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Abstract: Optical proximity correction (OPC) and phase shifting masks
(PSM) are resolution enhancement techniques (RET) used extensively in
the semiconductor industry to improve the resolution and pattern fidelity
of optical lithography. In this paper, we develop generalized gradient-based
RET optimization methods to solve for the inverse lithography problem,
where the search space is not constrained to a finite phase tessellation
but where arbitrary search trajectories in the complex space are allowed.
Subsequent mask quantization leads to efficient design of PSMs having
an arbitrary number of discrete phases. In order to influencethe solution
patterns to have more desirable manufacturability properties, a wavelet
regularization framework is introduced offering more localized flexibility
than total-variation regularization methods traditionally employed in inverse
problems. The proposed algorithms provide highly effective four-phase
PSMs capable of generating mask patterns with arbitrary Manhattan ge-
ometries. Furthermore, a double-exposure optimization method for general
inverse lithography is developed where each exposure uses an optimized
two-phase mask.
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1. Introduction

Due to resolution limits of optical lithographic systems, the electronics and photonics indus-
try have relied on 2D and 3D resolution enhancement techniques (RET) to compensate and
minimize mask distortions as they are projected onto semiconductor wafers [1, 4, 5]. Resolu-
tion in optical lithography obeys the Rayleigh criterionresolution(R) = k λ

NA , whereλ is the
wavelength,NA is the numerical aperture taking on values around 0.9 for most lithography sys-
tems used today, andk is the process constant which can be minimized through RET methods
[6, 7, 8, 9]. RET methods manipulate the local amplitude and phase features of the optical wave-
front to pre-compensate for imaging distortions. Optical and process correction (OPC) methods
modify the mask amplitude by the addition of sub-resolutionfeatures to the mask pattern [5].
Phase shifting masks (PSMs), commonly attributed to Levenson [10], induce phase shifts in the
transmitted field which has a favorable constructive or destructive interference effect. Thus, a
suitable modulation of both the phase and the intensity of the incident light can be used to ef-
fectively compensate for some of the resolution-limiting phenomena in optical diffraction. The
challenge is then to develop a general systematic method to design pre-compensated masks also
referred to as inverse lithography technology (ILT).

Several approaches to inverse lithography have been proposed in the literature. These range
from heuristic and empirically-based design rules to computationally expensive optimization-
based inverse algorithms. Sherif, et al. derived an iterative approach to generate binary masks
[11]. Liu and Zakhor developed a binary and phase shifting mask design strategy based on
the branch and bound algorithm and simulated annealing [12]. Pati-Kailath exploited a class
of approximations for partially coherent imaging systems to develop sub-optimal projections
onto convex sets for PSM designs [13]. In addition, Erdmann proposed automatic optimization
of the mask and illumination parameters with a genetic algorithm [14]. Pang, et al. gave an
overview of ILT and provided some simulations to demonstrate the benefit of ILT [15]. Granik
described and compared solutions of inverse mask problems [16]. All of the methods mentioned
above, however, are not based on gradient type optimizationand thus the searching process for
a suitable solution is either computationally expensive ornot efficient. Recently, Poonawala
and Milanfar introduced a novel optimization framework forinverse lithography based on a
pixel-based, continuous function formulation, well suited for gradient-based search [?, 17].

#86458 - $15.00 USD Received 15 Aug 2007; revised 21 Sep 2007; accepted 26 Oct 2007; published 31 Oct 2007

(C) 2007 OSA 12 November 2007 / Vol. 15,  No. 23 / OPTICS EXPRESS  15067



Based on a steepest descent search, this approach exploits the rich theory of regularized iterative
optimization [18].

Letting M(x,y) be the input mask to an optical lithography systemT{·}, approximated as a
low-pass spatial filter followed by a soft threshold operation, the output pattern is denoted as
Z(x,y) = T{M(x,y)}. Given aN ×N desired output patternZ∗(x,y), the goal of PSM design
is to find the optimizedM(x,y) calledM̂(x,y) such that the distanceD = d(Z(x,y),Z∗(x,y)) =
d(T{M(x,y)},Z∗(x,y)) is minimized, whered(·, ·) is the mean square error criterion. The PSM
inverse lithography optimization problem can thus be formulated as the search of̂M(x,y) over
theN ×N complex spaceCN×N such that

M̂(x,y) = arg min
M(x,y)∈CN×N

d(T{M(x,y)},Z∗(x,y)). (1)

With the goal of attaining two-phase-level optimized masks, the system in Ref. [17] further
constrainedM(x,y) in Eq. (1) such thatM(x,y) = cos(θ(x,y)), thus searching over the range
of θ and thus constraining the value ofM in the intervalM(x,y) ∈ (−1,1) and in essence
representing masks limited to two phases. While this approach is very effective in some cases,
the end result is that the search generally fails to generateadequate PSM for mask patterns
having arbitrary Manhattan geometries [19]. According to the “Four-Phase Theorem” described
in Ref. [13], given an arbitrary pattern with a Manhattan geometry, a phase-shifting mask used
to synthesize the image pattern must use a minimum of four distinct phase levels.

The main goal of this paper is thus to overcome this limitation of the Poonawala, et al. al-
gorithm in Ref. [17], so as to obtain a generalized synthesisalgorithm capable of generating
arbitrary mask patterns. This is accomplished as follows: First, the iterative optimization frame-
work is re-formulated where the search trajectory is unconstrained in the complex plane. The
optimization problem is thus broadly formulated as in Eq. (1). As expected, the resultant mask
patterns obtained by Eq. (1) have arbitrary complex pixel values, and consequently a post-
processing step is used to quantize the patterns into the desired four-phase-level, shifting-mask
patterns.

A second contribution of the paper is the introduction of a new regularization framework.
Inverse lithography is an ill-posed problem where numerousinput patterns can lead to the same
binary output pattern. Regularization in ILT seeks to bias the solution space to sample solu-
tions that have lower manufacturabilty complexity. We introduce an effective detail-reduction
approach referred to as “wavelet penalty” regularization.

Finally, in the event that four-phase masks are difficult to fabricate, but the goal is to still
synthesize masks with arbitrary geometry, a third contribution of the paper is the develop-
ment of a double-exposure PSM optimization method, where ateach stage the PSM masks are
constrained to have two phases. The two-stage exposure method can lead to high fidelity output
pattern reproduction at the expense of a more complex exposure process. Poonawala and Milan-
far, independently from our work, have simultaneously developed a different double-exposure
method [20].

2. PSM design and problem formulation

The methods developed in this paper extend and generalize the model and approach proposed
in Ref. [17], illustrated in Fig. 1. The complex-valued maskis the input of the system, where
the phase pattern of the propagating light is modified by a phase shifting material overcoating
the mask. Light propagating through the mask pattern is affected by diffraction and mutual
interference—a phenomena described by the Hopkins Diffraction Model [21, 22]. The light
that transmitted through the mask reaches a light-sensitive photoresist, which is subsequently
developed through the use of solvents. The thickness of the remaining photoresist after devel-
opment is proportional to the exposure dose exceeding a given threshold intensity. In a positive
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photoresist process, almost all the photoresist material remains in the low-exposure area on the
wafer and is removed in the high-exposure area. Between these two extremes is the transition
region. For mathematical simplicity, it is assumed that when the light field exceeds a threshold,
the exposed area becomes a high-exposure area, otherwise, alow-exposure area. Thus, a hard
threshold operation can adequately represent the exposureeffect described above and the output
pattern of the optical system is binary. This is an approximate model for the field transfering
through the mask. In Fig. 1,| · | is the element-by-element absolute operation. In this paper,

Mask

                                                         

   

Convolution Approximation of 

Image Formation Process

Sigmoid Approximation Output

                          
m |H{m}| sig{|Hm|}

z

Fig. 1. Approximated forward process model. (Ref. [17], Fig. 1).

only coherent imaging is considered, and the aerial image formation process is approximated
by a convolution between the mask pattern and a Gaussian low pass filterh. In the pixel-based
algorithm,pixel size = resolution(R) = k λ

NA . The standard deviation of the Gaussian low-pass
filter h is σ = R×NA

λ = k. The output of the convolution and the absolute operation model is the
electrical field amplification distribution of the aerial image. Further, since the derivative of the
sigmoid function exists, it is used to approximate the hard threshold function. The hard thresh-
old function is a shifted unit step functionU(x− tr), which is approximated by the sigmoid
function

sig(x) =
1

1+exp[−a(x− tr)]
, (2)

wheretr is the process threshold, anda dictates the steepness of the sigmoid function.
The mask is represented by anMN×N matrix with aN2×1 equivalent raster scanned vector

representationmN2×1 which is denoted asm for short notation. Following the definitions above,
the following notation is used:

1) A convolution matrix H is aN2×N2 matrix denoting an equivalent two-dimensional low-
pass filterh.

2) The desiredN×N binary output pattern is denoted asZ∗. It is the desired light distribution
sought on the wafer. Its vector representation is denoted asz∗.

3) The output of the sigmoid function is theN × N real-valued image denoted asZ =

sig{|H{M}|}. The equivalent vector is denoted asz ∈ ℜN2×1.
4) The hard threshold version ofZ is the binary output pattern denoted asZb. Its equivalent

vector is denoted aszb ∈ ℜN2×1, with all entries constrained to 0 or 1.
5) The electrical field of the input mask is denoted as the complex-valuedN ×N matrix M

and it is equivalently represented asm ∈ CN2×1, whereCN2×1 is the set ofN2 × 1 complex
vector. All entries inM andm can take on unrestricted complex values.

6) The pole-constrained maskMp is the quantization ofM. The pixel magnitudes ofMp are
quantized to 0 or 1. The pixel phases are quantized to severaldiscrete phase levels. Its equivalent
vector is denoted asmp ∈CN2×1.

7) The optimizedN×N complex-valued mask denoted asM̂ minimizes the distance between
Z andZ∗, ie,

M̂ = argmin
M

d(sig{|H{M}|},Z∗). (3)

Its equivalent vector is denoted as ˆm ∈CN2×1.
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8) The pole-constrained optimized maskM̂p is the quantization of̂M. Its equivalent vector is

denoted as ˆmp ∈CN2×1.
Given the gray level patternz = sig{|H{m}|}, theith entry in this vector can be represented

as

zi =
1

1+exp[−a|
N2

∑
j=1

hi jm j|+atr]

, i = 1, . . .N2
, (4)

wherehi j is thei, jth entry of the filter. In the optimization process, ˆm is searched to minimize
the L2 norm of the difference betweenz andz∗. Therefore, ˆm = argminm̂{F(m)}, where the
cost functionF(·) is defined as:

F(m) = ‖z∗− z‖2
2 =

N2

∑
i=1

(z∗i − zi)
2 =

N2

∑
i=1

(z∗i −
1

1+exp[−a|
N2

∑
j=1

hi jm j|+atr]

)2
. (5)

3. Generalized PSM design algorithm

As stated before, two-phase-level PSMs are not adequate to generate arbitrary patterns with
Manhattan geometries [13] and phase conflicts are likely to arise. According to theFour −
Phase T heorem [13], the number of discrete phase levels used in PSM design should be at
least four, in order to avoid conflicts and ambiguities in theassignment of phases. The inverse
model-based algorithms in Ref. [17] is not suited for optimization of masks having more than
two-phase levels (0 andπ). This drawback motivates us to develop a generalized algorithm,
admitting an arbitrary number of discrete phase levels, which overcomes this limitation.

Let r andθ be the magnitude and phase components of the complex-valuedmask

mk = rke jθ k
, k = 1, . . . ,N2

, (6)

where j =
√
−1, θ k ∈ (−∞,∞) and rk ∈ [0,1]. The bound-constrained optimization is then

reduced to an unconstrained optimization problem using following parametric transformation,

rk =
1+cosφ

k

2
, k = 1, . . . ,N2

, (7)

whereφ
k
∈ (−∞,∞). Substitutingrk in Eq. (6) with Eq. (7), we have,

mk =
1+cosφ

k

2
e jθ k

, k = 1, . . . ,N2
. (8)

Defining the vectorθ = [θ1, . . . ,θN2]T andφ = [φ1, . . . ,φN2]T , the optimization problem is for-
mulated as:

(θ̂ , φ̂) = arg min
(θ ,φ)

{F(θ ,φ)}, (9)

where the cost function is:

F(θ ,φ) = ‖z∗− z‖2
2 =

N2

∑
i=1

(z∗i − zi)
2

=
N2

∑
i=1













z∗i −
1

1+exp[−a

√

(
N2

∑
k=1

hik
1+cosφ

k
2 e jθ k)2 +atr]













2

. (10)
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The steepest-descent method is used to optimize the above problem. The gradients∇F(θ ,φ)θ
and∇F(θ ,φ)φ can be calculated as follows [19]:

∇F(θ ,φ)θ = dθ = 2a×
1+cosφ

2
⊙sinθ ⊙{HT [(z∗− z)⊙ z⊙ (1− z)⊙H(mR)⊙T (m)]}

− 2a×
1+cosφ

2
⊙cosθ ⊙{HT [(z∗− z)⊙ z⊙ (1− z)⊙H(mI)⊙T (m)]},

(11)

∇F(θ ,φ)φ = dφ = a×sinφ ⊙cosθ ⊙{HT [(z∗− z)⊙ z⊙ (1− z)⊙H(mR)⊙T (m)]}
+ a×sinφ ⊙sinθ ⊙{HT [(z∗− z)⊙ z⊙ (1− z)⊙H(mI)⊙T (m)]},

(12)

where ∇F(θ) ∈ ℜN2×1, ⊙ is the element-by-element multiplication operator, andT (m) =

[H(mR)2+H(mI)
2]−

1
2 . mR andmI are the real part and the imaginary part ofm. 1 = [1, . . . ,1]T ∈

ℜN2×1. Assumingθ k andφ k are thekth iteration results, then at thek +1th iteration:

θ k+1 = θ k − sθ dk
θ , (13)

φ k+1 = φ k − sφ dk
φ , (14)

where sθ and sφ are the step-sizes. The iterative optimization above, in general, leads to
complex-valued solutions that are not constrained to a discrete number of magnitude and phase
levels. Therefore a post-processing step is needed to obtain the pole-constrained optimized
mask,m̂p. Sincem̂ is complex-valued, a two-step quantization process is followed. First the
magnitudes are quantized by a global thresholdtm as|m̂pi| = U(|m̂i|− tm), wherei = 1, . . . ,N2.
The phases are subsequently quantized to the nearest prescribed discrete phase level. We define
the pattern errorE as the distance between the desired output patternZ∗ and the actual binary
output patternZb:

E =
N2

∑
i=1

|z∗i − zbi| =
N2

∑
i=1

|z∗i −Γ|Hmpi||. (15)

When the pattern error is reduced to a tolerable level, the steepest descent iteration is stopped.
In order to demonstrate the effect of the number of phases used in PSM design, consider the

desired pattern shown in Fig. 2. The top horizontal block cross-connects two vertical parallel
blocks. The phases assigned to the two parallel adjacent blocks cannot be the same, so as to
exploit the PSM principle. Since the horizontal top block connects the parallel blocks, and
since it would be desirable that there are no gaps introducedin the image, the horizontal block
must be assigned an intermediate phase value that is distinct from the phases of the two parallel
blocks. Therefore, two-phase levels are not sufficient to attain this goal. The conflict can be
eliminated with the use of four phases. In Fig. 2, the patterns in the top row and the middle
row illustrate the input patterns. The output patterns are shown in the bottom row. The three
images in the bottom row show the output patterns of (left) the desired pattern (z∗), (center) the
complex-valued optimized mask ( ˆm), and (right) the pole-constrained optimized mask ( ˆmp).
The aerial image formation process is approximated by a 11×11 Gaussian low pass filter with
k = 14, in the sigmoid function, we assign parametersa = 80 andtr = 0.5. The global threshold
is tm = 0.5. The shape of the image used to initialize the iterative algorithm is the same as
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Fig. 2. Top row (input masks), left to right: desired pattern, magnitude of the optimized
complex-valued mask and optimized pole-constrained mask obtained using a thresholdtm.
The middle row indicates the phases of the optimized complex-valued mask.The bottom
row indicates the corresponding binary output patterns. The parameters used in the simu-
lation area = 80, tr = 0.5, tm = 0.5, 11×11 Gaussian low pass filter withk = 14, sφ = 2
andsθ = 0.01. Green, red and blue represent 0, 1 and -1 respectively in the top and bottom

rows; Dark blue, light blue, yellow and red representπ
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4 respectively in the
middle row.
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the desired binary output patternZ∗. For φ
k
, we assign the phase ofπ

5 corresponding to the

areas having a magnitude of 1 and a phase of4π
5 for the areas with magnitude of 0. The phase

assignment must be done a-priori and phases in neighboring blocks are assigned alternately.
Because of the numeroussine andcosine functions in Eq. (11) and Eq. (12), we intentionally
avoid assigningθ k andφ

k
the values of 0,π2 , π or 3π

2 . Otherwise, Eq. (11) or Eq. (12) may
reduce to a zero update, terminating the iteration. For a four-phase-level mask design, empirical
observations show that an efficient assignment of phase values toθ k is to select phases in the
set ofπ

4 , 3π
4 , 5π

4 and7π
4 . Further, regions around a block should be assigned a phase value that is

π
2 different from that of the block and on the same side of the imaginary axis. This approach has
proved efficient in our extensive simulation analysis. As a comparison to the four-phase PSM
design, the experiment using just two phases is illustratedin Fig. 3. Note that a gap appears on
the top connection of the synthesized mask, as expected.

4. Regularization

As illustrated in Fig. 2, the optimized mask patterns contain numerous details, which may
bring difficulty to mask fabrication. Most of the details consist of singular transmission pixels.
One approach to reduce image detail is through regularization during the optimization process
[18, 17]. Regularization is formulated as follows:

m̂ = argmin
m̂

{F(m)+ γR(m)}, (16)

whereF(m) is the data-fidelity term andR(m) is the regularization term which is used to reduce
the solution space and constrain the optimized results.γ is the user-defined parameter to reveal
the weight of the regularization. In the following, we will discuss pole penalty and the wavelet
penalty.

4.1. Pole penalty

The pole penalty is used to constrain the magnitude and phaseof each pixel value in the opti-
mized mask to several prescribed discrete levels, so the pole penalty is divided into the mag-
nitude pole penalty and the phase pole penalty. Poonawala and Milanfar used the pole penalty
approach favoring a two-phase-level solution. In order to extend the pole-penalty method to the
algorithm developed in Section 3, it is generalized to admitan arbitrary number of phase levels.

The magnitude pole-penalty term is:

Rpole(m) =
N2

∑
i=1

|m|2
i
= |m|T |m|. (17)

For each pixel value, the corresponding penalty is the quadratic functionr(mi) = |m|2
i
, i =

1, . . . ,N2. According to Eq. (17), the gradient ofRpole(m) is ∇Rpole(m) = 2|m|, thus, the cost
function in Eq. (5) is adjusted asJ(m) = F(m)+γpoleRpole(m). In the phase penalty, the phases
are constrained to the closest phase levels. If we use two-phase levels, the regularization term
is:

Rpole(θ) =
N2

∑
i=1

[sin(2θ i −
π
2

)+1]2 = [sin(2θ − π
2

)+1]T [sin(2θ − π
2

)+1]. (18)

For each pixel value, the corresponding penalty depicted bysolid line in Fig. 4 isr(θ i) =
[sin(2θ i − π

2 )+1]2, i = 1, . . . ,N2. According to Eq. (18), the gradient ofRpole(θ) is:

∇Rpole(θ) = 4[sin(2θ − π
2

)+1]T cos(2θ − π
2

). (19)
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If four-phase levels are considered, the regularization term is then obtained as:

Rpole(θ) =
N2

∑
i=1

[sin(4θ i −
3π
2

)+1]2 = [sin(4θ i −
3π
2

)+1]T [sin(4θ i −
3π
2

)+1]. (20)

For each pixel value, the corresponding penalty depicted bythe dash-dot line in Fig. 4 is:

r(θ i) = [sin(4θ i −
3π
2

)+1]2, i = 1, . . . ,N2 (21)

and the gradient ofRpole(θ) is:

∇Rpole(θ) = 8[sin(4θ − 3π
2

)+1]T cos(4θ − 3π
2

). (22)

Using the pole penalty described in Eq. (17) and Eq. (20), theexperiment shown in Fig. 2 can
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be repeated. The result is illustrated in Fig. 5. Comparisonbetween Fig. 2 and Fig. 5 shows
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Fig. 5. Left to right: desired pattern, pole-constrained optimized mask magnitude, pole-
constrained optimized mask phases (Dark blue isπ

4 , light blue is 3π
4 , yellow is 5π

4 and red
is 7π

4 ) and binary output pattern.sφ = 2, sθ = 0.01,γpole,φ = 0.001 andγpole,θ = 0.0001.

that the pole penalty leads to fewer transmission pixels andthus fewer details in the attained
mask pattern. However, some details still remain in the maskpattern. In order to remove those
details, an additional penalty can be considered. The wavelet penalty regularization method is
introduced next for this goal.

4.2. Wavelet penalty

4.2.1. Wavelet penalty

Since typical mask patterns encountered in circuitry are piecewise smooth images, the Haar
wavelet is used as the building block. Consider aN×N (assumeN is even) imageMN×N , where
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mi j represents the(i, j) matrix element. The 1-depth Haar wavelet transform of the image above,
ignoring the scale parameters, leads to the level-one approximation coefficient block and three
detail coefficient blocks, each block of sizeN

2 × N
2 . Specifically, the approximation coefficient

block isA N
2 ×N

2
, where

ai j = m(2(i−1)+1)(2( j−1)+1) +m(2(i−1)+1)(2( j−1)+2) +m(2(i−1)+2)(2( j−1)+1) +m(2(i−1)+2)(2( j−1)+2), (23)

for i, j = 1, . . . ,

N
2 . The horizontal, vertical and diagonal detail coefficient blocks are respec-

tively,

hi j = m(2(i−1)+1)(2( j−1)+1)−m(2(i−1)+1)(2( j−1)+2) +m(2(i−1)+2)(2( j−1)+1)−m(2(i−1)+2)(2( j−1)+2), (24)

vi j = m(2(i−1)+1)(2( j−1)+1) +m(2(i−1)+1)(2( j−1)+2)−m(2(i−1)+2)(2( j−1)+1)−m(2(i−1)+2)(2( j−1)+2), (25)

di j = m(2(i−1)+1)(2( j−1)+1)−m(2(i−1)+1)(2( j−1)+2)−m(2(i−1)+2)(2( j−1)+1) +m(2(i−1)+2)(2( j−1)+2), (26)

for i, j = 1, . . . ,

N
2 . The approximation coefficient block represents the low-frequency compo-

nent of the image and the other three detail coefficient blocks represent the high-frequency
components or the details of the image. Further, using Eq. (24) to Eq. (26), the total energy in
the detail components is:

Edetail =

N
2

∑
i=1

N
2

∑
j=1

(hi jh
∗
i j + vi jv

∗
i j +di jd

∗
i j). (27)

In order to remove details in the mask, the energy of the detail components should be reduced
during the optimization process. AlthoughEdetail contains many terms, there are just three
terms relative to a specific mask elementmi j. This property is convenient for calculating the
energy differential of the detail components with respect to each pixel valuemi j. We refer to
this property as the “localization property”. The partial derivatives ofEdetail with respect toφ
andθ are as follows [19]:

∂Edetail

∂φ
(2(i−1)+p)(2( j−1)+q)

= −sinφ
(2(i−1)+p)(2( j−1)+q)

×Re[e− jθ (2(i−1)+p)(2( j−1)+q) × (3m(2(i−1)+p)(2( j−1)+q)

− m(2(i−1)+p1)(2( j−1)+q)−m(2(i−1)+p)(2( j−1)+q1)
−m(2(i−1)+p1)(2( j−1)+q1)

)],(28)

∂Edetail

∂θ (2(i−1)+p)(2( j−1)+q)

= (1+cosφ
(2(i−1)+p)(2( j−1)+q)

)×Re[(− j)e− jθ (2(i−1)+p)(2( j−1)+q)

× (3m(2(i−1)+p)(2( j−1)+q)−m(2(i−1)+p1)(2( j−1)+q)−m(2(i−1)+p)(2( j−1)+q1)

− m(2(i−1)+p1)(2( j−1)+q1)
)], (29)

wherei, j = 1, . . . ,

N
2 ; p,q = 1 or 2; p1 = (p+1) mod 2 andq1 = (q+1) mod 2. From Eq. (28)

and Eq. (29), the gradient ofEdetail can be calculated and the cost function can be adjusted as:

J(m) = F(m)+ γpoleRpole(m)+ γwaveletEdetail(m). (30)

The experiments of Fig. 5 are then repeated using the waveletpenalty. The results are illus-
trated in Fig. 6, where it can be seen that the wavelet penaltyremoves many small peaks at the
bottom of the two parallel bars in Fig. 5. These results illustrate the efficiency of the wavelet
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Fig. 6. Left to right: desired pattern, pole-constrained optimized mask magnitude, phase
and binary output pattern.sφ = 2, sθ = 0.01,γpole,φ = 0.01,γpole,θ = 0.001. Wavelet reg-
ularization usesγwavelet,φ = 0.2 andγwavelet,θ = 0.001.
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Fig. 7. Left to right: desired pattern, pole-constrained optimized mask magnitude, phase
and binary output pattern.sφ = 2, sθ = 0.01, γpole,φ = 0.01, γpole,θ = 0.001, γtv,φ = 0.3
andγtv,θ = 0.001.

penalty. Regularization invariably will have a tradeoff reducing the pattern details while of-
ten increasing the pattern errors. Since the wavelet penalty removes small assisting blocks, the
distortions of the output images are increased.

Another well-known penalty to remove details is total variation penalty. Generalized to the
complex domain, the gradients of the total variation penalty are given as:

∇RTV (φ) = [QT
x sgn(QT

x f )+QT
y sgn(QT

y f )]⊙−sinφ ⊙Re[(m− z∗)⊙ e− jθ ]⊙ 1
2 f

, (31)

∇RTV (θ) = [QT
x sgn(QT

x f )+QT
y sgn(QT

y f )]⊙ (1+cosφ)⊙Re[(m− z∗)⊙ e− jθ ⊙ (− j)]⊙ 1
2 f

,

(32)
where f is the activation pattern andf

j
= |m j − z∗j | for j = 1, . . . ,N2. Using the total variation

penalty in our approach, the results are presented in Fig. 7.Comparing the results in Figs. 5-7,
the following observations can be made. Firstly, the Haar wavelet is suitable for the piecewise
smooth image. Secondly, given a set error range in the attained mask patterns in all simulations
tested, the Haar wavelet penalty removes more details than the total variation penalty. Finally,
the Haar wavelet penalty makes the shape of the blocks constructing the mask more regular and
closer to the Haar basis functions. The Haar wavelet penaltythus leads to a set of advantages
that can be attributed to the rectangular shape of the Haar basis waveforms.

4.2.2. Localized wavelet penalty

In the experiment above, the wavelet penalty is applied to the entire mask pattern without
any local discrimination. Thus, equal penalty was assignedto details in all regions. In practice,
details may be intolerable in some special mask regions, while some details may be permissible
in other regions. Because of the “localization property” ofthe Haar wavelet penalty, we can
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assign regional weights to the penalty term. Thus, a localized wavelet penalty is effective for
achieving local discrimination. To this end, the cost function is adjusted as:

J(mi) = F(mi)+ γpoleRpole(mi)+ω(i)γwaveletEdetail(mi), (33)

whereω(i), i = 1, . . .N2 are the weight coefficients and may be changed in different spatial
regions. The experimental result using localized wavelet penalty is presented in Fig. 8. The
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Fig. 8. Left to right: desired pattern, pole-constrained optimized mask magnitude, phase and
binary output pattern.sφ = 2, sθ = 0.01,γpole,φ = 0.001,γpole,θ = 0.0001,γwavelet,φ = 0.2
andγwavelet,θ = 0.001. The gap between the vertical bars has regional weight of 1.6. The
other regions have regional weight of 0.7.

experiment shown in Fig. 8 has the same parameters as the one shown in Fig. 6, except for the
regional weights. We placed a higher cost,ω(i) = 1.6, to the gap area between the vertical bars,
and we assigned lower cost,ω(i) = 0.7, to other regions. Comparing the results in Fig. 6 and
Fig. 8, it is observed that the localized wavelet penalty removes more details in the gap, but
tolerates slightly more details in other regions.

It should be noted that for some special patterns, four-phase levels are not necessary to avoid
the phase assignment conflict. For instance, the parallel-bar pattern in Fig. 9 can be attained
by a two-phase mask. As shown in Fig. 9, the generalized PSM algorithm is also capable of
designing two-phase masks. Using the localized wavelet penalty, the attained mask design is
shown in Fig. 10.
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Fig. 9. Left to right: desired pattern, pole-constrained optimized mask and binary out-
put pattern.sφ = 2, sθ = 0.01, γpole,φ = 0.001, γpole,θ = 0.0001, γwavelet,φ = 0.03 and
γwavelet,θ = 0.001.

5. Double exposure optimization method

As an alternative method to the four-phase PSM, a double-exposure optimization method can
be developed to avoid the phase conflict. In this method, the photoresist layer is exposed twice,
each with a two-phase mask. Assume that the two masks areM1 andM2. Using the parametric
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Fig. 10. Left to right: desired pattern, pole-constrained optimized mask and binary out-
put pattern.sφ = 2, sθ = 0.01, γpole,φ = 0.001, γpole,θ = 0.0001, γwavelet,φ = 0.03 and
γwavelet,θ = 0.001. The regions for the first and the fourth bars have regional weight of 0.8.
The regions for the second and the third bars have regional weight of 1.1. The other regions
have regional weight of 0.7.

transformations:

m1k = r1ke jθ1k =
1+cosφ

1k

2
e jθ1k

, k = 1, . . . ,N2
, (34)

m2k = r2ke jθ2k =
1+cosφ

2k

2
e jθ2k

, k = 1, . . . ,N2
. (35)

The corresponding output images are:

z1k =
1

1+exp[−a|
N2

∑
k=1

hik
1+cosφ

1k
2 e jθ1k |+atr]

, k = 1, . . . ,N2
, (36)

z2k =
1

1+exp[−a|
N2

∑
k=1

hik
1+cosφ

2k
2 e jθ2k |+atr]

, k = 1, . . . ,N2
. (37)

The superposition ofz1 andz2 is the final output patternz, zk =U(z1k +z2k−1), k = 1, . . . ,N2,
whereU(·) is a unit step function. Since the step function’s derivative will introduce a Dirac
impulse term that is inconvenient for further analysis, a simple approximation is given by the
hyperbolic tangent functionzk = U(z1k + z2k −1) ≈ 1

2[tanh(z1k + z2k −1)+1], k = 1, . . . ,N2.
The cost function is then calculated as:

F = F(θ 1,φ1
,θ 2,φ2

) = ‖z∗− z‖2
2 =

N2

∑
i=1

{z∗i −
1
2
[tanh(z1i + z2i −1)+1]}2

. (38)

Therefore, the gradients∇Fθ1
,∇Fφ

1
,∇Fθ2

and∇Fφ
2

can be calculated as:

∇Fθ p
= a×

1+cosφ
p

2
⊙sinθ p ⊙{HT [(z∗− z)⊙sech2(z1 + z2−1)⊙ zp

⊙ (1− zp)⊙H(mpR)⊙T (m, p)]}

− a×
1+cosφ

p

2
⊙cosθ p ⊙{HT [(z∗− z)⊙sech2(z1 + z2−1)⊙ zp

⊙ (1− z)p ⊙H(mpI)⊙T (m, p)]}, (39)
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∇Fφ
p

=
a
2
×sinφ

p
⊙cosθ p ⊙{HT [(z∗− z)⊙sech2(z1 + z2−1)⊙ zp

⊙ (1− zp)⊙H(mpR)⊙T (m, p)]}

+
a
2
×sinφ

p
⊙sinθ p ⊙{HT [(z∗− z)⊙sech2(z1 + z2−1)⊙ zp

⊙ (1− zp)⊙H(mpI)⊙T (m, p)]}, (40)

where p = 1 or 2 andT (m, p) = [H(mpR)2 + H(mpI)
2]−

1
2 . Both pole penalty and wavelet

penalty can be applied to the double-exposure optimizationmethod. The experiment shown
in Fig. 2 is repeated in Fig. 11, where a double-exposure method is used. It is obvious that the
pattern error is effectively reduced. The double-exposureoptimization method is indeed effec-
tive, but requires more complicated processing and longer fabrication time. As mentioned in the
introduction, independently from our work, Poonawala and Milanfar have developed a double-
exposure inverse lithography method. Although similar in concept, these two approaches are
different. Their method optimizes the inverse lithographyprocess prior to a threshold opera-
tor, whereas the double-exposure method presented in this paper encompasses the threshold
operator that models the photoresist development stage.
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Fig. 11. Left to right: mask for first exposure, mask for second exposure and the out-
put pattern.sφ

1
= 4, sθ 1

= 0.01, sφ
2
= 4, sθ 2

= 0.01, γpole,φ
1
= 0.015, γpole,θ 1

= 0.001,
γwavelet,φ

1
= 0.5, γwavelet,θ 1

= 0.003, γpole,φ
2
= 0.015, γpole,θ 2

= 0.001, γwavelet,φ
2
= 0.5

andγwavelet,θ 2
= 0.003.

6. Conclusion

This paper studies and models the optical system for generalized inverse lithography. A pixel-
based mask representation is used and the MSE between the output pattern and the desired
pattern is used to measure the pattern error. The cost function approach used enables the algo-
rithm to search for a solution in the entire complex plane, and as such avoiding possible phase
conflicts. In order to control the amount of details, the polepenalty terms are used to curb the
transmission regions on the mask pattern and constrain the phases to several prescribed discrete
levels. Another contribution of this paper is the introduction of the wavelet penalty used to re-
duce the mask complexity. Because of the “localization property”, regional weighting can be
applied to different areas on the mask pattern. Finally, a double-exposure optimization method
is introduced. It is capable to avoid the phase conflict and results in much less pattern error as
well.
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