2960 J. Opt. Soc. Am. A/Vol. 25, No. 12/December 2008

X. Ma and G. Arce

Binary mask optimization for inverse lithography
with partially coherent illumination

Xu Ma* and Gonzalo Arce

Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, USA
*Corresponding author: maxu@udel.edu

Received June 30, 2008; revised September 16, 2008; accepted September 21, 2008;
posted September 29, 2008 (Doc. ID 97804); published November 11, 2008

Recently, a set of generalized gradient-based optical proximity correction optimization methods have been de-
veloped to solve for the inverse lithography problem under coherent illumination. Most practical lithography
systems, however, operate under partially coherent illumination. This paper focuses on developing gradient-
based binary mask optimization methods that account for the inherent nonlinearities of partially coherent sys-
tems. Two nonlinear models are used in the optimization. The first relies on a Fourier representation that
approximates the partially coherent system as a sum of coherent systems. The second model is based on an
average coherent approximation that is computationally faster. To influence the solution patterns toward more
desirable manufacturability properties, wavelet regularization is added to the optimization framework.

© 2008 Optical Society of America

OCIS codes: 220.3740, 100.3190, 110.4980, 100.7410.

1. INTRODUCTION

Because of the resolution limits of optical lithographic
systems, the electronics industry has relied on resolution
enhancement techniques (RET) to compensate and mini-
mize mask distortions as they are projected onto semicon-
ductor wafers [1]. Resolution in optical lithography obeys
the Rayleigh resolution limit R=kN/NA, where \ is the
wavelength, NA is the numerical aperture, and % is the
process constant that can be minimized through RET
methods [2-5]. In optical proximity correction (OPC),
mask amplitude patterns are modified by the addition of
subresolution features that can precompensate for imag-
ing distortions [6].

Several approaches to inverse lithography have been
proposed in the literature. These range from heuristic
and empirically based design rules to computationally ex-
pensive optimization-based inverse algorithms. Sherif et
al. derived an iterative approach to generate binary
masks in incoherent diffraction-limited imaging systems
[7]. Liu and Zakhor developed a binary and phase shifting
mask (PSM) design strategy based on the branch and
bound algorithm and simulated annealing [8]. Pati and
Kailath developed suboptimal projections onto convex
sets for PSM designs [9]. In addition, Erdmann et al. pro-
posed automatic optimization of the mask and illumina-
tion parameters with a genetic algorithm [10]. Pang et al.
gave an overview of inverse lithography technology (ILT)
and provided some simulations to demonstrate the benefit
of ILT [11]. Granik described and compared solutions of
inverse mask problems [12], and solved the general non-
linear formulation by the local variations and gradient
descent methods [13]. However, the searching process of
the methods mentioned above for a suitable solution is ei-
ther computationally expensive or not efficient.

Poonawala and Milanfar recently introduced a novel
optimization framework for inverse lithography relying
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on a pixel-based, continuous function formulation well
suited for gradient-based search [6,14]. Ma and Arce gen-
eralized this algorithm so as to admit multiphase compo-
nents having arbitrary PSM patterns [15,16]. These algo-
rithms are computationally effective; however, they
focused on coherent illumination systems. Most practical
illumination sources have a nonzero line width and their
radiation is more generally described as partially coher-
ent [17]. While the inverse lithography methods derived
in [6,14-16] are effective in coherent illumination, these
algorithm will not produce adequate results when applied
to a partially coherent illumination system. Note that the
application of the gradient-based optimization approach
to solve for the partially coherent illumination problem
was suggested in [14]; the derivation of the iterative algo-
rithm was not developed or studied at length. Partially
coherent illumination (PCI) is desired, since it can im-
prove the theoretical resolution limit. PCI is thus intro-
duced in practice through modified illumination sources
having large coherent factors or through annular-shaped
illumination.

In partially coherent imaging, the mask is illuminated
by light traveling in various directions. The source points
giving rise to these incident rays are incoherent with one
another, such that there is no interference that could lead
to nonuniform light intensity impinging on the mask
[1,18]. According to the Hopkins diffraction model, the
light intensity distribution exposed on the wafer in PCI is
bilinear and described by [19]

I(r)= f f M(xr)M(ry) y(r; —r9)h*(r — r1)h(r — ry)dr;dry,
(1)

where r=(x,y), ri=(x1,y1), and ry=(x3,y). M(r) is the
mask pattern, y(r;—ry) is the complex degree of coher-
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ence, and A(r) represents the amplitude impulse response
of the optical system. The complex degree of coherence
y(r1-ry) is generally a complex number whose magnitude
represents the extent of optical interaction between two
spatial locations r{=(xy,y;) and ry=(x9,ys) of the light
source [1]. The complex degree of coherence in the spatial
domain is the inverse 2-D Fourier transform of the illu-
mination shape.

In general, this equation is tedious to compute, both
analytically and numerically [17]. The system reduces to
simple forms in the two limits of complete coherence or
complete incoherence. For the completely coherent case,
the illumination source is at a single point, thus y(r)=1.
In this case, the intensity distribution in Eq. (1) is sepa-
rable on r; and r,, and thus

I(r) = |[M(r) ® h(r)P, (2)

where ® is the convolution operation. For the completely
incoherent case, the illumination source is of infinite ex-
tent, and thus y(r)=4&(r). In this case, the intensity distri-
bution reduces to

Ir) = |M(r)? ® |h(r)?. (3)

The imaging synthesis and analysis of partially coherent
systems are thus more complex than those of the coherent
or incoherent imaging systems.

The contribution of this paper is the development of
computationally effective inverse optimization algorithms
for the design of binary masks with OPC for lithography
under partially coherent illumination. The sum-of-
coherent-system (SOCS) model introduces a decomposi-
tion approach to represent a partially coherent system as
a summation of several coherent systems, and thus the
gradient-based optimization results in a summation of
terms for the gradient search that must be taken into ac-
count. As the degree of coherence approaches the value of
one, the iterative optimization solution reduces to the
methods developed in [6] for the coherent illumination
problem. This is accomplished as follows: First, an itera-
tive optimization framework is formulated in which the
bilinear Hopkins diffraction model of partially coherent
imaging systems is represented by a SOCS model based
on a Fourier series expansion [9,19]. The iterative algo-
rithm used is a generalization of the work in [6], but in
this case, the SOCS nonlinear model is used to obtain the
iterative optimization algorithm. To control the complex-
ity of the mask pattern, wavelet regularization is added to
the optimization framework.

A second contribution of the paper is the introduction of
a fast algorithm for binary mask optimization in PCI. Al-
though the SOCS model is an accurate representation of
PCI, it is computationally expensive, as numerous terms
of the Fourier series expansion are needed to obtain an
adequate representation. The fast optimization algorithm
uses the so-called average coherence approximation
model [17] to represent the underlying PCI system. The
inverse lithography optimization algorithm using this lat-
ter model is significantly faster than the first approach.
The drawback of the fast algorithm is that the associated
error of the output pattern can be larger than that of the
slower approach, since the accuracy of the average coher-
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ence approximation model depends on the spatial coordi-
nates, mask pattern, optical system kernel, and the com-
plex degree of coherence [17]. Extensive simulations,
however, show that the errors suffered by both ap-
proaches do not differ significantly.

The remainder of the paper is organized as follows. Two
partially coherent imaging models are discussed in Sec-
tion 2. Mask optimization processes for PCI lithography
using these models are developed in Section 3. Several in-
verse regularization methods are described in Section 4
with the objective of obtaining optimized masks with bet-
ter manufacturability properties. Simulations are illus-
trated in Section 5, where the effects of the degree of co-
herence on the mask synthesis are shown. Conclusions
are provided in Section 6. The derivations of the gradient-
based optimization solution are presented in the appen-
dixes.

2. PARTIALLY COHERENT IMAGING
MODELS

PCI has been shown to improve the theoretical resolution
limit in lithography. Thus, practical lithography systems
often operate under PCI emitted by nonzero-width
sources and off-axis illumination from spatially extended
sources. Common PCI modes include dipole, quadrupole,
and annular illumination. To formulate the optimization
problem of ILT with PCI, two kinds of partially coherent
imaging models are discussed in this section. The first is a
Fourier series expansion model that approximates the
partially coherent system as a sum of coherent systems
[19]. The second is based on an average coherent approxi-
mation [17]. Both methods are described next, as they are
central to the development of the inverse lithography op-
timization algorithm.

A. Fourier Series Expansion Model
A schematic of an optical lithography system with PCI is
illustrated in Fig. 1. The light source with a wavelength of
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Fig. 1. (Color online) Optical lithography system with partially
coherent illumination.
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\ is placed at the focal plane of the first condenser, illu-
minating the mask. Common illumination sources include
dipole, quadrupole, and annular shapes, all introducing
partial coherence. The image of the photomask is formed
by the projection optics onto the wafer [1]. The partial co-
herence factor o=a/b is defined as the ratio between the
size of the source image and that of the pupil. Radiation of
partially coherent light has been shown to be described as
an expansion of coherent modes added incoherently in the
image plane [9,19]. In typical imaging applications, the
size of the mask is much larger than the width of the com-
plex degree of coherence y(r). In this first approach, the
Fourier series expansion model is applied to reduce the
computation cost of partially coherent imaging.

Assume the mask is constrained in the square area A
defined by x,y e [-D/2,D/2]. Thus, for the computations
involved in Eq. (1), the only values of y(r) needed are
those inside the square area A, defined by x,y € [-D,D].
Applying the 2-D Fourier series expansion, y(r) can be re-
written as

y(r) = >, 'y exp(joom - 1), (4)

1
Tm= EJ y(r)exp(joom - r)dr, (5)
A

Y

where wy=7/D, m=(m,,m,), m, and m, are integers, and
- is the inner-product operation. Substituting Eq. (4) into
Eq. (1), the light intensity on the wafer is given by

I(r) = > Tp|M(r) ® h™(x)|?, (6)

where
h™(r) = h(r)exp(joom - r). (7)

It is observed from Egs. (6) and (2) that the PCI is
equal to the superposition of coherent systems. Since the
Fourier series expansion model is based on direct discreti-
zation of the Hopkins diffraction model, they have the
same accuracy. For the annular illumination, the complex
degree of coherence is

J,(27r/2D,,) D2,J,(27r/2D,;)

r)= - 5 8
A —ry D% 2mr/2D, ®

o o . . .
where r=x?+y%. The corresponding Fourier series coeffi-
cients are

4D;,D%
— 5 for D/2D,; < |m| < D/2D,,
'y, =3 7DDz - Dz, ,
0 elsewhere

)

where D, and D,, are the coherent lengths of the inner
and outer circles, respectively. o;,,.,,=N/2D,NA and
Oouter=N 2D, ,NA are the corresponding inner and outer
partial coherence factors. The convolution kernel A(r) is
defined as the Fourier transform of the circular lens ap-
erture with cutoff frequency NA/\ [20,21]; therefore,
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J1(2mrNA/N)

(10)
27rNA/\

Annular illuminations are classified by the sizes of
their inner and outer partial coherence factors. The larger
the partial coherence factor, the higher the resolvable
spatial frequency. Thus, large partial coherence factors
lead to improvements in resolution and contrast. Small
partial coherence factors, on the other hand, have the ad-
vantage of forming sparse patterns, which can be ex-
ploited effectively by phase-shifting masks. Medium par-
tial coherence factors are preferred for mask patterns
containing both sparse and dense patterns [1].

Figure 2 illustrates annular illumination sources hav-
ing large, medium, and small partial coherence factors.
For the large partial coherence factor illumination in Fig.
2, Oinner=0.8 and 04,4,,=0.975. For the medium illumina-
tion, gj,,.-=0.5 and o,,4,=0.6. For the small illumination,
Oinner=0.3 and o,,;,,=0.4. The dashed circles represent
the dimension of the pupil. The number of terms used in
the Fourier series expansion in Eq. (6) plays a critical role
in the computational complexity of the model and conse-
quently in the computational complexity of the inverse
optimization. The number of terms in the expansion in
Eq. (6) will be referred to as T. According to Eq. (9),
D/2D,<|m|<D/2D,,. In addition, D,;=N/20;,,er, Dy
=N 20,y40r, and D=N Xp, where p Xp is the pixel size.
Thus,

T ~ a[(D/2D,,)? - (D/2D,)?] ~ CN?, (11)

where the constant C=mp?NA2(02 ..~ 0%ne)/ N2 The pa-
rameter T is larger for sources with larger partial coher-
ence factors. As an example, the values of T for the
sources in Fig. 2 are 12, 12, and 52 as ¢ increases from
smaller to larger partial coherence factors.

Figure 3 illustrates a mask of dimensions 1035 nm
X 1035 nm, and the corresponding aerial images formed
by the annular illuminations having large, medium, and
small partial coherence factors. The mask consists of
45 nm features. The pitch p=90 nm is indicated by
dashed lines. The aerial images are synthesized by the
Fourier series expansion model. In these simulations,
NA=1.25, \=193 nm, and A(r) is assumed to vanish out-
side the area A; defined by x,y €[-56.25 nm,56.25 nm].
The constant £=0.29 and the pixel size is 5.63 nm
X 5.63 nm. Note that the aerial images increasingly be-

Large o Medium ¢ Small ¢
Ginner:0-8 Ginner=0-5 0-inne|'=0-3
Gouterzo ® 975 60U1€I‘=0 # 6 G()Ulel'zo '4

Fig. 2. Annular illumination with large, medium, and small
partial coherence factors. The dashed circles represent the di-
mension of the pupil.
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Fig. 3. (Color online) (Top left) Target mask pattern containing
45 nm features with pitch p=90 nm is indicated by dashed lines.
Aerial images formed by annular illuminations with large (top
right: 0;,,6,=0.8, 0,u,=0.975), medium (bottom left: o;,,,.=0.5,
Oouter=0.6), and small (bottom right: o;,,,.,.=0.3, 0,,,.=0.4) partial
coherence factors. Here NA=1.25 and 2=0.29.

come more blurred as the partial coherence factor is de-
creased.

B. Average Coherent Approximation Model

Although the accuracy of the Fourier series expansion is
the same as that of the discrete version of the Hopkins
diffraction model, it is computationally expensive. The
computational cost is a polynomial of the number of the
Fourier series term used to represent the SOCS model,
and in general, numerous terms are needed to attain an
adequate representation. Therefore, the development of
an optimization algorithm that uses a more computation-
ally efficient model is desired. To this end, the second in-
verse lithography optimization method developed in this
paper uses the model introduced by Salik et al. and re-
ferred to as “average approximation” for PCI [17].

The principal idea of the average approximation of PCI
is to approximately decompose the contribution of the PCI
into a coherent illumination component and an incoher-
ent illumination component. Therefore,

I(r)= f f M(xr)M(xry)y(ry — ra)h*(r — r9)h(r — r9)drdry

2
fM(r’)hC(r’,r)dr’ +J|M(r’)|2|h1(r’,r)2dr’,
(12)

where v'=(x",y’), ho(r’,r), and h;(r’',r) are the equiva-
lent amplitude impulse responses of the coherent and in-
coherent components, respectively. Furthermore,

he(x',x) = f(x',0)V?h(r’ v), (13)

hi(x',r) =[1-fe',0)]h(r’,r), (14)

where
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~ [’ #) P u(r,7)dy

o = PPar (15)
) )
e v (16

In the equations above  and ¥ are dummy variables. f
is the fraction of coherent incident power with 0<f<1.
For the annular illuminating sources, the function f is ob-
tained by substituting Eqgs. (8) and (10) into Egs. (15) and
(16), leading to
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Fig. 4. ACAA gives more accurate aerial imaging for sharper
amplitude impulse response. (a) NA=1.35, corresponding to a
sharper amplitude impulse response, SNR=18.7. (b) NA=0.15,
corresponding to a smoother amplitude impulse response, SNR
=10.2.
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1 [J,(n#/d)] | 2
f(l",l‘) = 2 f A
[[J1(7e/d) )/ (mr/d)|*dr (mr/d)
([J1<w<f -t)a,)] allJy(mE - r)/a;)]) A
X — - — dI‘,
[#(®-1)a,] af [#(@-1)a]

a7

where r=r-r’, d=\/2NA, a,=2D,,, and a;=2D,,. Apply-
ing the Fourier transform, Eq. (17) becomes

1
[y (reld) Y (reld)Pdr I
X[FFT(|h(r)?) - FFT(¥(r))], (18)

FFT

fr',r)=

where FFT(-) and IFFT(:) are the FFT and inverse FFT
operations, respectively.

It is noted that for some specific ~(r) and y(r), the con-
dition 0 <f<1 may not be satisfied. According to Eq. (13),
negative values of f will introduce complex pixel values in
ho(r',r). Similarly, Eq. (14) indicates that values of f
larger than 1 will introduce complex pixel values in
hi(r’,r). Nevertheless, in the following binary mask opti-
mization simulations, the average coherent approxima-
tion model leads to similar aerial image contours as those
of the Fourier series expansion model. Substituting Eq.
(18) into Egs. (13) and (14), the equivalent amplitude im-
pulse responses of the coherent and incoherent compo-
nents can be found. Therefore, the PCI is approximately
divided into a summation of a coherent system and an in-
coherent system.

As mentioned above, the accuracy of the average coher-
ence approximation model depends on the spatial coordi-
nates, mask pattern, optical system kernel, and the com-
plex degree of coherence [17]. Specifically, the error of the
average coherence approximation model becomes smaller
as the amplitude impulse response i (r) becomes sharper,
or its energy is more concentrated. Figure 4 illustrates
the cross sections of the aerial imaging of two vertical
bars based on the two models introduced above. The mask
dimension is 600 nm X 600 nm and A=193 nm. The Fou-
rier series coefficients of the circular illumination are
{41)3/7702 for |m| < D/2D,

m

, 19
0 elsewhere (19)

where D=600 nm and D,=8.6 nm. 7'=3969 is the number
of Fourier series terms to represent the SOCS model.

In Fig. 4, the solid curves and dashed-dotted curves
represent the aerial imaging of the Fourier series expan-
sion model and average coherent approximation model re-
spectively. Since the accuracy of the Fourier series expan-
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sion model is the same as that of the discrete version of
the Hopkins diffraction model, the former is chosen as the
criterion by which to measure the accuracy of the average
coherent approximation model. The SNR is defined as the
ratio between the energy of the accurate imaging and the
error energy. In Fig. 4(a), the numerical aperture NA
=1.35 and SNR=18.7, while in Fig. 4(b), NA=0.15 and
SNR=10.2. It can be observed from Eq. (10) that larger
NA corresponds to a sharper amplitude impulse response.
The simulations show that the average coherent approxi-
mation model gives more accurate aerial imaging for
sharper amplitude impulse response.

3. INVERSE LITHOGRAPHY OPTIMIZATION

A. Optimization Using the Fourier Series Expansion
Model

Let M(x,y) be the input binary mask to an optical lithog-
raphy system TY{-}, with PCI. The PCI optical system is
approximated by a Hopkins diffraction model. The effect
of the photoresist is modeled by a soft threshold opera-
tion. The output pattern is denoted as Z(x,y)=T{M(x,y)}.
Given an N X N desired output pattern Z#(x,y), the goal of
OPC mask design is to find the optimized M(x,y), called

M (x,y), such that the distance
D =d[Z(x,y),Z*(x,y)] = d[T{M (x,)},Z*(x,y)] ~ (20)

is minimized, where d(-, -) is the mean-square-error crite-
rion. The OPC inverse lithography optimization problem

can thus be formulated as the search of M (x,y) over the
N XN real space RVN such that

M(xy)=arg min  d{T[M(x,y),Z*(x,y)}. (21)
M(x,y)e‘ﬁNXN

The forward imaging process is illustrated in Fig. 5,
where the Fourier series expansion model is used in the
image formation stage. The binary mask is the input of
the system. Light propagating through the mask pattern
is affected by diffraction and mutual interference—a phe-
nomenon described by the Hopkins diffraction model
[6,20,22]. Light that is transmitted through the mask
reaches a light-sensitive photoresist that is subsequently
developed through the use of solvents. The thickness of
the remaining photoresist after development is propor-
tional to the exposure dose exceeding a given threshold
intensity. In a positive photoresist process, almost all the
photoresist material remains in the low-exposure area on
the wafer and is removed in the high-exposure area. Be-
tween these two extremes is the transition region. For
mathematical simplicity, it is assumed that when the
light field exceeds a threshold, the exposed area becomes

1 — Zl“m|H‘“{m}|2 —

> sig{> T, [H" ) }

Mask Convolution Approximation
of Image Formation Process

Sigmoid Approximation

Output Z

Fig. 5. Approximated forward process model.
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a high-exposure area; otherwise, it is a low-exposure area.
Thus, a hard threshold operation can adequately repre-
sent the exposure effect described above, and the output
pattern of the optical system is binary.

Figure 5 depicts the approximated forward process
model [14], where || is the element-by-element absolute
operation, and the output of the convolution and the ab-
solute operation model is the intensity distribution of the
aerial image. Further, since the derivative of the sigmoid
function exists, it is used to approximate the hard thresh-
old function. The hard threshold function is a shifted unit
step function U(x—t,) that is approximated by the sigmoid
function

1
sig(x) = (22)

T 1+expl-alx-¢)]
where ¢, is the process threshold, and a dictates the steep-
ness of the sigmoid function.

Following the definitions above, the following notation
is used:

1. The My matrix represents the mask pattern with
a N2X 1 equivalent raster scanned vector representation
denoted as m.

2. A convolution matrix H™ is an N2 X N? matrix with
an equivalent two-dimensional filter A™.

3. The desired N X N binary output pattern is denoted
as Z*. It is the desired light distribution sought on the wa-
fer. Its vector representation is denoted as z*.

4. The output of the sigmoid function is the N XN im-
age denoted as

Z= sig{Z Fm|Hm<@>2}. (23)

The equivalent vector is denoted as z.
5. The hard threshold version of Z is the binary output
pattern denoted as Z,. Its equivalent vector is denoted as
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6. The optimized N X N gray mask denoted as M mini-
mizes the distance between Z and Z”, that is,

M = arg min d{sig[z FmH‘“(m)F],Z*}. (24)
M m

Its equivalent vector is denoted as m €[0,1].
7. The binary optimized mask M, is the quantization

of M. Its equivalent vector is denoted as rm,, with all en-
tries constrained to O or 1.

Given the gray level pattern z =sig[S,, [/ H™(m)|?], the
ith entry in this vector can be represented as

1

i=1,...N?,

2=
14 exp(— aEmFm\Ej]\iih;?ij +at,)

(25)
where £;; is the 7, jth entry of the filter. In the optimiza-

tion process, m is searched to minimize the Ly norm of the
difference between z, and z*. Therefore,

i = arg min[F(m)], (26)

m
where the cost function F(:) is defined as
N2
Fm)=|*-2l5=2 2} -2)% (27)
i=1

where z; in Eq. (27) is represented in Eq. (25). To reduce
the above bound-constrained optimization problem to an
unconstrained optimization problem, we adopt the para-
metric transformation [6]. Let
1+ cos(8))
my= j=1,...,N?, (28)

where ¢; e (-»,%), and m;e[0,1]. Defining the vector ¢

2p, with all entries constrained to 0 or 1. =(6y,...,0y2)T, the optimization problem is formulated as
N? 1 2
(§) = arg min[F ()] = arg min E z - 5 3 (29)
0 0 ) i=1 N 1+ cos 6;
l+exp| —a > Tm| D h;‘T +at,
m J=1

The steepest-descent method is used to optimize the above problem. The gradients VF(§), can be calculated as follows:

VF(0)=d,=a X sin QG{E L H™) (2" - 2)0z0(1 —%)G(H’“)*(m)]}

+a X sin _09{2 ImH™ (2" -2)020(1 —%)G(Hm)(m)]}, (30)

where VF(6) e RN 2X1, © is the element-by-element multi-
plication operator, * is the conjugate operation, and T is

the conjugate transposition. 1=[1,...,1]T e RV, As-
suming 6* is the kth iteration result, then at the %2+ 1th

[
iteration

0"l = 0F — s,d%, (31)

where s, is the step size.
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The iterative optimization above, in general, leads to
gray masks with pixel values between 0 and 1. Therefore
a postprocessing step is needed to obtain the binary opti-
mized mask my;=UGh;~t,,), i=1,...,N?, where t,, is a
global threshold. We define the pattern error E as the dis-
tance between the desired output image Z" and the actual
binary output pattern Z,:

N2

NZ
E=2 |§;_§bi|=2
i=1

i=1

- U(E Tl ™2 tr)

(32)

When the pattern error is reduced to a tolerable level, the
steepest-descent iteration is stopped.

Note that if the complex degree of coherence ap-
proaches the value of one, then y— 1, the system becomes
completely coherent, and H™ — H in Eq. (30). The gradi-
ent in Eq. (30) then reduces to

X. Ma and G. Arce

B. Optimization Using the Average Coherent
Approximation Model
The optimization process based on the Fourier series ex-
pansion model suffers from expensive computational cost.
For a mask pattern with dimension N X N, the number of
multiplication operations in each iteration is (272
+4T)N*+(10T+2)N%+2, where again T is the number of
Fourier series terms used to represent the PCI. According
to Eq. (11), T~ CN2. The computational cost is thus of the
order of O(2C2N8)~O(C’N®), where C’'=2C2. In general,
N is large. Therefore, development of a fast algorithm is
desired. Based on the average coherent approximation
model, a fast algorithm, referred to as the average coher-
ence approximation algorithm (ACAA) is proposed in this
section to reduce the computational complexity.
Equations(25), (27), and (30) are thus modified to ac-
count for the use of the average coherence approximation,
leading to

VF(6) =d,=a X sin O{H"[(z* - 2)0zO(1 - 2)OH(m)]}, 1
Zi= 2 2
(33) 1+exp[- a(\zﬁlhcl‘jmﬂz + Ej]\i1|hlzj|2|mj|2) +at,]
which is the result obtained in Eq. (6) for mask optimiza-
tion in the completely coherent case. i=1,...,N?, (34)
N? N? 1 2
F(0) =l ~2l3=2 (2] ~2)*= 2 { 2 - : z (35)
1 i=1 | " 1+expl-a(SN heym)? + SNk Pim)l?) + at]]

VF(0) =dy=2a X sin 00{H{[(z" - 2)0z0(1 - 2)O(Hc(m)]}
+2a X sin 0O{H}"[(z* - 2)0z0(1 -2)0(m)]}, (36)

where ¢, is the process threshold for the average coherent
approximation model. In general ¢, # ¢, and must be esti-
mated a priori, such that it leads to a binary output pat-
tern similar to that of the Fourier series expansion model.
The aerial imaging synthesis can be implemented based
on the two models. Thus, given ¢, for the Fourier series
expansion model, ¢, can be found using a line search pro-
cess. The convolution matrices H¢ and Hj are each of size
N?X N? with equivalent two-dimensional filters 4. and A;,
respectively.

For a mask pattern with dimension N XN, the number
of multiplication operations in each iteration is equal to
8N*+12N?+4. The computational cost of this second ap-
proach is of the order of O(8N*). Compared with the com-
putational complexity of the algorithm based on Fourier
series expansion model, and ignoring the lower order of
large numbers, the reduction of the computational com-
plexity is of the order of 8/C'N*. When N is much larger
than 1, the fast algorithm is significantly more efficient.
The drawback of ACAA is that the error of the correspond-
ing optimized output pattern can be higher, because of the
inaccuracy of the average coherent approximation model.
Nevertheless, the simulations in Section 5 show that
ACAA is effective for the inverse lithography problem.

|
4. REGULARIZATION

In the prior simulation settings, the fact that the esti-
mated output pattern should be binary is not considered.
An additional postprocessing (binarization) of the gray
optimized mask pattern is suboptimal with no guarantee
that the pattern error is under the goal [6]. Furthermore,
the optimized mask patterns contain numerous details
that may bring difficulty to mask fabrication. One ap-
proach to overcome the two disadvantages is through
regularization during the optimization process [6,23].
Regularization is formulated as follows:

i = arg min[F(m) + yR(m)], 37)

m

where F(m) is the data-fidelity term and R(m) is the regu-
larization term that is used to reduce the solution space
and constrain the optimized results. y is the user-defined
parameter to reveal the weight of the regularization. In
the following, we will discuss quadratic penalty and
wavelet penalty.

A. Quadratic Penalty

To obtain near-binary gray optimized mask patterns
through the optimization process, we adopt the quadratic
penalty [6]. The formulation of the quadratic penalty is
summarized as follows. The quadratic penalty term is
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Fig. 6. Binary mask optimization using the Fourier series expansion model and wavelet penalty. Left to right: the output pattern when
target pattern is used as input, the binary optimized mask, and the output pattern of binary optimized mask. Top row illustrates the
simulations using the annular illumination with large partial coherence factor (o;,,.,=0.8, 0yu-=0.975); middle row, with medium par-
tial coherence factor (o;,,.,.=0.5, 0,,.-=0.6); bottom row, with small partial coherence factor (o;,,.,,=0.3, 0,yr=0.4).

Ro(m)=4m™(1-m). (38)

For each pixel value, the corresponding penalty is the
quadratic function

rm)=1-2m;-1%* i=1,...,N% (39)

According to Eq. (21), the gradient of R,(m) is VRg(m)
=(-8m+4); thus, the cost functions in Eqgs. (27) and (35)
are adjusted as

J(m) =F(m) + yqRq(m). (40)

B. Wavelet Penalty

A novel wavelet penalty based on Haar wavelets was in-
troduced by Ma and Arce [15,16] to remove those details
in the mask patterns. The formulas of the wavelet penalty
are summarized as follows. The wavelet penalty term is

2 2 2 2 2 2 2
Rw=hi1+his +hiygae + 11+ V12 + Vv + 411

2 2
+diy +d iy (41)
where

hij = M2-1)+1][2G-1)+1] ~ 1[2G+1)+1][2(-1)+2] T M [2(i-1)+2][2(-1)+1]

= Mg(-1)+2][2(-1)+2]> (42)

Uij = Mgi-1)+1][2(G-1)+1] M [2(-1)+1][2(-1)+2]

= Mg(i-1)+2][2G-1)+1] — T [26-1)+2][2(-1)+2]5 (43)

dij = Migi-1)+1]2G-1)+1] — M{26-1)+1][2(-1)+2]

= M[g(-1)+2][2(-1)+1] T T [2(-1)+2][2(-1)+2]5 (44)

fori,j=1,...,N/2. The gradient of the wavelet penalty is
given as
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IR 1
m =-3 SN G2(i-1)4p][20-1)+q]
X A8ma(_1)+pl2(-1)+q]
T M 23-1)+p,J[2(-D+q] ~ T[2i-1)+p][2-1)+q4]

= M2 1)4p,T[2G-1)4q, ) > (45)

where i,j=1,...,N/2,p,q=1 or 2, p;=(p+1) mod 2 and
g1=(g+1) mod 2. Therefore, the cost function is adjusted
as

J(m) =F(m) + yqRq(m) + ywRw(m). (46)

Another regularization that can be used for detail re-
moval is the total variation penalty used by Poonalwala
and Milanfar [6]. The wavelet penalty was proved to out-
perform the total variation penalty in the setting of PSM
design with arbitrary discrete phase levels [15,16]. In the
following simulations, the wavelet penalty is exploited to
constrain the details in the optimized mask patterns.
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5. SIMULATIONS

A. Simulations Using the Fourier Series Expansion
Model

To demonstrate the validity of the optimization algo-
rithms, consider the same desired pattern as that shown
in Fig. 3, with dimension of 1035 nm X 1035 nm. To prove
the universality of the algorithm for different sizes of il-
luminations, the simulations are repeated based on annu-
lar illuminations with large, medium, and small partial
coherence factors. The values of the inner and outer par-
tial coherence factors of the illuminations are the same as
those in Fig. 2. In Fig. 6, the top row illustrates the simu-
lation results applying the large annular illumination
with 0;,,,,,=0.8 and 0;,,,,,=0.975: (left) the output pattern
when the desired pattern is inputted [T(Z*)], (center) the

binary optimized mask (M ) using the Fourier series ex-
pansion model, and (right) the output pattern of the bi-
nary optimized mask [T(M,)]. The middle row shows the
simulation results applying the medium annular illumi-
nation with 0},,,,=0.5 and 0;,,,,=0.6. The bottom row
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Fig. 7. Binary mask optimization using the ACAA and wavelet penalty. Left to right: the output pattern when target pattern is used as
input, the binary optimized mask, and the output pattern of binary optimized mask. Top row illustrates the simulations using the an-

nular illumination with large partial coherence factor (oj,,.,.=0.8, ¢

outer=0.975); middle row, with medium partial coherence factor

(Tinner=0.5, 0,y.r=0.6); bottom row, with small partial coherence factor (o;,,,,=0.3, 0puer=0.4).
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shows the simulation results applying the small annular
illumination with ¢;,,,-=0.3 and 0;,,..=0.4. The Fourier
series expansion coefficients of the annular illumination
are as shown in Eq. (9). The convolution kernel is as
shown in Eq. (10) with NA=1.25 and A=193 nm. In the
simulations, we assume A(r) vanishes outside the area A,
defined by x,y € (-56.25 nm,56.25 nm). In the sigmoid
function, we assign parameters a=25 and ¢,=0.19. The
global threshold is £,,=0.5, the constant £=0.29, and the
pixel size is 5.625 nm X 5.625 nm. Step length and regu-
larization weights are s,=2, y=0.025, and yy=0.025.
The initial mask pattern is the same as the desired binary
output pattern Z*. For 6, we assign the phase of /5 cor-
responding to the areas having a magnitude of one and
the phase of 47/5 the areas with magnitude of zero. The
number of Fourier series terms to represent the SOCS
model is 52 for the large annular illumination, 12 for the
medium one, and 12 for the small one. As shown in Fig. 6,
this approach has been proved efficient in our extensive
simulation analysis.

B. Simulations Using the Average Coherent
Approximation Model

Although the accuracy of the ACAA depends on various
parameters, it is shown in the following simulations that
it is in general effective for the inverse lithography prob-
lem. In Fig. 7, the simulations shown in Fig. 6 are re-
peated using ACAA, with s54=0.5, y5=0.025, y=0.025.
¢,=0.09 for the large annular illumination, ¢,=0.095 for
the medium one, and ¢/ =0.17 for the small one. The simu-
lation time is effectively reduced by an order of magni-
tude, indicating that the the ACAA is indeed computa-
tionally efficient. However, it is found that the optimized
output pattern errors increase somewhat because of the
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reduced accuracy of the ACAA. Nevertheless, this ap-
proach can also effectively add subresolution blocks into
the optimized mask patterns and compensate for distor-
tion in the optical system.

To illustrate the computational efficiency of both algo-
rithms, the computational running time is illustrated
here. The construction of the inverse mask shown in Fig.
6 and 7 with medium partial coherence factor took
18 minutes for the first approach, and 55 seconds for the
second approach. The computation was done on an Intel
Pentium4 CPU, 3.40 GHz, 1.00 GB of RAM. This differ-
ence would be scaled with the dimension of the mask be-
ing constructed. It should be noted that other factors such
as the treatment of boundary regions and hierarchy man-
agement can affect the overall run time and should be
taken into account for large-scale mask designs. Such
considerations fall outside the scope of our paper and are
topics for future work.

6. CONCLUSION

This paper studies and models the PCI for inverse lithog-
raphy. First, two types of partially coherent imaging mod-
els are described for the optimization problem: the Fou-
rier series expansion model and the ACAA. The Fourier
series expansion model gives an accurate representation
of PCI, while the ACAA supplies approaches of faster im-
aging synthesis and analysis. Based on these models, ILT
optimization processes are formulated. It is noted that
AACA is capable of reducing the computation complexity.
As a tradeoff, the optimized output pattern errors are in-
creased because of the inaccuracy of the ACAA. To control
the amount of details, wavelet penalty terms are applied
in the optimization framework. Simulations illustrate
that our approaches are effective and practical.

APPENDIX A: DERIVATION OF GRADIENT VF(9) FOR THE FOURIER SERIES EXPANSION

1

MODEL
The derivation of Eq. (30) from Eq. (29) is as follows:
2
ko) 1
=2> z;
), i1 ul 1 1+ cos 6
1+exp| - aZ | . E
m Jj=1

1+cost9

N?
E
m =1

N 1+co smH
+ .
Jl

Xexp(—az I'm

Using Eqgs. (25) and (28), the gradient above can be written as

2

+atr> [1+exp<—a2f
1 0, in 6,

+at,)X(—a)ZFm[(2 m 1 F 008 )h;:*(_Sur;_ )

1+cosn9

2 2
+ at,)

VF(0)=dp=a X sin 06{2 T H™) (2" - 2)020(1 —%)Q(H’“)*(m)]}

+a X sin _09{2 L H™[(2* - 2)020(1 —%)G(H’“)(m)]}.
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APPENDIX B: DERIVATION OF GRADIENT VF(§) FOR THE AVERAGE COHERENT
APPROXIMATION MODEL

The derivation of Eq. (36) from Eq. (35) is as follows:

1

o N[ 1
=
N? 2 N?
Xexp —a( Zlhcg"_lj +21 |hIij|2|mj|2) +at,
Jj= Jj=

Using Egs. (28) and (34), the gradient above can be written as

1 +cos 6, sin 6,
+2| ——— |hgul -
2 2

Z; = 2 2 , 2 2 ,
" 1+exp[- a(IZX heym)l? + S hpPlm ) + atl] | {1 + exp[- a((ZX hoym|? + X1k Plmf?) + at) 1}

N? .
1+ cos 6; sin 6,
X(-a) (2 2hCij—2 J)ha'k<— )
Jj=1

2

VF(0) =dy=2a X sin §O{H{[(z" - 2)0z0(1 - 2)OH(m) ]} + 2a X sin gO{H} [(2* - 2)0z0(1 - 2)O(m) ]}
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