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Abstract: Phase-shifting masks (PSM) are resolution enhancement tech-
niques (RET) used extensively in the semiconductor industry to improve
the resolution and pattern fidelity of optical lithography. Recently, a set of
gradient-based PSM optimization methods have been developed to solve
for the inverse lithography problem under coherent illumination. Most
practical lithography systems, however, use partially coherent illumination
due to non-zero width and off-axis light sources, which introduce partial
coherence factors that must be accounted for in the optimization of PSMs.
This paper thus focuses on developing a framework for gradient-based
PSM optimization methods which account for the inherent nonlinearities of
partially coherent illumination. In particular, the singular value decompo-
sition (SVD) is used to expand the partially coherent imaging equation by
eigenfunctions into a sum of coherent systems (SOCS). The first order co-
herent approximation corresponding to the largest eigenvalue is used in the
PSM optimization. In order to influence the solution patterns to have more
desirable manufacturability properties and higher fidelity, a post-processing
of the mask pattern based on the 2D discrete cosine transformation (DCT) is
introduced. Furthermore, a photoresist tone reversing technique is exploited
in the design of PSMs to project extremely sparse patterns.
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1. Introduction

Due to the resolution limits of optical lithography, the electronics industry has relied on resolu-
tion enhancement techniques (RET) to compensate and minimize mask distortions as they are
projected onto semiconductor wafers [1]. Resolution in optical lithography obeys the Rayleigh
resolution limit R = k λ

NA , where λ is the wavelength, NA is the numerical aperture, and k is
the process constant which can be minimized through RET methods [2, 3, 4, 5]. In optical
proximity correction (OPC) methods, mask amplitude patterns are modified by the addition
of sub-resolution features that can pre-compensate for imaging distortions [6]. Phase-shifting
mask (PSM) methods, commonly attributed to Levenson [7], induce phase shifts in the transmit-
ted field which have a favorable constructive or destructive interference effect. Thus, a suitable
modulation of both the intensity and the phase of the incident light can be used to effectively
compensate for some of the resolution-limiting phenomena in optical diffraction.

Several approaches to PSM for inverse lithography have been proposed in the literature. Liu
and Zakhor developed a binary and phase shifting mask design strategy based on the branch and
bound algorithm and simulated annealing [8]. Pati-Kailath developed sub-optimal projections
onto convex sets for PSM designs [9]. Both of the methods, however, are not based on gradient
type optimization and thus the searching process for a suitable solution is either computation-
ally expensive or not efficient. Recently, Poonawala and Milanfar introduced a novel PSM
optimization framework for inverse lithography relying on a pixel-based, continuous function
formulation, well suited for gradient-based search [10]. Ma and Arce generalized this algorithm
so as to admit multi-phase components having arbitrary PSM patterns [11, 12]. Although these
algorithms are computationally effective, they focused on coherent illumination systems.

Most practical illumination sources, however, have a nonzero line width and their radiation
is more generally described as partially coherent [13]. Partially coherent illumination (PCI) is
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Fig. 1. Optical lithography system with partially coherent illuminations

desired, as it can improve the theoretical resolution limit [1]. In partially coherent imaging,
the mask is illuminated by light travelling in various directions. The source points giving rise
to these incident rays are incoherent with one another, such that there is no interference that
could lead to nonuniform light intensity impinging on the mask [1]. A schematic of an optical
lithography system with partially coherent illumination is illustrated in Fig. 1. The light source
with a wavelength of λ is placed at the focal plane of the first condenser (L 1), illuminating the
mask. The image of the photomask is formed by the projection optics onto the wafer [1]. The
partial coherence factor σ = a

b is defined as the ratio between the size of the source image and
the pupil [14].

The optical lithography system reduces to simple forms in the two limits. When the illumina-
tion source is at a single point, the system reduces to the completely coherent case. On the other
hand, when the illumination source is of infinite extent, the system reduces to the completely
incoherent case. Phase-shifting masks provide no advantages in the completely incoherent case,
while they make their most significant contributions to the output intensity in the completely
coherent case. Common partially coherent illumination modes lie between these two limits,
and include dipole, quadrupole and annular shapes, which provide small to large partial co-
herence factors. Illumination with large partial coherence factors is closer to the completely
incoherent illumination case, while small partial coherence factors approach completely coher-
ent illumination. There are some tradeoffs in the extent that partial coherence is used. Large
partial coherence factors, such as σ = 0.9, lead to improvements on resolution and contrast.
On the other hand, small partial coherence factors, such as σ = 0.3, have the advantage to
form sparse patterns, which can be exploited effectively by phase-shifting masks. Medium par-
tial coherence factors such as σ = 0.5 and σ = 0.6 are preferred for mask pattern containing
both sparse and dense patterns. The smallest usable partial coherence factor is approximately
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σ = 0.3 [1].
While inverse lithography optimization methods have been studied extensively in the past

two decades for the case of coherent illumination, equivalent methods for inverse lithography
under partially coherent illumination have not been addressed until recently [15]. In [16, 17],
Ma and Arce used the sum of coherent systems (SOCS) model and the average coherent ap-
proximation model for partially coherent illumination to develop gradient-based binary mask
design algorithms for inverse lithography under partially coherent illuminations. The goal of
this paper is to extend the concepts in [16, 17] to focus on the development of gradient-based
inverse optimization algorithms for the design of PSM under partially coherent illumination.
As it will be described shortly, the proposed methods are most effective with small to medium
partial coherence factors. Since the imaging synthesis and analysis of partially coherent sys-
tems are much more complex than the coherent case, the singular value decomposition (SVD)
is applied to expand the partially coherent imaging equation by eigenfunctions into a sum of
coherent systems [9, 18]. An iterative optimization framework for the PSM design is formu-
lated when the partially coherent imaging system is approximated by the first order coherent
approximation corresponding to the largest eigenvalue. The first order coherent approximation
removes the influence among different coherent components during the inverse optimization
process and reduces the computational complexity of the algorithms.

In order to attain simpler manufacturability properties, the reduction of mask pattern com-
plexity is desired. To this end, we extend the method in [19] to develop a 2D DCT post-
processing method, that reduces the detail complexity of the optimized PSM, yet preserves
or improves the fidelity of the output pattern. In essence, the approach is to reduce the solution
space by cutting off the high frequency components of the desired pattern in the discrete cosine
spectrum. Low frequency components of the mask pattern are proved to have more influence
to the fidelity of the output pattern than the high frequency components. Thus, a fraction of
the high frequency components of the optimized PSM is therefore deleted. It is interesting to
show that the fidelity of the output pattern may be improved by cutting of high frequency com-
ponents. The relationships among the number of maintained DCT low frequency components,
mask complexity and the output pattern fidelity are discussed.

The final contribution of this paper is the use of photoresist tone reversing in PSM design so
as to project extremely sparse patterns [1]. Reversion of the photoresist tone thus allows for op-
timized PSM which can produce targets with higher spatial frequency than the resolution limit
without application of the photoresist tone reversing. The remainder of the paper is organized as
follows: Partially coherent imaging models are discussed in Section 2. The PSM optimization
processes for partially coherent illumination with small to medium partial coherence factor is
discussed in Section 3. The post-processing of the mask pattern based on 2D DCT is described
in Section 4. The photoresist tone reversing technique for projecting extremely sparse patterns
is described in Section 5. Conclusions are provided in Section 6.

2. Partially coherent imaging models

Practical lithography systems most often operate under partially coherent illuminations due to
non-zero width sources and off-axis illuminations from spatially extended sources. Common
partially coherent illumination modes include dipole, quadrupole and annular shapes, as well
as small, medium, and large partial coherence factors. In order to formulate the optimization
problem of ILT with partially coherent illuminations, the Hopkins diffraction model and the
SOCS model based on SVD are discussed in this section.

(C) 2008 OSA 24 November 2008 / Vol. 16,  No. 24 / OPTICS EXPRESS  20129
#102306 - $15.00 USD Received 2 Oct 2008; revised 10 Nov 2008; accepted 18 Nov 2008; published 21 Nov 2008



2.1. Hopkins diffraction model

According to the Hopkins diffraction model, the light intensity distribution exposed on the
wafer with PCI is bilinear and described by [20]

I(r) =
∫ ∫ +∞

−∞
M(r1)M(r2)γ(r1 − r2)h∗(r− r1)h(r− r2)dr1dr2, (1)

where r = (x,y), r1 = (x1,y1) and r2 = (x2,y2). M(r) is the mask pattern, γ(r1 − r2) is the
complex degree of coherence, and h(r) represents the amplitude impulse response of the opti-
cal system. The complex degree of coherence γ(r1−r2) is generally a complex number, whose
magnitude represents the extent of optical interaction between two spatial locations r 1 =(x1,y1)
and r2 = (x2,y2) of the light source [1]. The complex degree of coherence in the spatial domain
is the inverse 2-D Fourier transform of the illumination shape. In general, the intensity dis-
tribution equation in Eq. (1) is tedious to compute, both analytically and numerically [13]. The
system reduces to simple forms in the two limits of complete coherence or complete inco-
herence. For the completely coherent case, the illumination source is at a single point, thus,
γ(r) = 1. In this case, the intensity distribution in Eq. (1) is separable on r 1 and r2, and thus
I(r) = |M(r)⊗ h(r)|2, where ⊗ is the convolution operation. For the completely incoherent
case, the illumination source is of infinite extent and thus, γ(r) = δ (r). In this case, the in-
tensity distribution reduces to I(r) = |M(r)|2 ⊗ |h(r)|2. In the frequency domain, Eq. (1) is
translated as

I(x,y) =
∫ ∫ ∫ ∫ +∞

−∞
TCC( f1,g1; f2,g2)M̃( f1,g1)M̃∗( f2,g2)

× exp{−i2π [( f1 − f2)x+(g1 −g2)y]}d f1dg1d f2dg2, (2)

where M̃( f1,g1) and M̃( f2,g2) are the Fourier transforms of M(x1,x2) and M(x2,y2), respec-
tively. TCC( f1,g1; f2,g2) is the transmission cross-coefficient, which indicates the interaction
between M̃( f1,g1) and M̃( f2,g2). Specifically,

TCC( f1,g1; f2,g2) =
∫ ∫ +∞

−∞
γ̃( f ,g)h̃( f + f1,g+g1)h̃∗( f + f2,g+g2)d f dg, (3)

where γ̃( f ,g), referred to as the effective source, is the Fourier transform of γ(x,y). h̃( f ,g) is
the Fourier transform of h(x,y).

2.2. SVD model as the sum of coherent systems

The singular value decomposition (SVD) model, described in this section, decomposes the
Hopkins diffraction model of Section 2.1 into a sum of coherent systems [18]. The result is
a bank of linear systems whose outputs are squared, scaled and summed. The SVD model is
summarized as follows.

Given the discretization of the mask pattern M(x,y), referred to as M(m,n), m,n = 1,2, . . . ,N,
the intensity distribution on the wafer shown in Eq. (2) can be reformulated as a function of
matrices

I(m,n) = s̃HAs̃, m,n = 1,2, . . . ,N, (4)

where H is the conjugate transposition operator. s̃ is an N2 ×1 vector, and the ith entry of s̃ is

s̃i = M̃(p,q)exp[i2π(pm+qn)] i = 1,2, . . . ,N 2, (5)

where M̃(p,q) = FFT{M(m,n)}, and FFT{·} is the FFT operator. p = i mod N, q = � i
N �,

and �·� is the smallest integer larger than the argument. A is an N 2 ×N2 matrix including the
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information of the transmission cross-coefficient TCC. Specifically, the ith row and jth column
entry of A is Ai j = TCC(p,q;r,u), where p = i mod N, q = � i

N �, r = j mod N, and u = � j
N �.

In order to reformulate Eq. (4) into the sum of coherent systems, the variable pairs of (p,q)
and (r,u) in the argument of TCC should be separated by the singular value decomposition.

The result of the singular value decomposition of A is A = ∑N2

k=1 αkVkV ∗
k , where αk is the kth

eigenvalue, and α1 > α2 > .. . > αN2 . The N2 ×1 vector Vk is the eigenfunction corresponding
to αk. Thus Eq. (4) becomes

I(m,n) =
N

∑
k=1

αk|s̃TVk|2. (6)

Let S−1(·) be the inverse column stacking operation which converts the N 2 ×1 column vector
Vk into a N×N square matrix S−1(Vk). In particular,

h̃k(p,q) = S−1(Vk) =

⎛
⎜⎜⎜⎝

Vk,1 Vk,N+1 · · · Vk,N(N−1)+1
Vk,2 Vk,N+2 · · · Vk,N(N−1)+2
...

...
. . .

...
Vk,N Vk,2N · · · Vk,N2

⎞
⎟⎟⎟⎠ , (7)

where Vk,i is the ith entry of Vk. Taking the inverse FFT of h̃k(p,q) leads to the kth equivalent
kernel of the SOCS model,

hk(m,n) = IFFT{h̃k(p,q)}, m,n = 1,2, . . . ,N. (8)

Substituting Eq. (7) and Eq. (8) into Eq. (6),

I(m,n) =
N2

∑
k=1

αk|hk(m,n)⊗M(m,n)|2. (9)

Note that the partially coherent system is decomposed into the superposition of N 2 coherent
systems. The scheme of the SOCS decomposition by SVD is depicted in Fig. 2. The ith order

M(m,n) h2

h1

hN

......

[ � ]2

[ � ]2

[ � ]2

1

2

N

I(m,n)

2 2

Fig. 2. A partially coherent system represented by a SVD decomposition of a sum of co-
herent systems.

coherent approximation to the partially coherent system is defined as

I(m,n) ≈
i

∑
k=1

αk|hk(m,n)⊗M(m,n)|2, i = 1,2, . . . ,N2. (10)

An example of the first 50 eigenvalues of the SOCS decomposition with a small and medium
partial coherence factors is illustrated in Fig. 3. In this simulation, the partially coherent illu-
minations are circular illuminations with partial coherence factors σ = 0.3 and σ = 0.6. The
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dimension of the discretization is N = 51. The pixel size is 11nm× 11nm. Thus, the effective
source is

γ̃( f ,g) =
λ 2

π(σNA)2 circ

(
λ
√

f 2 +g2

σNA

)

=

{
λ 2

π(σNA)2 for
√

f 2 +g2 ≤ σNA
λ

0 elsewhere
, (11)

where NA = 1.35 and λ = 193nm. The amplitude impulse response is defined as the Fourier
transform of the circular lens aperture with cutoff frequency NA/λ [21, 22]; therefore,

h(r) = h(x,y) =
J1(2πrNA/λ )

2πrNA/λ
. (12)

The Fourier transform of h(x,y) is

h̃( f ,g) =
λ 2

π(NA)2 circ

(
λ
√

f 2 +g2

NA

)
=

{
λ 2

π(NA)2 for
√

f 2 +g2 ≤ NA
λ

0 elsewhere
. (13)
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Fig. 3. Eigenvalues αk of sum of coherent systems decomposition by SVD.

The amplitude of the first and second equivalent kernels corresponding to the first and second
largest eigenvalues with σ = 0.3 are illustrated in Figs. 4(a) and 4(b), respectively. It is noted
that for the illuminations having small partial coherence factors, the eigenvalues decay very
rapidly. It was proved that for partial coherence factors σ ≤ 0.5, a partially coherent imaging
system may be approximated to within 10% error by the first order coherent approximation [9].

3. PSM Optimization Using Inverse Lithography

3.1. Optimization using the SOCS model

Let M(m,n) be the input phase-shifting mask to an optical lithography system T{·}, with a par-
tially coherent illumination. The PCI optical system is approximated by a Hopkins diffraction
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Fig. 4. (a) The amplitude of the first equivalent kernel corresponding to the largest eigen-
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model described in Eq. (1). The effect of the photoresist is modelled by a hard threshold oper-
ation. The output pattern is denoted as Z(m,n) = T{M(m,n)}. Given a N ×N desired output
pattern Z∗(m,n), the goal of PSM design is to find the optimized M(m,n) called M̂(m,n) such
that the distance

D = d(Z(m,n),Z∗(m,n)) = d(T{M(m,n)},Z∗(m,n)) (14)

is minimized, where d(·, ·) is the mean square error criterion. The PSM inverse lithography
optimization problem can thus be formulated as the search of M̂(m,n) over the N ×N real
space ℜN×N such that

M̂(m,n) = arg min
M(m,n)∈ℜN×N

d(T{M(m,n)},Z∗(m,n)). (15)

Figure 5 depicts the approximated forward process model [10]. The phase-shifting mask is
the input of the system. Light propagating through the mask pattern is affected by diffraction
and mutual interference—a phenomena described by the Hopkins Diffraction Model [6, 21,
23]. In this optimization approach, the PCI optical system is approximated by the first order
coherent approximation of the SOCS model. | · | is the element-by-element absolute operation,
and the output of the convolution and the absolute operation model is the intensity distribution
of the aerial image. The aerial image is projected on a light-sensitive photoresist, which is
subsequently developed through the use of solvents. The thickness of the remaining photoresist
after development is proportional to the exposure dose exceeding a given threshold intensity. In
a positive photoresist process, almost all the photoresist material remains in the low-exposure
area on the wafer and is removed in the high-exposure area. Between these two extremes is the
transition region. For mathematical simplicity, it is assumed that when the light field exceeds
a threshold, the exposed area becomes a high-exposure area, otherwise, a low-exposure area.
Thus, a hard threshold operation can adequately represent the exposure effect described above.
Further, since the derivative of the sigmoid function exists, it is used to approximate the hard
threshold function. The hard threshold function is a shifted unit step function U(x− t r), which
is approximated by the sigmoid function

sig(x) =
1

1+ exp[−a(x− tr)]
, (16)
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where tr is the process threshold, and a dictates the steepness of the sigmoid function.

Mask

                                                         

   

Convolution Approximation of 

Image Formation Process

Sigmoid Approximation Output

                          
m |H1{m}|2 sig{|H1{m}|2}

z

Fig. 5. Approximated forward process model.

Following the definitions above, the following notation is used:
1) The MN×N a real-valued matrix represents the mask pattern with a N 2×1 equivalent raster

scanned vector representation, denoted as m.
2) A convolution matrix H1 is a N2 ×N2 matrix. Its equivalent two-dimensional filter is the

first equivalent kernel h1(m,n) of the SOCS model.
3) The desired N×N binary output pattern is denoted as Z ∗. It is the desired light distribution

sought on the wafer. Its vector representation is denoted as z∗ .
4) The output of the sigmoid function is the N ×N image denoted as: Z = sig{|H1{m}|2}.

The equivalent vector is denoted as z.
5) The hard threshold version of Z is the binary output pattern denoted as Z b. Its equivalent

vector is denoted as zb , with all entries constrained to 0 or 1.
6) The optimized N ×N real-valued mask denoted as M̂ minimizes the distance between Z

and Z∗, ie,
M̂ = argmin

M
d(sig{|H1{m}|2},Z∗). (17)

Its equivalent vector is denoted as m̂ ∈ [−1,1].
7) The trinary optimized mask M̂tri is the quantization of M̂. Its equivalent vector is denoted

as m̂tri, with all entries constrained to -1, 0 or 1.
Given the gray level pattern z = sig{|H1{m}|2}, the ith entry in this vector can be represented

as

zi =
1

1+ exp[−a|
N2

∑
j=1

h1,i jm j|2 +atr]
, i = 1, . . .N2, (18)

where h1,i j is the i, jth entry of the first equivalent kernel h1(m,n). In the optimization process,
m̂ is searched to minimize the L2 norm of the difference between z and z∗. Therefore,

m̂ = argmin
m̂

{F(m)}, (19)

where the cost function F(·) is defined as:

F(m) = ‖z∗ − z‖2
2 =

N2

∑
i=1

(z∗i − zi)
2, (20)

where zi in Eq. (20) is represented in Eq. (18). In order to reduce the above bound-constrained
optimization problem to an unconstrained optimization problem, we adopt the parametric trans-
formation [10]. Let m j = cos(θ j), j = 1, . . . ,N2, where θ j ∈ (−∞,∞) and m j ∈ [−1,1]. Defin-
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ing the vector θ = [θ1, . . . ,θN2 ]T , the optimization problem is formulated as

(θ̂ ) = argmin
θ

{F(θ )}

= argmin
θ

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N2

∑
i=1

⎛
⎜⎜⎜⎝z∗i −

1

1+ exp[−a|
N2

∑
j=1

h1,i jcosθ j|2 +atr]

⎞
⎟⎟⎟⎠

2⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (21)

The steepest-descent method is used to optimize the above problem. The gradients ∇F(θ ) θ can
be calculated as follows:

∇F(θ ) = dθ = 2a× sinθ 
{(H∗H
1 [(z∗ − z)
 z
 (1− z)
 (H∗

1 m)]}
+ 2a× sinθ 
{(HH

1 [(z∗ − z)
 z
 (1− z)
 (H1m)]}, (22)

where ∇F(θ ) ∈ ℜN2×1, 
 is the element-by-element multiplication operator. 1 = [1, . . . ,1] T ∈
ℜN2×1. Assuming θ k is the kth iteration result, then at the k + 1th iteration:

θ k+1 = θ k − sθ dk
θ , (23)

where sθ is the step-size.
The iterative optimization above, in general, leads to a real-valued mask with pixel values

between -1 and 1. Therefore a post-processing step is needed to obtain the trinary optimized
mask, m̂tri,i = sgn(m̂i)U(|m̂i|− tm), i = 1, . . . ,N2, where tm is a global threshold. We define the
pattern error E as the distance between the desired output image Z ∗ and the actual binary output
pattern Z̄b evaluated by the equation Eq. (2) and a hard threshold operator,

E =
N2

∑
i=1

|z∗i − zbi|2 =
N2

∑
i=1

∣∣z∗i −T{Mtri}
∣∣2 . (24)

3.2. Discretization regularization

In the prior simulation settings, the fact that the estimated output pattern should be trinary is not
considered. An additional post-processing (trinarization) of the gray optimized mask pattern is
suboptimal with no guarantee that the pattern error is under the goal [10]. One approach to
overcome this disadvantage is through regularization during the optimization process [10, 24].
Regularization is formulated as follows:

m̂ = argmin
m̂

{F(m)+ γR(m)}, (25)

where F(m) is the data-fidelity term and R(m) is the regularization term which is used to reduce
the solution space and constrain the optimized results. γ is the user-defined parameter to reveal
the weight of the regularization. In the following, the discretization penalty is discussed.

In order to attain near-trinary optimized mask pattern through the optimization process, we
adopt the discretization penalty [10]. The formulation of the discretization penalty is summa-
rized as following. For each pixel value, the discretization penalty term is

rD(mi) = −4.5m4
i +m2

i + 3.5, i = 1, . . . ,N2. (26)

Thus, the cost function in Eq. (20) is adjusted as J(m) = F(m)+ γDRD(m). In our simulations
for σ = 0.3, discretization regularization attains near-trinary optimized mask and reduce 30%
output pattern error.
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3.3. Simulations

In order to demonstrate the validity of the optimization algorithms, consider the desired pattern
shown in Fig. 6, with dimension of 561nm× 561nm. The matrices representing all of the pat-
terns have dimension of N ×N, where N = 51. The pixel size is 11nm× 11nm. The partially
coherent illumination is a circular illumination with small partial coherence factor σ = 0.3. In
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Fig. 6. Top row (input masks), left to right: desired pattern, optimized real-valued mask
and optimized trinary mask. The bottom row illustrates the corresponding binary output
patterns. White, grey and black represent 1, 0 and -1, respectively. σ = 0.3.

Figure 6, the top row illustrates the input masks of (left) the desired pattern Z ∗, (center) the op-
timized real-valued mask M̂, and (right) the optimized trinary mask M̂tri. The optimized trinary
mask, referred to as the alternating phase-shifting mask, includes clear areas and shifting areas,
which introduce 180◦ phase difference with each other. In particular, the transmission coeffi-
cients of the clear area and shifting area are assigned to 1 and -1, respectively. The binary output
patterns are shown in the bottom row. White, grey and black represent 1, 0 and -1, respectively.
The effective source and the amplitude impulse response are shown in Eq. (11) and Eq. (12)
with NA = 1.35 and λ = 193nm. In the sigmoid function, we assign parameters a = 200 and
tr = 0.003. The binary output patterns in the bottom row are evaluated by the equation Eq. (2)
followed by a hard threshold operator with threshold t̄r = tr×∑N2

k=1 αk. The global threshold
is tm = 0.33. The step length and the regularization weights are s θ = 0.2 and γD = 0.1. The
initial mask pattern is the same as the desired binary output pattern Z ∗. For θ , we assign the
phase of π

5 corresponding to the areas having a magnitude of 1 and the phase of π
2 for the areas

with magnitude of 0. As shown in Fig. 6, this approach is effective for small partial coherence
factors. These results are consistent with those obtained in other numerous simulations we have
ran with small partial coherence factors.

These simulations, are then repeated in Fig. 7 with the same parameters except for the value
of the partial coherence factor which in this case was raised to σ = 0.6. The output pattern
error corresponding to the optimized trinary mask in this case is increased compared with that
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Fig. 7. Top row (input masks), left to right: desired pattern, optimized real-valued mask
and optimized trinary mask. The bottom row illustrates the corresponding binary output
patterns. White, grey and black represent 1, 0 and -1, respectively. σ = 0.6.

of Fig. 6. This degradation results from the less accurate first order coherent approximation to
the partially coherent system when medium or large partial coherence factors are used. In fact,
the SVD approach taken here gradually degrades as the partial coherent factor increases from
small to large values. Nevertheless, the optimized PSM attains a 65% reduction of the output
pattern error even with the medium partial coherent factor values.

4. Post-processing of Mask Pattern Based on 2D DCT

In order to attain simpler manufacturability properties, the reduction of the complexity of mask
patterns is desired. Recently, J. Zhang, et al., proposed an efficient mask design for inverse
lithography based on 2D DCT [19]. The solution space is greatly reduced by cutting off the
high frequency components of the desired pattern in discrete cosine spectrum. Low frequency
components of the mask pattern were proved to have more influence to the fidelity of the out-
put pattern than the high frequency components. From this point of view, a post-processing
of the mask pattern based on 2D DCT is introduced in this Section. It is observed that most
of the energy of the mask pattern concentrates on the low frequency components. In order to
reduce the complexity of the mask pattern, a subset of high frequency components of the opti-
mized real-valued mask are cut off. The post-processed real-valued mask M̂′ is the inverse 2D
DCT of the maintained low frequency components. The post-processed trinary mask M̂′

tri is the
discretization of M̂′.

Figure 8 illustrated the relationship between the number of maintained DCT low frequency
components and the output pattern errors with partial coherence factors σ = 0.3 (solid line)
and σ = 0.6 (dot line). Since the inverse lithography is an ill-posed problem, numerous input
patterns can lead to the same binary output pattern. Thus the post-processing based on 2D DCT
can even simultaneously reduce the complexity of the masks and the output pattern errors. It is
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Fig. 8. The relationship between the number of maintained DCT low frequency components
and the output pattern errors.

shown in Fig. 8 that the fidelity of the output patterns is improved by maintaining just 136 low
frequency components with σ = 0.3 and 666 low frequency components with σ = 0.6. Figure 9
illustrates the simulations of the PSM optimization using the DCT post-processing. All of the
parameters are the same as the simulations shown in Fig. 6. In Fig. 9, the left figure shows
the output pattern of the desired pattern. The middle figure shows the post-processed trinary
PSM mask using DCT post-processing maintaining 136 low frequency components. The right
figure shows the binary output pattern of the post-processed trinary mask. White, grey and black
represent 1, 0 and -1, respectively.
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Fig. 9. Left to right: output pattern when the desired pattern is inputted, post-processed
trinary mask with the DCT post-processing maintaining 136 low frequency components,
and the binary output pattern of the post-processed trinary mask. White, grey and black
represent 1, 0 and -1, respectively.
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5. PSM Optimization with Photoresist Tone Reversing

As a final extension of the PSM design method introduced in this paper, we focus on inverse
lithography optimization where photoresist tone reversing is used. Photoresist can be divided
by its polarity. In a positive photoresist process, more photoresist material remains in the low-
exposure area on the wafer and less in the high-exposure area. Negative photoresist responds in
the opposite manner. Photoresist tone reversing method exploits both kinds of the photoresist
materials on the wafer. Reversion of the photoresist tone is proposed to improve lithography
performance of sub-resolution features [1]. In this section, the photoresist tone reversing is used
to image a desired resolution and contrast for the sparse pattern, whose resolution limit is much
higher than the traditional case without application of the photoresist tone reversing. Consider
an optical lithography system applying monotonous positive photoresist with the parameters
k = 0.29, λ = 193nm and NA = 1.35. The resolution limit is

R = k
λ

NA
= 41.5nm. (27)

PSM optimization without use of photoresist tone reversing fails to print an aerial image con-
taining features with dimensions smaller than the limit in Eq. (27). An example is illustrated in
Fig. 10, where the desired image of dimension 561nm× 561nm contains two pairs of vertical
bars, each with pitch width of 22nm < R. In this simulation, all of the parameters are the same
as the simulation shown in Fig. 6, except for t r = 0.0003. In Fig. 10, from left to right, the
first figure shows the desired pattern. The second figure shows the binary output pattern of the
desired pattern. The third figure shows the optimized trinary PSM. The last figure shows the
binary output pattern of the optimized PSM. White, grey and black represent 1, 0 and -1, re-
spectively. Note that the binary output pattern of the optimized PSM is totally different from the
desired pattern, indicating that the PSM optimization approach cannot attain the desired output
pattern on the wafer. The reason is that the dimension of the features in the desired pattern is
smaller than the resolution limit without application of the photoresist tone reversing.
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Fig. 10. Left to right: desired pattern, output pattern when the desired pattern is inputted,
optimized trinary mask, and the output pattern of the optimized trinary mask. White, grey
and black represent 1, 0 and -1, respectively. σ = 0.3.

In order to overcome the limit, photoresist tone reversing is exploited to find an adequate
distribution of positive and negative photoresist on the wafer. One possibility of the distribution
is shown in the left figure in Fig. 11. White and black represent positive and negative photore-
sist, respectively. Assign negative photoresist in the gaps in each pair of the bars and positive
photoresist in other areas. If the optimized mask is able to expose a rectangular aerial image
in the area laying over each pair of bars, the negative photoresist will prevent the exposure
in the gaps. Thus, the binary output pattern is the same as the desired pattern. Therefore, the
PSM optimization approach is used to search the binary output pattern of two rectangles on the
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Fig. 11. Left to right: Photoresist distribution, optimized trinary mask using the photoresist
tone reversing method, and the output pattern of the optimized trinary mask. White and
black represent positive and negative photoresist, respectively in the first figure. White, grey
and black represent 1, 0 and -1, respectively in the second and the third figures. σ = 0.3.

wafer. In Fig. 11, tr = 0.01, and the optimized trinary mask is shown in the middle figure. The
binary output pattern of the optimized trinary mask is shown in the right figure. White, grey and
black represent 1, 0 and -1, respectively. It is obvious that photoresist tone reversing method is
effective to expose a sparse feature, whose resolution limit is much higher than the traditional
case without application of photoresist tone reversing.
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Fig. 12. Left to right: Photoresist distribution, post-processed trinary mask using the DCT
post-processing maintaining 276 low frequency components, and the binary output pat-
tern of the post-processed trinary mask. White and black represent positive and negative
photoresist, respectively in the first figure. White, grey and black represent 1, 0 and -1,
respectively in the second and the third figures. σ = 0.3.

The DCT post-processing of the mask developed in Section 4 can be simultaneously ex-
ploited with the photoresist tone reversing method. The simulation is illustrated in Fig. 12. The
left figure shows the photoresist distribution. The middle figure shows the post-processed tri-
nary mask using the DCT post-processing maintaining 276 low frequency components. The
right figure shows the binary output pattern of the post-processed trinary mask. Note that the
DCT post-processing successfully reduces the error of the binary output pattern from 66 to 54.

The heuristic photoresist distribution design approach described above is suitable for simple
target patterns. The joint optimization of the photoresist distribution and PSMs is desirable and
is of interest for future research work.
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6. Conclusions

This paper focuses on PSM inverse lithography under partially coherent illuminations. Firstly,
two kinds of partially coherent imaging models are described: the Hopkins diffraction model
and the sum of coherent systems decomposition model by SVD. Based on the second model,
a first order coherent approximation is used to represent the Hopkins diffraction model, and
inverse lithography technology PSM optimization processes is formulated. In order to simul-
taneously reduce the complexity of the mask and the output pattern error, the post-processing
based on 2D DCT is introduced. Finally, the photoresist tone reversing technique is exploited
to design PSMs capable of projecting extremely sparse patterns, whose resolution limit is
much higher than the traditional case without application of photoresist tone reversing.
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