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Abstract:  Optical proximity correction (OPC) and phase shifting ngask
(PSM) are resolution enhancement techniques (RET) usemhsxely in
the semiconductor industry to improve the resolution antepa fidelity
of optical lithography. In this paper, we develop generligradient-based
RET optimization methods to solve for the inverse lithodmaproblem,
where the search space is not constrained to a finite phasellagion
but where arbitrary search trajectories in the complex s@ae allowed.
Subsequent mask quantization leads to efficient design dMsPi&aving
an arbitrary number of discrete phases. In order to influg¢heesolution
patterns to have more desirable manufacturability pregerta wavelet
regularization framework is introduced offering more limad flexibility
than total-variation regularization methods traditidjpamployed in inverse
problems. The proposed algorithms provide highly effectieur-phase
PSMs capable of generating mask patterns with arbitraryHdtian ge-
ometries. Furthermore, a double-exposure optimizatiothatkefor general
inverse lithography is developed where each exposure useptimized
two-phase mask.
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1. Introduction

Due to resolution limits of optical lithographic systemse telectronics and photonics indus-
try have relied on 2D and 3D resolution enhancement teclesigRET) to compensate and
minimize mask distortions as they are projected onto semdiector wafers [1, 4, 5]. Resolu-
tion in optical lithography obeys the Rayleigh criterigesol ution(R) = k,\?—A, whereA is the
wavelengthNA is the numerical aperture taking on values arou®d@ most lithography sys-
tems used today, ardis the process constant which can be minimized through RERads
[6,7,8,9]. RET methods manipulate the local amplitude drasp features of the optical wave-
front to pre-compensate for imaging distortions. Optical process correction (OPC) methods
modify the mask amplitude by the addition of sub-resolufeeatures to the mask pattern [5].
Phase shifting masks (PSMs), commonly attributed to Lemef0], induce phase shifts in the
transmitted field which has a favorable constructive orrdette interference effect. Thus, a
suitable modulation of both the phase and the intensity @fribident light can be used to ef-
fectively compensate for some of the resolution-limitirrgepomena in optical diffraction. The
challenge is then to develop a general systematic methogkigpre-compensated masks also
referred to as inverse lithography technology (ILT).

Several approaches to inverse lithography have been pdpoghe literature. These range
from heuristic and empirically-based design rules to caaganally expensive optimization-
based inverse algorithms. Sherif, et al. derived an iteratpproach to generate binary masks
[11]. Liu and Zakhor developed a binary and phase shiftingkrdesign strategy based on
the branch and bound algorithm and simulated annealing P&t}-Kailath exploited a class
of approximations for partially coherent imaging systemslévelop sub-optimal projections
onto convex sets for PSM designs [13]. In addition, Erdmanop@sed automatic optimization
of the mask and illumination parameters with a genetic dlgor [14]. Pang, et al. gave an
overview of ILT and provided some simulations to demonstthe benefit of ILT [15]. Granik
described and compared solutions of inverse mask problehsAll of the methods mentioned
above, however, are not based on gradient type optimizatidrthus the searching process for
a suitable solution is either computationally expensivenar efficient. Recently, Poonawala
and Milanfar introduced a novel optimization framework foverse lithography based on a
pixel-based, continuous function formulation, well sdit®r gradient-based search, [17].
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Based on a steepest descent search, this approach expdaitsttheory of regularized iterative
optimization [18].

Letting M(x,y) be the input mask to an optical lithography syst€fn}, approximated as a
low-pass spatial filter followed by a soft threshold openatithe output pattern is denoted as
Z(x,y) = T{M(x,y)}. Given aN x N desired output patteri*(x,y), the goal of PSM design
is to find the optimizedvi(x,y) calledM (x,y) such that the distand® = d(Z(x,y),Z*(x,y)) =
d(T{M(x,y)},Z*(x,y)) is minimized, wherel(-,-) is the mean square error criterion. The PSM
inverse lithography optimization problem can thus be fdated as the search M(x, y) over
theN x N complex spac€N*N such that

M(xy)=arg min d(T{M(xy)},Z*(xy)). @
M (x,y)eCN*N

With the goal of attaining two-phase-level optimized magkge system in Ref. [17] further
constrainedV(x,y) in Eq. (1) such thaM(x,y) = cos(6(x,y)), thus searching over the range
of 6 and thus constraining the value bf in the intervalM(x,y) € (—1,1) and in essence
representing masks limited to two phases. While this apjpr@acery effective in some cases,
the end result is that the search generally fails to gened¢guate PSM for mask patterns
having arbitrary Manhattan geometries [19]. According®tour-Phase Theorem” described
in Ref. [13], given an arbitrary pattern with a Manhattanmetry, a phase-shifting mask used
to synthesize the image pattern must use a minimum of fotindipphase levels.

The main goal of this paper is thus to overcome this limitatd the Poonawala, et al. al-
gorithm in Ref. [17], so as to obtain a generalized synthalkjerithm capable of generating
arbitrary mask patterns. This is accomplished as followst Rhe iterative optimization frame-
work is re-formulated where the search trajectory is untraireed in the complex plane. The
optimization problem is thus broadly formulated as in E¢. & expected, the resultant mask
patterns obtained by Eqg. (1) have arbitrary complex pixéles and consequently a post-
processing step is used to quantize the patterns into tlireddésur-phase-level, shifting-mask
patterns.

A second contribution of the paper is the introduction of & megularization framework.
Inverse lithography is an ill-posed problem where numeiopst patterns can lead to the same
binary output pattern. Regularization in ILT seeks to btz $olution space to sample solu-
tions that have lower manufacturabilty complexity. We aadlice an effective detail-reduction
approach referred to as “wavelet penalty” regularization.

Finally, in the event that four-phase masks are difficultabricate, but the goal is to still
synthesize masks with arbitrary geometry, a third contidiouof the paper is the develop-
ment of a double-exposure PSM optimization method, wheeaett stage the PSM masks are
constrained to have two phases. The two-stage exposuredneh lead to high fidelity output
pattern reproduction at the expense of a more complex erppsocess. Poonawala and Milan-
far, independently from our work, have simultaneously tgyed a different double-exposure
method [20].

2. PSM design and problem formulation

The methods developed in this paper extend and generaézadldel and approach proposed
in Ref. [17], illustrated in Fig. 1. The complex-valued maskhe input of the system, where
the phase pattern of the propagating light is modified by a@lsaifting material overcoating
the mask. Light propagating through the mask pattern isctteby diffraction and mutual
interference—a phenomena described by the Hopkins Diffrad¥lodel [21, 22]. The light
that transmitted through the mask reaches a light-seagititoresist, which is subsequently
developed through the use of solvents. The thickness oftimaining photoresist after devel-
opment is proportional to the exposure dose exceeding a tfiveshold intensity. In a positive
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photoresist process, almost all the photoresist mateniahns in the low-exposure area on the
wafer and is removed in the high-exposure area. Betweep thesextremes is the transition
region. For mathematical simplicity, it is assumed that mvtiee light field exceeds a threshold,
the exposed area becomes a high-exposure area, otherhdseggposure area. Thus, a hard
threshold operation can adequately represent the expeectdescribed above and the output
pattern of the optical system is binary. This is an approxénmodel for the field transfering
through the mask. In Fig. 1, | is the element-by-element absolute operation. In this pape

m — [H{m}| AV sig{|Hm|}

Mask Convolution Approximation of Sigmoid Approximation Outpué
Image Formation Process

Fig. 1. Approximated forward process model. (Ref. [17], Fig. 1).

only coherent imaging is considered, and the aerial imagadton process is approximated
by a convolution between the mask pattern and a Gaussiandssvfiiterh. In the pixel-based
algorithm, pixel size= resolution(R) = kﬁ. The standard deviation of the Gaussian low-pass
filter his o = RXAA* = k. The output of the convolution and the absolute operatiodehis the
electrical field amplification distribution of the aerialage. Further, since the derivative of the
sigmoid function exists, it is used to approximate the hhardghold function. The hard thresh-
old function is a shifted unit step functids(x —t;), which is approximated by the sigmoid

function
1

Sigh) = 1+exp—a(x—t)]’
wheret, is the process threshold, aadlictates the steepness of the sigmoid function.

The mask is represented by &y, matrix with aN2x 1 equivalent raster scanned vector
representatiomy2, , which is denoted as for short notation. Following the definitions above,
the following notation is used:

1) A convolution matrix H is &% x N2 matrix denoting an equivalent two-dimensional low-
pass filterh.

2) The desiredN x N binary output pattern is denotedAs It is the desired light distribution
sought on the wafer. Its vector representation is denoted as

3) The output of the sigmoid function is tHé x N real-valued image denoted @s=
sig{|H{M}|}. The equivalent vector is denotedzs ON**1.

4) The hard threshold version gfis the binary output pattern denotedzs Its equivalent
vector is denoted ag € ON*¥1, with all entries constrained to 0 or 1.

5) The electrical field of the input mask is denoted as the ¢exapaluedN x N matrix M
and it is equivalently represented asc CN°*1, whereCN’*1 is the set ofN2 x 1 complex
vector. All entries inM andm can take on unrestricted complex values.

6) The pole-constrained mask, is the quantization of. The pixel magnitudes d¥l, are
quantized to 0 or 1. The pixel phases are quantized to saliscaéte phase levels. Its equivalent
vector is denoted a®, € CN?x1,

7) The optimizedN x N complex-valued mask denoteddaminimizes the distance between
Z andZ*, ie,

)

N = argmind(sig{|H {M}},2"). ©)

Its equivalent vector is denoted as=TN*1,
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8) The pole-constrained optimized ma\?ﬂs is the quantization ofl. Its equivalent vector is

denoted asny € C\?x1,
Given the gray level pattern= sig{|H{m}|}, theith entry in this vector can be represented

as 1
. i=1,...N? (4)

Zi = N2
1+exp—al y hijm;|+at]
i£1

wherehy;j is thei, jth entry of the filter. In the optimization process,is searched to minimize
the L, norm of the difference betweenandz*. Thereforeni= argmins{F(m)}, where the
cost functionF(-) is defined as:

2 2
N N 1

Flm =z ~2lf=y (7 ~2)°=3 (7 -

). (5)

N2
1+exp—al y hijm;|+at]
j=1

3. Generalized PSM design algorithm

As stated before, two-phase-level PSMs are not adequatertergte arbitrary patterns with
Manhattan geometries [13] and phase conflicts are likelyriseaAccording to thé=our —
Phase Theorem [13], the number of discrete phase levels used in PSM desigald be at
least four, in order to avoid conflicts and ambiguities in @lssignment of phases. The inverse
model-based algorithms in Ref. [17] is not suited for optiation of masks having more than
two-phase levels (0 and). This drawback motivates us to develop a generalized isthyoy
admitting an arbitrary number of discrete phase levelscivbvercomes this limitation.

Letr and@ be the magnitude and phase components of the complex-valaskl

Lr‘(:£kejgka k= 17"'7N25 (6)
wherej = v/—1, 8, € (—o,0) andry € [0,1]. The bound-constrained optimization is then
reduced to an unconstrained optimization problem usirigdhg parametric transformation,

1+co
= T k=1 N (7)
whereg, € (—o0,00). Substituting, in Eq. (6) with Eq. (7), we have,

1+4co :
mk:TsteJQk, k=1,...,N2 (8)

Defining the vectoB = [6y,..., 6yz]" andg =@, ..., @2]", the optimization problem is for-

mulated as: .
(8,9) =arg (rgi(;;{F(Q, ?)}, 9)

where the cost function is:
NZ

Iz 2|3 = _;(ﬁ ~z)?

F(8,9)

2

N2 1

:i;ﬁ_

(10)

N2 ,
1+ exp[—a\/( Y hi HC;SQ" ei)2 4 aty]
k=1
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The steepest-descent method is used to optimize the abobkepr. The gradientSF (8, ¢)g
andUF (8, @), can be calculated as follows [19]:

l+cosp .
OF(8,0) = dg = 2axTf@sm@{HT[@—z)@z@(l—z)GH(ﬂh)G)T(m)]}
1-+cosp
2ax ———=0cosf o {H'[(Z -2 020 (1-2 OH(m) o T(m)]},
(11)
OF(8,9)p = d, = axsingocosfo{HT[(Z'~2)©z6 (1-2) ©H(mg) o T(m)]}

+ axsingesinge{HT[(Z -2 020 (1-2 oHm) o T(m)]},
(12)

where JF (8) € ON*1 & is the element-by-element multiplication operator, angn) =
[H(mg)2+H(m )2 ~2. mg andmy are the real part and the imaginary partofL=[1,....1]T €
ON*x1. AssuminggX andg* are thek!" iteration results, then at thet+ 1" iteration:

0K = 0% — sqd, (13)

i0|(+1 — Qk o SQQE’ (14)

wheresg and s, are the step-sizes. The iterative optimization above, imeg#, leads to
complex-valued solutions that are not constrained to aetisaiumber of magnitude and phase
levels. Therefore a post-processing step is needed tonotftai pole-constrained optimized
mask,m,. Sinceniis complex-valued, a two-step quantization process igviat. First the
magnitudes are quantized by a global threstglas|my; | = U (|fy| —tm), wherei = 1,..., N2,
The phases are subsequently quantized to the nearestipeediscrete phase level. We define
the pattern erroE as the distance between the desired output pateand the actual binary
output patterrzy:

N2 N2
E:‘Zl@*ﬂ;i\:_;|§*F|Hmpi\|~ (15)

When the pattern error is reduced to a tolerable level, trepstd descent iteration is stopped.
In order to demonstrate the effect of the number of phasesind®@SM design, consider the
desired pattern shown in Fig. 2. The top horizontal blockssroonnects two vertical parallel
blocks. The phases assigned to the two parallel adjaceckdlmannot be the same, so as to
exploit the PSM principle. Since the horizontal top blockgects the parallel blocks, and
since it would be desirable that there are no gaps introdunceek image, the horizontal block
must be assigned an intermediate phase value that is distintthe phases of the two parallel
blocks. Therefore, two-phase levels are not sufficient tairathis goal. The conflict can be
eliminated with the use of four phases. In Fig. 2, the pasténnthe top row and the middle
row illustrate the input patterns. The output patterns amws in the bottom row. The three
images in the bottom row show the output patterns of (le&)dasired patterre(), (center) the
complex-valued optimized maskn),"and (right) the pole-constrained optimized masi) "~
The aerial image formation process is approximated by:a 11 Gaussian low pass filter with
k=14, in the sigmoid function, we assign parametets80 and; = 0.5. The global threshold
is tm = 0.5. The shape of the image used to initialize the iterativerilgm is the same as
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Fig. 2. Top row (input masks), left to right: desired pattern, magnitddide optimized
complex-valued mask and optimized pole-constrained mask obtainegaiginesholdy,.
The middle row indicates the phases of the optimized complex-valued faskottom
row indicates the corresponding binary output patterns. The parameted in the simu-
lation area = 80,tr = 0.5, tn = 0.5, 11x 11 Gaussian low pass filter with= 14,s, = 2
andsg = 0.01. Green, red and blue represent 0, 1 and -1 respectively in theddpodtom
rows; Dark blue, light blue, yellow and red represgr,lt%", 57" and%" respectively in the

middle row.
z i MHMm,
10 10 10
20 20 L] 1 20
30 30 30
4 4 4
50 50 50
60 60 60
70 70 70
80 80 80
20 40 60 80 20 40 60 80 20 40 60 80

Pattern Error=77

Fig. 3. Left to right: desired pattern, pole-constraied optimized maskbamaty output
patterns, = 2, sg = 0.01. Red and blue represent 0 amghases respectively.
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the desired binary output patter. For g, we assign the phase &f corresponding to the

areas having a magnitude of 1 and a phas%’dbr the areas with magnitude of 0. The phase
assignment must be done a-priori and phases in neighbolegdbare assigned alternately.
Because of the numerogse andcosine functions in Eq. (11) and Eq. (12), we intentionally
avoid assigningd, and<p the values of 0.7, 1 or 3" . Otherwise, Eq. (11) or Eq. (12) may
reduce to a zero update, termlnatlng the iteration. For efbase-level mask design, empirical
observations show that an efficient assignment of phasewvah, is to select phases in the
setofZ, 3, 5T and 7. Further, regions around a block should be assigned a paasethat is

7 different from that of the block and on the same side of thegimary axis. This approach has
proved efficient in our extensive simulation analysis. A®mparison to the four-phase PSM
design, the experiment using just two phases is illustrasté&dgy. 3. Note that a gap appears on
the top connection of the synthesized mask, as expected.

4. Regularization

As illustrated in Fig. 2, the optimized mask patterns contaiimerous details, which may
bring difficulty to mask fabrication. Most of the details @it of singular transmission pixels.
One approach to reduce image detail is through regulasizatiring the optimization process
[18, 17]. Regularization is formulated as follows:

= argmin{F(m) + yR(m)}, (16)

whereF (m) is the data-fidelity term an(m) is the regularization term which is used to reduce
the solution space and constrain the optimized resultsthe user-defined parameter to reveal
the weight of the regularization. In the following, we wilsduss pole penalty and the wavelet
penalty.

4.1. Pole penalty

The pole penalty is used to constrain the magnitude and pifassch pixel value in the opti-

mized mask to several prescribed discrete levels, so treegmialty is divided into the mag-

nitude pole penalty and the phase pole penalty. Poonawdlddanfar used the pole penalty

approach favoring a two-phase-level solution. In ordextersd the pole-penalty method to the

algorithm developed in Section 3, it is generalized to a@dmiarbitrary number of phase levels.
The magnitude pole-penalty term is:

Rpoie(m) = 3 [m[? = |m["m]. (17)

I=

For each pixel value, the corresponding penalty is the qumdiunctionr(m) = \m| i =
1,...,N2. According to Eq. (17), the gradient &ge(m) is ORpoie(mM) = 2/m|, thus, the cost
function in Eq. (5) is adjusted a@m) = F (M) + YpoleRpole(M). In the phase penalty, the phases
are constrained to the closest phase levels. If we use taseplevels, the regularization term
is:

N2 m T

Reae(8) = 3 [sin(28; - D)+ 12 =[sin(28 - )+ 1[sin(20 - 7) +1]. (18)
=

For each pixel value, the corresponding penalty depicteddbig line in Fig. 4 isr(6;) =
[sin(26, — 5)+1]%, i=1,...,N2 According to Eq. (18), the gradient Bfqic(0) is

ORpote(8) = 4[sin(26 — g) + 1" cog20 — 127). (19)
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If four-phase levels are considered, the regularizatiom is then obtained as:

N2

Rie(8) = 3 [sin46, - )27 = [sina, — 20+ 2J"[sin48, — 20 +1.  (20)
For each pixel value, the corresponding penalty depictettidylash-dot line in Fig. 4 is:
r(6;) = [sin(4Qi—37n)+1]2, i=1,...,N? (21)
and the gradient dRpgie(0) is:
ORpole(8) = 8[sin(48 — 37") +1)" cog46 — 37"). (22)

Using the pole penalty described in Eqg. (17) and Eq. (20)eperiment shown in Fig. 2 can

"\[ — Two Phases
|~ - Four Phases

I
' i
i |
' i
i \
i '
i |
i /,[
i '
6 7

Fig. 4. Phase penalty for two-phase levels and four-phase levels

o
g
Zi

be repeated. The result is illustrated in Fig. 5. Comparisetwveen Fig. 2 and Fig. 5 shows

z th, magnitude i, phase MHry,

20 20 20
'n ' n
60 60 60
80 80 80
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

Pattern Error=29

Fig. 5. Left to right: desired pattern, pole-constrained optimized magininale, pole-
constrained optimized mask phases (Dark blu,itight blue is 37, yellow is 3 and red
is 77") and binary output pattersy = 2,89 = 0.01, ypole,p = 0.001 andypoie, g = 0.0001.

that the pole penalty leads to fewer transmission pixelsthad fewer details in the attained
mask pattern. However, some details still remain in the npagtern. In order to remove those
details, an additional penalty can be considered. The wapehalty regularization method is
introduced next for this goal.

4.2. \Wavelet penalty

4.2.1. Wavelet penalty

Since typical mask patterns encountered in circuitry aeegwise smooth images, the Haar
wavelet is used as the building block. ConsidéraN (assumeN is even) imag®in«n, where

#86458 - $15.00 USD  Received 15 Aug 2007; revised 21 Sep 2007; accepted 26 Oct 2007; published 31 Oct 2007
(C) 2007 OSA 12 November 2007 / Vol. 15, No. 23/ OPTICS EXPRESS 15074



myj represents th@, j) matrix element. The 1-depth Haar wavelet transform of thregienabove,
ignoring the scale parameters, leads to the level-one gjppation coefficient block and three
detail coefficient blocks, each block of si%ex % Specifically, the approximation coefficient
block iSAL}x N where

&) = M2(i-1)+1)2(j-1)+1) T M2i-1)+1)2(-1)+2) T M2i-1)+2)2(j-1)+1) T M2(i-1)+2)(2(j-1)+2)> (23)

fori,j = 1,...,%. The horizontal, vertical and diagonal detail coefficielticks are respec-
tively,

hij = Mai-1)+1)2(-1)+1) — M26-1)+1)2(-1)+2) T M2)i-1)+2)2(-1)+1) — M2i-1)+2)(2(j-1)+2)> (24)
Vij = Miii-1)+1)(2(—1)+1) T M2(i—1)+1)2(—1)+2) — M2(i-1)+2)(2(j-1)+1) — M2i-1)+2)(2(j-1)+2): (25)

dij = M2i-1)+1)2(j-1)+1) — M2i-1)+1)(2(—-1)+2) — M2(i-1)+2)(2(j—1)+1) T M2(i-1)+2)(2(j-1)+2)> (26)

fori,j=1,...,%. The approximation coefficient block represents the laegfrency compo-
nent of the image and the other three detail coefficient Waepresent the high-frequency
components or the details of the image. Further, using E.t(?Eq. (26), the total energy in
the detail components is:

N N
2 2

Edetail = i;;(hijhfj +VijVij +dijdj). (27)

In order to remove details in the mask, the energy of the ldetaiponents should be reduced
during the optimization process. Althoudfy«aii contains many terms, there are just three
terms relative to a specific mask elememf. This property is convenient for calculating the
energy differential of the detail components with respeatach pixel valuen;. We refer to
this property as the “localization property”. The partiaridatives ofEgeq; With respect top
and@ are as follows [19]: B

OEdetail
99 (2-1)+p)(2(j-1)+q)

= —sing,, x Refe 10@i-0+p@(i-0+9 5 (3Myp(i_1) s p)(2(j-1)+q)

“D+p)(2(j-)+a)

= Moi-1)+py) @0 -1)+9) ~ M2l-1)4+p) (20~ 1)+ar) ~ M 2(i-1)+py)(2(j—-1)+a))](28)

OEqetail
06 5

= (1+cosg,, ) x Re|(—j)e 2ai-v+p@i-nra

1)+p)(2(j—1)+9) 1+p)(2(j-1)+q)

X (3m<z<i—1>+p><2<171>+q> ~ M2(i-1)+py)2(j-D+a) ~ M2(i-1)+p)(2(j-1)+a)
= Mi-1)py)(j-1)+a))s (29)

wherei, j=1,....5; p,g=1o0r 2; pp = (p+1) mod 2 andg, = (g-+ 1) mod 2. From Eq. (28)
and Eq. (29), the gradient &4 can be calculated and the cost function can be adjusted as:

J(m) = F (M) + YpoleRpole(M) + Yvavel et Edetail (M). (30)

The experiments of Fig. 5 are then repeated using the wapetetlty. The results are illus-
trated in Fig. 6, where it can be seen that the wavelet peraityves many small peaks at the
bottom of the two parallel bars in Fig. 5. These results itk the efficiency of the wavelet
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Fig. 6. Left to right: desired pattern, pole-constrained optimized magininale, phase
and binary output patterisy = 2, sg = 0.01, Ypo1e,¢ = 0.01, Ypoie 9 = 0.001. Wavelet reg-
ularization use$wavelet,p = 0.2 andyiyavelet,0 = 0.001.
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Pattern Error=42

z th, magnitude M, phase rHMm,

Fig. 7. Left to right: desired pattern, pole-constrained optimized magininale, phase
and binary output pattertsy = 2, sg = 0.01, Ypoie p = 0.01, Ypoie g = 0.001, Yty = 0.3
andyy,g = 0.001. B B B

penalty. Regularization invariably will have a tradeoftiueing the pattern details while of-
ten increasing the pattern errors. Since the wavelet peraatioves small assisting blocks, the
distortions of the output images are increased.

Another well-known penalty to remove details is total viaoa penalty. Generalized to the
complex domain, the gradients of the total variation pgrelé given as:

TRrv(9) = QFsonQl 1) + Q] s9nQ] 1] © —singe Ref(m-—7) e ¥ (31)

ORrv(6) = [Qxsgr(Qx f) + Q7 sgn(Qy )] © (1+cosg) O Re{(m—z) &7 10 & (=j)] %

(32)
wheref is the activation pattern anl = [m; —zj| for j = 1,...,N2. Using the total variation
penalty in our approach, the results are presented in Figomparing the results in Figs. 5-7,
the following observations can be made. Firstly, the Haarele is suitable for the piecewise
smooth image. Secondly, given a set error range in the attaimask patterns in all simulations
tested, the Haar wavelet penalty removes more details Heatotal variation penalty. Finally,
the Haar wavelet penalty makes the shape of the blocks cetisty the mask more regular and
closer to the Haar basis functions. The Haar wavelet pettalty leads to a set of advantages
that can be attributed to the rectangular shape of the Hais aveforms.

4.2.2. Localized wavelet penalty

In the experiment above, the wavelet penalty is applied éodhtire mask pattern without
any local discrimination. Thus, equal penalty was assidoetttails in all regions. In practice,
details may be intolerable in some special mask regiondewhbime details may be permissible
in other regions. Because of the “localization property'tted Haar wavelet penalty, we can
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assign regional weights to the penalty term. Thus, a loedlizavelet penalty is effective for
achieving local discrimination. To this end, the cost fimeis adjusted as:

J(mi) =F (m) + VpoIeRpoIe(mi) + w(i)MNavela Edetail (m), (33)

wherew(i), i = 1,...N? are the weight coefficients and may be changed in differeatiaip
regions. The experimental result using localized wavedstalty is presented in Fig. 8. The

z* thy, magnitude th, phase MH,
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. “ ) ) "
60 60 60

80 80
20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

Pattern Error=38

Fig. 8. Left to right: desired pattern, pole-constrained optimized magkinale, phase and
binary output patterrsy = 2, sg = 0.01, Ypo1e,p = 0.001, Ypoie g = 0.0001, Yyaveret,p = 0.2

and Vave e, = 0.001. The gap between the vertical bars has regional weight of 165. Th
other regions have regional weight of 0.7.

experiment shown in Fig. 8 has the same parameters as théawa & Fig. 6, except for the
regional weights. We placed a higher castj) = 1.6, to the gap area between the vertical bars,
and we assigned lower cosb(i) = 0.7, to other regions. Comparing the results in Fig. 6 and
Fig. 8, it is observed that the localized wavelet penaltyaees more details in the gap, but
tolerates slightly more details in other regions.

It should be noted that for some special patterns, fourglea®ls are not necessary to avoid
the phase assignment conflict. For instance, the paralepattern in Fig. 9 can be attained
by a two-phase mask. As shown in Fig. 9, the generalized Pgbtitim is also capable of
designing two-phase masks. Using the localized waveledlpgrthe attained mask design is
shown in Fig. 10.
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Fig. 9. Left to right: desired pattern, pole-constrained optimized maskbamary out-
put pattern.sy = 2, sy = 0.01, ypoiep = 0.001, Ypoie 9 = 0.0001, Yyavelet,p = 0.03 and
KNaveIa,Q =0.001.

5. Double exposure optimization method

As an alternative method to the four-phase PSM, a doublesexp optimization method can
be developed to avoid the phase conflict. In this method, hloéopesist layer is exposed twice,
each with a two-phase mask. Assume that the two masKeglaemdM,. Using the parametric
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Fig. 10. Left to right: desired pattern, pole-constrained optimized madkbénary out-
put pattern.sy = 2, sy = 0.01, ypolep = 0.001, Ypoie9 = 0.0001, Yyavelet,p = 0.03 and
Yowavelet.0 = 0.001. The regions for the first and the fourth bars have regional wefgh8.
The regions for the second and the third bars have regional weigttt.6Ffie other regions
have regional weight of 0.7.

transformations: 14
. co .
leZLlKeJQlk — %e]glk’ k= 1,...,N2, (34)
) 1+co )
My, = Iyl = &e@k, k=1,...,N° (35)
The corresponding output images are:
1
2 = I . k=1,....N? (36)
1+exp—al 3 hx——o2ikeifu |+ at]
k=1
1
Zy = . k=1,... N (37)

N2 1 i
1+ exp[fa\ > hikiﬂzssz elQ2k| + atr]
k=1

The superposition &, andz, is the final output pattern z, =U (z, +2z,, — 1), k=1,...,N?,
whereU (-) is a unit step function. Since the step function’s derietnill introduce a Dirac
impulse term that is inconvenient for further analysis,rapge approximation is given by the
hyperbolic tangent function, = U (z;, +z, — 1) ~ 3[tanh(z, + 2, — 1) +1], k=1,...,N%
The cost function is then calculated as:

N2
F=F(619,020,) =7 ~23=3 (3 - jlianizy 1z -+ UP @9

Therefore, the gradientsFy, ,LF, ,LIFg, andUF,, can be calculated as:

1+ cosg .
OFg, = ax T*pcasmgp@{HT[(f—;)@secﬁ(;l+g2—1)®;
1+cosp, .
- ax————0cos8, 0 {H (z —2)@sech(z;+2,—-1) Oz

p

p
© (1-2poH(my)oT(m p)}, (39)
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OFy = gxsingp@costQ{HT[(z*7;)®secﬁ(;1+g27;)®;

(1-2z,) ©H(my) ©T(m,p)]}

5 xsing, ©sing,© {H'[(Z -2 osecll(zy +2,-1) oz,

(l_Zp) OH (mpl ) GT(m7 p)]}7 (40)

p

© + O
o

wherep=1or 2 andT(m,p) = [H(mpR)2 + H(mm)z]*%. Both pole penalty and wavelet
penalty can be applied to the double-exposure optimizatiethod. The experiment shown
in Fig. 2 is repeated in Fig. 11, where a double-exposure odeithused. It is obvious that the
pattern error is effectively reduced. The double-exposptemization method is indeed effec-
tive, but requires more complicated processing and loradeidation time. As mentioned in the
introduction, independently from our work, Poonawala arithMar have developed a double-
exposure inverse lithography method. Although similar amaept, these two approaches are
different. Their method optimizes the inverse lithogragngcess prior to a threshold opera-
tor, whereas the double-exposure method presented in dpisr gncompasses the threshold
operator that models the photoresist development stage.

iy, 1y, U (MH iy, + MHiy, — 1)
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Fig. 11. Left to right: mask for first exposure, mask for secondosype and the out-
put patternsgl =4,s9, =0.01, Sp, = 4,59, =0.01, Ypole.p, = 0.015, Ypole p, = 0.001,
Ywavelet,p, = 0.5, Vavelet,9, = 0.003, Ypolep, = 0.015, ypole g, = 0.001, Yvavelet,p, = 0.5
andYpavelet,0, = 0.003.

6. Conclusion

This paper studies and models the optical system for génedahverse lithography. A pixel-
based mask representation is used and the MSE between {n& pattern and the desired
pattern is used to measure the pattern error. The cost fumagiproach used enables the algo-
rithm to search for a solution in the entire complex plang, as such avoiding possible phase
conflicts. In order to control the amount of details, the gm@alty terms are used to curb the
transmission regions on the mask pattern and constrairhéees to several prescribed discrete
levels. Another contribution of this paper is the introdoictof the wavelet penalty used to re-
duce the mask complexity. Because of the “localization prtyfj, regional weighting can be
applied to different areas on the mask pattern. Finally,ibbtexposure optimization method
is introduced. It is capable to avoid the phase conflict asdite in much less pattern error as
well.
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