P0 = −∇F(Θ0), (21)

whereΘ0,P0 ∈ ℜN×N .

Iteration k:
Step 1: Line search the step lengthsk ∈ ℜ, such that

sk = argmin
s

F(Θk + sPk). (22)

Step 2: UpdateΘk+1 ∈ ℜN×N

Θk+1 = Θk + skPk. (23)

Step 3: Calculateβ k ∈ ℜ

β k =
‖∇F(Θk+1)‖2

2

‖∇F(Θk)‖2
2

. (24)

Step 4: UpdatePk+1 ∈ ℜN×N

Pk+1 = −∇F(Θk+1)+β kPk. (25)
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Stop:
Until the termination condition is reached.

The iterative optimization above, in general, leads to gray mask with pixel values between 0
and 1. Therefore a post-processing step is needed to obtain the binary optimized mask:

m̂bi = U(m̂i − tm), i = 1, . . . ,N2, (26)

wheretm is a global threshold. We define the pattern errorE as the square of theL2 norm of the
distance between the desired output imageZ̃ and the actual binary output patternZb:

E =
N2

∑
i=1

‖z̃i − zbi‖
2
2 =

N2

∑
i=1

∥

∥

∥

∥

z̃i −U(∑
m

Γm|H
mmbi|

2− tr)

∥

∥

∥

∥

2

2

. (27)

In general, lower pattern errors result in lower critical dimension (CD) errors. There are some
other metrics to evaluate the performance of the optical lithography, such as the process win-
dow and so on. However this topic is out of the scope of this paper, and will be studied in the
future work. In the proposed algorithm, when the pattern error is reduced to a tolerable level, or
the iteration number reaches the prescribed upper limit, the CG iteration is terminated. In the
following simulations, the tolerable error level is set to 0. That means we would like to seek
a printed image on the wafer that is the same as the desired pattern. Therefore, the CG algo-
rithm is terminated when the printed image is the same as the desired pattern, or the iteration
number reaches the prescribed upper limit. The CG method above is tailored for the quadratic
problem [17]. However, the inverse lithography (ILT) optimization formulated in Eqn. (18) is
a non-quadratic problem, and the cost function possesses numerous local minima. Thus, the
CG method is easily trapped in these local minima. For the SD method used in prior work, the
step length is a constant. Thus, the SD method also may get stuck in a local minimum, but a
different one. Our extensive simulations show that setting the step length as a constant makes
the CG method have much faster convergence. It also leads to lower pattern errors than the
results obtained by the SD algorithm. Intuitively, the constant step length helps the CG method
skip the local minimum. Thus, in the following simulations, we replace theStep 1 above with
a constant step length. In practice, the proposed CG method often leads to linear or superlinear
convergence speed [17,28–30].

In the following, we address the advantages of the CG method, by comparing it to the perfor-
mance of SD method. In this simulation, annular illumination is applied with the inner and outer
partial coherence factorsσinner = 0.3 andσouter = 0.4. For both methods, the convolution kernel
is shown in Eqn. (8) withNA = 1.25 andλ = 193nm. We assumeh(r) vanishes outside the area
Ah defined byx,y ∈ [−56.25nm,56.25nm]. In the sigmoid function, we assign the parameters
a = 25 andtr = 0.19. The global threshold istm = 0.5, the pixel size is 5.625nm×5.625nm.
Generally, smaller step lengths lead to stable but slower convergence, while larger step lengths
lead to faster convergence or divergence. Based on this guideline, we set the step length equal
to 1, which is moderate for the underlying optimization problem.

ILT optimization is an ill-posed problem, where numerous inputs may result in the same
output. Therefore, regularization approaches are usually applied to bias the solution space to
sample solutions with some favorable properties [31]. Regularization is formulated as follows:

m̂ = argmin
m̂

{F(m)+ γR(m)}, (28)

whereF(m) is the data-fidelity term andR(m) is the regularization term which is used to re-
duce the solution space and constrain the optimized results.γ is the user-defined parameter to
reveal the weight of the regularization. In the above simulation, the quadratic penalty [13] and
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the wavelet penalty [19] are applied to reduce the pattern error introduced by post-processing
describedin Eqn. (26), and to reduce the mask complexity, respectively. The formulae of the
quadratic penalty and the wavelet penalty are summarized in Appendix A. Thus, the cost func-
tion of Eqn. (16) is adjusted as

J(m) = F(m)+ γQRQ(m)+ γW RW (m). (29)

However, makingγQ and γW too large can result in divergence of the optimization process.
In the following simulations, the regularization weights of the quadratic penalty and wavelet
penalty areγQ = 0.01 andγW = 0.025, respectively.

Figure 3 shows the performance comparison between the masks optimized with the SD and
CG methods, respectively. Figure 3(a) is the desired patternZ̃ with dimension of 1035nm×
1035nm, and Fig. 3(d) is its output pattern on the wafer with pattern error of 5052. Figure 3(b)
is the optimized OPC pattern from the SD method, and Fig. 3(e) is its output pattern with pattern
error of 1368. Figure 3(c) is the optimized OPC pattern from the CG method, and Fig. 3(f) is its
output pattern with pattern error of 1288. Compared to the SD method, the CG method reduces
the pattern error by 6%

Pattern Error = 5052 Pattern Error = 1288
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Fig. 3. Performance comparison between the SD method and the CG method; (a) desired
patternZ̃; (b) optimized OPC pattern from the SD method; (c) optimized OPC pattern from
the CG method; (d) the output pattern when (a) is used as input; (e) the output pattern when
(b) is used as input; (f) the output pattern when (c) is used as input.

Figure 4 illustrates the convergence comparison, wherex-axis is the iteration number and
y-axis is the pattern error. In Fig. 4, the convergence of SD and CG methods are shown in
black solid line and blue dashed line, respectively. The SD method converges to pattern error of
1368 after 150 iterations using 996 seconds, while the CG method converges to a pattern error
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Table 1.Comparison of performance and convergence

Pattern error Iteration number Runtime (s)
SD 1368 150 996
CG 1288 33 220

CG + MRC 1492 33 222
Project method 1880 54 352

of 1288 after 33 iterations using 220 seconds. The performance and convergence comparison
betweenthe two approaches are summarized in the 2nd to 3rd rows of Table 1.
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Fig. 4. Convergence comparison of the SD method (black solid line), the CG method (blue
dashedline), the CG method with MRC penalty (green dotted line), and the projection
method (red dot-dashed line).

4. MRC Penalty

Although the wavelet penalty has been applied in the above simulation, numerous small open-
ing and blocking areas are still contained in Fig. 3(b) and 3(c). In addition, the SRAFs are too
close to the main body of the mask pattern. These characteristics make the mask fabrication
more difficult. Figure 5 illustrates the influence of the wavelet penalty weight on the optimized
OPCs and their output patterns. Figures 5(a), 5(b) and 5(c) show the optimized OPCs with
γW = 0.025, 0.035 and 0.045, respectively. Figures 5(d), 5(e) and 5(f) show the output pat-
terns corresponding to their above OPC patterns. It is shown that increasing the wavelet penalty
weight γW cannot enlarge the dimensions of the SRAFs or the distances between the SRAFs
and the main body of the mask. In addition, larger wavelet penalty weight will increase the
pattern error. Particularly, Fig. 5(f) shows that whenγW = 0.045, some bridges appear in the
output pattern. Therefore, the wavelet penalty falls short to generate MRC-favorable optimized
masks.

In order to make the solution have more desirable manufacturability properties, a MRC
penalty is proposed in this section. MRC is used currently in the mask design process to con-
strain the mask geometries. Usually, the minimum linear size of the SRAFs, and the distance
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Fig. 5. Influence of the wavelet penalty weight on the optimized OPCs and their output
patterns;(a) optimized OPC pattern withγW = 0.025; (b) optimized OPC pattern with
γW = 0.035; (c) optimized OPC pattern withγW = 0.045; (d) the output pattern when (a) is
used as input; (e) the output pattern when (b) is used as input; (f) the output pattern when
(c) is used as input.

from the SRAFs to the main body of the mask are forced to be above some prescribed thresh-
olds. However, most of the existing MRC methods are applied to the post-optimized mask
pattern, and serve as post-processing steps, which lead to sub-optimal solutions. In contrast, the
proposed MRC penalty in this paper is embedded in the optimization cost function. The MRC
penalty term is formulated as

RM(M) = −1T
N×1[(M− tmN×N)⊙ (g⊗M)]1N×1, (30)

wheretmN×N ∈ ℜN×N has all entries equal totm, g is referred to as the MRC filter,g⊗M is a
weighted sum of each pixel value and its neighbors, andM − tmN×N judges whether the pixel
value is abovetm and carved on the binary mask or not.tm is a constant typically defined as 0.5.
The meaning of the MRC penalty is explained as follows. Consider the value of a pixel located
at (x0,y0) that is larger thantm, i.e., p(x0,y0) > tm. Then,(M− tmN×N)(x0,y0) > 0. If we want
to obtain a low penalty value, we need to keep(g⊗M)(x0,y0) as large as possible, which means
that we want all pixel values aroundp(x0,y0) to be larger thantm. The similar analysis applies
for the case ofp(x0,y0) < tm. In other word, it is preferable to have the value ofp(x,y)− tm
around the location of(x0,y0) have the same sign ofp(x0,y0)− tm, thus both of the mask
opening and blocking areas are concentrated and enlarged. In our simulations,tm = 0.5, and
g = 13×3, which means that we equally sum each pixel value with its eight neighboring pixel
values. Through this way, the linear sizes of the SRAFs, and the distances from the SRAFs to
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the main body of the mask will be simultaneously increased. Eqn. (30) can be reformulated as

RM(m) =
N2

∑
k=1

(tm −mk)(
N2

∑
j=1

gk, jm j). (31)

As derived in Appendix B, the gradient ofRM(Θ) is

∇RM(Θ) = (4.5−2g⊗M)⊙ (−0.5sinΘ), (32)

thus, the cost function in Eqn. (29) is adjusted as

J(m) = F(m)+ γQRQ(m)+ γW RW (m)+ γMRM(m), (33)

Figure6(a) shows the resulting OPC pattern by optimizing Eqn. (33), where the desired pat-
tern is the same as Fig. 3(a) andγM = 0.005. Figure 6(b) shows the output pattern corresponding
to Fig. 6(a). The pattern error, iteration number and the runtime are summarized in the 4th row
of Table 1. The convergence of this simulation is shown by the green dotted line in Fig. 4. It is
observed that the MRC penalty effectively enlarges the linear sizes of SRAFs and the distances
from the SRAFs to the main body of the mask. As a tradeoff, the pattern error is increased by
21%.
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Fig. 6. Performance comparison between the the CG method with MRC penalty and the
projectionmethod; (a) optimized OPC pattern from the CG method with MRC penalty; (b)
the output pattern when (a) is used as input; (c) optimized OPC pattern from the projection
method; (d) the output pattern when (c) is used as input.

5. Projection Method

The MRC penalty proposed in Section 4 is an effective way to seek the MRC-favorable optimal
solution of the ILT problem. However, it is observed from Fig. 6(a) that some small SRAFs still
remain in the OPC pattern. If we extend the dimension of the MRC filterg in Eqn. (30), the
pattern error will be dramatically increased, while the number of the small SRAFs cannot be
further reduced. This phenomenon is illustrated in Fig. 7. Figures 7(a), 7(b) and 7(c) show the
optimized OPCs withg = 13×3, 15×5 and17×7, respectively. Figures 7(d), 7(e) and 7(f) show the
output patterns corresponding to their above OPC patterns. It is shown that increasing the MRC
filter dimension leads to more details on the optimized OPC. In addition, larger MRC filter
dimension will increase the pattern error. One approach to ameliorate the pattern distortions
as the window size of the MRC filter is increased is to replace the linear filter by a median-
type edge-preserving filter [32–34]. The cost function representations of such nonlinear filters,
however, are not differentiable and thus are not easily integrated into the optimization.
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Fig. 7. Influence of the MRC filter dimension on the optimized OPCs and their output
patterns;(a) optimized OPC pattern withg = 13×3; (b) optimized OPC pattern withg =
15×5; (c) optimized OPC pattern withg = 17×7; (d) the output pattern when (a) is used as
input; (e) the output pattern when (b) is used as input; (f) the output pattern when (c) is
used as input.

In order to further improve the manufacturability of the optimized OPC pattern, a projection
method is proposed hereafter. Optical lithography system has a low-pass filter property that
cuts off the high frequency components of the mask pattern, and constructs the print image
on the wafer by the low frequency components. It has been shown that only low frequency
components of the mask in the 2D-DCT domain significantly influence the image formation of
the optical lithography system [20]. Based on this principle, the proposed projection method is
depicted as Fig. 8.

In Fig. 8, the input is the initial patternΘ0 as described in Eqn. (20). In stage I, the CG
method with the MRC penalty is applied to obtain a raw optimized gray-level mask pattern
M̂. If M̂ satisfies the prescribed termination conditions, we thresholdM̂ by tm to obtain the
final optimized binary maskM̂b. Otherwise, we move to stage II. In stage II, we cut off the
high frequency components of̂M in the 2D-DCT domain, resulting in̂M′. Subsequently, in
stage III we threshold̂M′ to obtainM̂′

b. In addition, we updateΘ according toM̂′
b using method

described in Eqn. (20). The updatedΘ is used as the input of the stage I to continue the loop. Let
SF represent the subspace of the optimal solutions of Eqn. (10).SDCT represents the subspace
supported by the low frequency components in the 2D-DCT domain. The proposed method
iteratively projects the pixel values on the mask betweenSF and SDCT , and drives the final
solution into the intersection between the two subspaces.

Figure 6(c) shows the resulting OPC pattern from the projection method, and Fig. 6(d) shows
the corresponding output pattern. The pattern error, iteration number and the runtime are sum-
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Fig. 8. Scheme of the projection method.

marizedin the 5th row of Table 1. In stage I, the CG method is iterated for 18 iterations in
each projection loop. In stage II, we maintain 5995 low frequency components. The projection
loop is terminated when the pattern error is reduced to a tolerable level, or the overall iteration
number reaches the prescribed upper limit. The convergence of this simulation is shown by the
red dot-dashed line in Fig. 4. It is observed that the projection method effectively improves the
manufacturability of the mask. On the other hand, the pattern error is unavoidably increased by
20.6% compared to the CG method with MRC penalty.

6. Conclusion

This paper proposes a set of approaches for inverse lithography based on the CG method. The
Fourier series expansion model is used to formulate the optimization problem. Compared to the
SD algorithm, the CG method results in lower pattern error and faster convergence speed. Sub-
sequently, the MRC penalty and the projection method are proposed to further reduce the mask
complexity. As a tradeoff, the pattern errors are increased caused by the absence of numerous
SRAFs. Simulations illustrate that our approaches are effective and practical.

A. Appendix A

The quadratic penalty term isRQ(m) = 4mT (1−m). For each pixel value, the corresponding
penalty is the quadratic functionr(mi) = 1− (2mi −1)2, i = 1, . . . ,N2. The gradient ofRq(m)
is ∇RQ(Θ) = −1

2(−8M+4)·sin(Θ).
The wavelet penalty term is

RW (m) = h2
11 +h2

12· · ·+h2
( N

2 )( N
2 )

+ v2
11 + v2

12· · ·+ v2
( N

2 )( N
2 )

+d2
11 +d2

12· · ·+d2
( N

2 )( N
2 )

, (34)

where

hi j = m(2(i−1)+1)(2(j−1)+1)−m(2(i−1)+1)(2(j−1)+2)+m(2(i−1)+2)(2(j−1)+1)

−m(2(i−1)+2)(2(j−1)+2), (35)

vi j = m(2(i−1)+1)(2(j−1)+1)+m(2(i−1)+1)(2(j−1)+2)−m(2(i−1)+2)(2(j−1)+1)

−m(2(i−1)+2)(2(j−1)+2), (36)

di j = m(2(i−1)+1)(2(j−1)+1)−m(2(i−1)+1)(2(j−1)+2)−m(2(i−1)+2)(2(j−1)+1)

+m(2(i−1)+2)(2(j−1)+2), (37)
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for i, j = 1, . . . , N
2 . The gradient of the wavelet penalty is given as

∂RW

∂θ (2(i−1)+p)(2( j−1)+q)

= −
1
2

sinθ (2(i−1)+p)(2( j−1)+q)× (3m(2(i−1)+p)(2( j−1)+q)

−m(2(i−1)+p1)(2( j−1)+q)−m(2(i−1)+p)(2( j−1)+q1)

−m(2(i−1)+p1)(2( j−1)+q1)
), (38)

wherei, j = 1, . . . , N
2 , p,q = 1 or 2, p1 = (p+1) mod 2 andq1 = (q+1) mod 2.

B. Appendix B

The derivation of Eqn. (32) is as following:

∂RM(m)

∂mk
= ∂

N2

∑
p=1

[(tm −mp)(
N2

∑
j=1

gp jm j)]/∂mk

= ∂ [(tm −mk)(
N2

∑
j=1

gk jm j)]/∂mk +∂
N2

∑
p=1,p6=k

[(tm −mp)(
N2

∑
j=1

gp jm j)]/∂mk

= ∂ [(tm −mk)(
N2

∑
j=1, j 6=k

gk jm j)]/∂mk +∂ [(tm −mk)gkkmk]/∂mk

+ ∂
N2

∑
p=1,p6=k

[(tm −mp)gpkmk]/∂mk.

Sinceg = 13×3, gkk = 1 andgpk = gkp. Therefore,

∂RM(m)

∂mk
= −(

N2

∑
j=1, j 6=k

gk jm j)+∂ (tmmk −m2
k)/∂mk

+
N2

∑
p=1,p6=k

gpk(tm −mp)

= −(
N2

∑
j=1, j 6=k

gk jm j)+ tm −2mk − (
N2

∑
p=1,p6=k

gkpmp)+ tm
N2

∑
p=1,p6=k

hpk

= −2(
N2

∑
j=1

gk jm j)+2gkkmk + tm −2mk + tm
N2

∑
p=1

hpk − tmhkk

= −2(
N2

∑
j=1

gk jm j)+ tm
N2

∑
p=1

hpk.

Sincetm = 0.5 and∑N2

p=1 hpk = 9, ∇RM(M) = (4.5−2g⊗M). Therefore,

∇RM(Θ) = ∇RM(M)⊙∇M(Θ)

= (4.5−2g⊗M)⊙ (−0.5sinΘ). (39)
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