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Recently, a set of generalized gradient-based optical proximity correction optimization methods have been de-
veloped to solve for the inverse lithography problem under coherent illumination. Most practical lithography
systems, however, operate under partially coherent illumination. This paper focuses on developing gradient-
based binary mask optimization methods that account for the inherent nonlinearities of partially coherent sys-
tems. Two nonlinear models are used in the optimization. The first relies on a Fourier representation that
approximates the partially coherent system as a sum of coherent systems. The second model is based on an
average coherent approximation that is computationally faster. To influence the solution patterns toward more
desirable manufacturability properties, wavelet regularization is added to the optimization framework.
© 2008 Optical Society of America
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. INTRODUCTION
ecause of the resolution limits of optical lithographic
ystems, the electronics industry has relied on resolution
nhancement techniques (RET) to compensate and mini-
ize mask distortions as they are projected onto semicon-

uctor wafers [1]. Resolution in optical lithography obeys
he Rayleigh resolution limit R=k� /NA, where � is the
avelength, NA is the numerical aperture, and k is the
rocess constant that can be minimized through RET
ethods [2–5]. In optical proximity correction (OPC),
ask amplitude patterns are modified by the addition of

ubresolution features that can precompensate for imag-
ng distortions [6].

Several approaches to inverse lithography have been
roposed in the literature. These range from heuristic
nd empirically based design rules to computationally ex-
ensive optimization-based inverse algorithms. Sherif et
l. derived an iterative approach to generate binary
asks in incoherent diffraction-limited imaging systems

7]. Liu and Zakhor developed a binary and phase shifting
ask (PSM) design strategy based on the branch and

ound algorithm and simulated annealing [8]. Pati and
ailath developed suboptimal projections onto convex

ets for PSM designs [9]. In addition, Erdmann et al. pro-
osed automatic optimization of the mask and illumina-
ion parameters with a genetic algorithm [10]. Pang et al.
ave an overview of inverse lithography technology (ILT)
nd provided some simulations to demonstrate the benefit
f ILT [11]. Granik described and compared solutions of
nverse mask problems [12], and solved the general non-
inear formulation by the local variations and gradient
escent methods [13]. However, the searching process of
he methods mentioned above for a suitable solution is ei-
her computationally expensive or not efficient.

Poonawala and Milanfar recently introduced a novel
ptimization framework for inverse lithography relying
1084-7529/08/122960-11/$15.00 © 2
n a pixel-based, continuous function formulation well
uited for gradient-based search [6,14]. Ma and Arce gen-
ralized this algorithm so as to admit multiphase compo-
ents having arbitrary PSM patterns [15,16]. These algo-
ithms are computationally effective; however, they
ocused on coherent illumination systems. Most practical
llumination sources have a nonzero line width and their
adiation is more generally described as partially coher-
nt [17]. While the inverse lithography methods derived
n [6,14–16] are effective in coherent illumination, these
lgorithm will not produce adequate results when applied
o a partially coherent illumination system. Note that the
pplication of the gradient-based optimization approach
o solve for the partially coherent illumination problem
as suggested in [14]; the derivation of the iterative algo-

ithm was not developed or studied at length. Partially
oherent illumination (PCI) is desired, since it can im-
rove the theoretical resolution limit. PCI is thus intro-
uced in practice through modified illumination sources
aving large coherent factors or through annular-shaped

llumination.
In partially coherent imaging, the mask is illuminated

y light traveling in various directions. The source points
iving rise to these incident rays are incoherent with one
nother, such that there is no interference that could lead
o nonuniform light intensity impinging on the mask
1,18]. According to the Hopkins diffraction model, the
ight intensity distribution exposed on the wafer in PCI is
ilinear and described by [19]

I�r� =��M�r1�M�r2���r1 − r2�h*�r − r1�h�r − r2�dr1dr2,

�1�

here r= �x ,y�, r1= �x1 ,y1�, and r2= �x2 ,y2�. M�r� is the
ask pattern, ��r −r � is the complex degree of coher-
1 2
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nce, and h�r� represents the amplitude impulse response
f the optical system. The complex degree of coherence
�r1−r2� is generally a complex number whose magnitude
epresents the extent of optical interaction between two
patial locations r1= �x1 ,y1� and r2= �x2 ,y2� of the light
ource [1]. The complex degree of coherence in the spatial
omain is the inverse 2-D Fourier transform of the illu-
ination shape.
In general, this equation is tedious to compute, both

nalytically and numerically [17]. The system reduces to
imple forms in the two limits of complete coherence or
omplete incoherence. For the completely coherent case,
he illumination source is at a single point, thus ��r�=1.
n this case, the intensity distribution in Eq. (1) is sepa-
able on r1 and r2, and thus

I�r� = �M�r� � h�r��2, �2�

here � is the convolution operation. For the completely
ncoherent case, the illumination source is of infinite ex-
ent, and thus ��r�=��r�. In this case, the intensity distri-
ution reduces to

I�r� = �M�r��2 � �h�r��2. �3�

he imaging synthesis and analysis of partially coherent
ystems are thus more complex than those of the coherent
r incoherent imaging systems.

The contribution of this paper is the development of
omputationally effective inverse optimization algorithms
or the design of binary masks with OPC for lithography
nder partially coherent illumination. The sum-of-
oherent-system (SOCS) model introduces a decomposi-
ion approach to represent a partially coherent system as

summation of several coherent systems, and thus the
radient-based optimization results in a summation of
erms for the gradient search that must be taken into ac-
ount. As the degree of coherence approaches the value of
ne, the iterative optimization solution reduces to the
ethods developed in [6] for the coherent illumination

roblem. This is accomplished as follows: First, an itera-
ive optimization framework is formulated in which the
ilinear Hopkins diffraction model of partially coherent
maging systems is represented by a SOCS model based
n a Fourier series expansion [9,19]. The iterative algo-
ithm used is a generalization of the work in [6], but in
his case, the SOCS nonlinear model is used to obtain the
terative optimization algorithm. To control the complex-
ty of the mask pattern, wavelet regularization is added to
he optimization framework.

A second contribution of the paper is the introduction of
fast algorithm for binary mask optimization in PCI. Al-

hough the SOCS model is an accurate representation of
CI, it is computationally expensive, as numerous terms
f the Fourier series expansion are needed to obtain an
dequate representation. The fast optimization algorithm
ses the so-called average coherence approximation
odel [17] to represent the underlying PCI system. The

nverse lithography optimization algorithm using this lat-
er model is significantly faster than the first approach.
he drawback of the fast algorithm is that the associated
rror of the output pattern can be larger than that of the
lower approach, since the accuracy of the average coher-
nce approximation model depends on the spatial coordi-
ates, mask pattern, optical system kernel, and the com-
lex degree of coherence [17]. Extensive simulations,
owever, show that the errors suffered by both ap-
roaches do not differ significantly.
The remainder of the paper is organized as follows. Two

artially coherent imaging models are discussed in Sec-
ion 2. Mask optimization processes for PCI lithography
sing these models are developed in Section 3. Several in-
erse regularization methods are described in Section 4
ith the objective of obtaining optimized masks with bet-

er manufacturability properties. Simulations are illus-
rated in Section 5, where the effects of the degree of co-
erence on the mask synthesis are shown. Conclusions
re provided in Section 6. The derivations of the gradient-
ased optimization solution are presented in the appen-
ixes.

. PARTIALLY COHERENT IMAGING
ODELS

CI has been shown to improve the theoretical resolution
imit in lithography. Thus, practical lithography systems
ften operate under PCI emitted by nonzero-width
ources and off-axis illumination from spatially extended
ources. Common PCI modes include dipole, quadrupole,
nd annular illumination. To formulate the optimization
roblem of ILT with PCI, two kinds of partially coherent
maging models are discussed in this section. The first is a
ourier series expansion model that approximates the
artially coherent system as a sum of coherent systems
19]. The second is based on an average coherent approxi-
ation [17]. Both methods are described next, as they are

entral to the development of the inverse lithography op-
imization algorithm.

. Fourier Series Expansion Model
schematic of an optical lithography system with PCI is

llustrated in Fig. 1. The light source with a wavelength of

ig. 1. (Color online) Optical lithography system with partially
oherent illumination.
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is placed at the focal plane of the first condenser, illu-
inating the mask. Common illumination sources include

ipole, quadrupole, and annular shapes, all introducing
artial coherence. The image of the photomask is formed
y the projection optics onto the wafer [1]. The partial co-
erence factor �=a /b is defined as the ratio between the
ize of the source image and that of the pupil. Radiation of
artially coherent light has been shown to be described as
n expansion of coherent modes added incoherently in the
mage plane [9,19]. In typical imaging applications, the
ize of the mask is much larger than the width of the com-
lex degree of coherence ��r�. In this first approach, the
ourier series expansion model is applied to reduce the
omputation cost of partially coherent imaging.

Assume the mask is constrained in the square area A
efined by x ,y� �−D /2 ,D /2�. Thus, for the computations
nvolved in Eq. (1), the only values of ��r� needed are
hose inside the square area A� defined by x ,y� �−D ,D�.
pplying the 2-D Fourier series expansion, ��r� can be re-
ritten as

��r� = �
m

�m exp�j�0m · r�, �4�

�m =
1

D2�
A�

��r�exp�j�0m · r�dr, �5�

here �0=� /D, m= �mx ,my�, mx and my are integers, and
is the inner-product operation. Substituting Eq. (4) into
q. (1), the light intensity on the wafer is given by

I�r� = �
m

�m�M�r� � hm�r��2, �6�

here

hm�r� = h�r�exp�j�0m · r�. �7�

It is observed from Eqs. (6) and (2) that the PCI is
qual to the superposition of coherent systems. Since the
ourier series expansion model is based on direct discreti-
ation of the Hopkins diffraction model, they have the
ame accuracy. For the annular illumination, the complex
egree of coherence is

��r� =
J1�2�r/2Dcu�

2�r/2Dcu
−

Dcu
2

Dcl
2

J1�2�r/2Dcl�

2�r/2Dcl
, �8�

here r=�x2+y2. The corresponding Fourier series coeffi-
ients are

�m = 	
4Dcu

2 Dcl
2

�D2�Dcl
2 − Dcu

2 �
for D/2Dcl � �m� � D/2Dcu

0 elsewhere

 ,

�9�

here Dcl and Dcu are the coherent lengths of the inner
nd outer circles, respectively. �inner=� /2DclNA and
outer=� /2DcuNA are the corresponding inner and outer
artial coherence factors. The convolution kernel h�r� is
efined as the Fourier transform of the circular lens ap-
rture with cutoff frequency NA /� [20,21]; therefore,
h�r� =
J1�2�rNA/��

2�rNA/�
. �10�

Annular illuminations are classified by the sizes of
heir inner and outer partial coherence factors. The larger
he partial coherence factor, the higher the resolvable
patial frequency. Thus, large partial coherence factors
ead to improvements in resolution and contrast. Small
artial coherence factors, on the other hand, have the ad-
antage of forming sparse patterns, which can be ex-
loited effectively by phase-shifting masks. Medium par-
ial coherence factors are preferred for mask patterns
ontaining both sparse and dense patterns [1].

Figure 2 illustrates annular illumination sources hav-
ng large, medium, and small partial coherence factors.
or the large partial coherence factor illumination in Fig.
, �inner=0.8 and �outer=0.975. For the medium illumina-
ion, �inner=0.5 and �outer=0.6. For the small illumination,
inner=0.3 and �outer=0.4. The dashed circles represent
he dimension of the pupil. The number of terms used in
he Fourier series expansion in Eq. (6) plays a critical role
n the computational complexity of the model and conse-
uently in the computational complexity of the inverse
ptimization. The number of terms in the expansion in
q. (6) will be referred to as T. According to Eq. (9),
/2Dcl� �m��D /2Dcu. In addition, Dcl=� /2�inner, Dcu
� /2�outer, and D=N	p, where p	p is the pixel size.
hus,

T � ���D/2Dcu�2 − �D/2Dcl�2� � CN2, �11�

here the constant C=�p2NA2��outer
2 −�inner

2 � /�2. The pa-
ameter T is larger for sources with larger partial coher-
nce factors. As an example, the values of T for the
ources in Fig. 2 are 12, 12, and 52 as � increases from
maller to larger partial coherence factors.

Figure 3 illustrates a mask of dimensions 1035 nm
1035 nm, and the corresponding aerial images formed

y the annular illuminations having large, medium, and
mall partial coherence factors. The mask consists of
5 nm features. The pitch p=90 nm is indicated by
ashed lines. The aerial images are synthesized by the
ourier series expansion model. In these simulations,
A=1.25, �=193 nm, and h�r� is assumed to vanish out-

ide the area Ah defined by x ,y� �−56.25 nm,56.25 nm�.
he constant k=0.29 and the pixel size is 5.63 nm
5.63 nm. Note that the aerial images increasingly be-

ig. 2. Annular illumination with large, medium, and small
artial coherence factors. The dashed circles represent the di-
ension of the pupil.
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ome more blurred as the partial coherence factor is de-
reased.

. Average Coherent Approximation Model
lthough the accuracy of the Fourier series expansion is

he same as that of the discrete version of the Hopkins
iffraction model, it is computationally expensive. The
omputational cost is a polynomial of the number of the
ourier series term used to represent the SOCS model,
nd in general, numerous terms are needed to attain an
dequate representation. Therefore, the development of
n optimization algorithm that uses a more computation-
lly efficient model is desired. To this end, the second in-
erse lithography optimization method developed in this
aper uses the model introduced by Salik et al. and re-
erred to as “average approximation” for PCI [17].

The principal idea of the average approximation of PCI
s to approximately decompose the contribution of the PCI
nto a coherent illumination component and an incoher-
nt illumination component. Therefore,

I�r� =��M�r1�M�r2���r1 − r2�h*�r − r2�h�r − r2�dr1dr2

� 
�M�r��hC�r�,r�dr�
2

+� �M�r���2�hI�r�,r��2dr�,

�12�

here r�= �x� ,y��, hC�r� ,r�, and hI�r� ,r� are the equiva-
ent amplitude impulse responses of the coherent and in-
oherent components, respectively. Furthermore,

hC�r�,r� = f�r�,r�1/2h�r�,r�, �13�

hI�r�,r� = �1 − f�r�,r��1/2h�r�,r�, �14�

here

ig. 3. (Color online) (Top left) Target mask pattern containing
5 nm features with pitch p=90 nm is indicated by dashed lines.
erial images formed by annular illuminations with large (top

ight: �inner=0.8, �outer=0.975), medium (bottom left: �inner=0.5,
outer=0.6), and small (bottom right: �inner=0.3, �outer=0.4) partial
oherence factors. Here NA=1.25 and k=0.29.
f�r�,r� =
��h�r�, r̂��2
�r, r̃�dr̃

��h�r�, r̂��2dr
, �15�


�r, r̂� =
��r, r̂�

���r,r���r̂, r̂��1/2
. �16�

In the equations above r̂ and r̃ are dummy variables. f
s the fraction of coherent incident power with 0� f�1.
or the annular illuminating sources, the function f is ob-

ained by substituting Eqs. (8) and (10) into Eqs. (15) and
16), leading to

ig. 4. ACAA gives more accurate aerial imaging for sharper
mplitude impulse response. (a) NA=1.35, corresponding to a
harper amplitude impulse response, SNR=18.7. (b) NA=0.15,
orresponding to a smoother amplitude impulse response, SNR
10.2.
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f�r�,r� =
1

���J1��r/d��/��r/d��2dr � 
�J1��r̂/d��

��r̂/d� 
2

	 � �J1���r̂ − ṙ�/au��

���r̂ − ṙ�/au�
−

au
2

al
2

�J1���r̂ − ṙ�/al��

���r̂ − ṙ�/al�
�dr̂,

�17�

here ṙ=r−r�, d=� /2NA, au=2Dcu, and al=2Dcl. Apply-
ng the Fourier transform, Eq. (17) becomes

f�r�,r� =
1

���J1��r/d��/��r/d��2dr
· IFFT

	�FFT��h�r��2� · FFT���r���, �18�

here FFT(·) and IFFT(·) are the FFT and inverse FFT
perations, respectively.

It is noted that for some specific h�r� and ��r�, the con-
ition 0� f�1 may not be satisfied. According to Eq. (13),
egative values of f will introduce complex pixel values in
C�r� ,r�. Similarly, Eq. (14) indicates that values of f

arger than 1 will introduce complex pixel values in
I�r� ,r�. Nevertheless, in the following binary mask opti-
ization simulations, the average coherent approxima-

ion model leads to similar aerial image contours as those
f the Fourier series expansion model. Substituting Eq.
18) into Eqs. (13) and (14), the equivalent amplitude im-
ulse responses of the coherent and incoherent compo-
ents can be found. Therefore, the PCI is approximately
ivided into a summation of a coherent system and an in-
oherent system.

As mentioned above, the accuracy of the average coher-
nce approximation model depends on the spatial coordi-
ates, mask pattern, optical system kernel, and the com-
lex degree of coherence [17]. Specifically, the error of the
verage coherence approximation model becomes smaller
s the amplitude impulse response h�r� becomes sharper,
r its energy is more concentrated. Figure 4 illustrates
he cross sections of the aerial imaging of two vertical
ars based on the two models introduced above. The mask
imension is 600 nm	600 nm and �=193 nm. The Fou-
ier series coefficients of the circular illumination are

�m = �4Dc
2/�D2 for �m� � D/2Dc

0 elsewhere � , �19�

here D=600 nm and Dc=8.6 nm. T=3969 is the number
f Fourier series terms to represent the SOCS model.

In Fig. 4, the solid curves and dashed–dotted curves
epresent the aerial imaging of the Fourier series expan-
ion model and average coherent approximation model re-
pectively. Since the accuracy of the Fourier series expan-

Fig. 5. Approximat
ion model is the same as that of the discrete version of
he Hopkins diffraction model, the former is chosen as the
riterion by which to measure the accuracy of the average
oherent approximation model. The SNR is defined as the
atio between the energy of the accurate imaging and the
rror energy. In Fig. 4(a), the numerical aperture NA
1.35 and SNR=18.7, while in Fig. 4(b), NA=0.15 and
NR=10.2. It can be observed from Eq. (10) that larger
A corresponds to a sharper amplitude impulse response.
he simulations show that the average coherent approxi-
ation model gives more accurate aerial imaging for

harper amplitude impulse response.

. INVERSE LITHOGRAPHY OPTIMIZATION
. Optimization Using the Fourier Series Expansion
odel
et M�x ,y� be the input binary mask to an optical lithog-
aphy system T�·�, with PCI. The PCI optical system is
pproximated by a Hopkins diffraction model. The effect
f the photoresist is modeled by a soft threshold opera-
ion. The output pattern is denoted as Z�x ,y�=T�M�x ,y��.
iven an N	N desired output pattern Z*�x ,y�, the goal of
PC mask design is to find the optimized M�x ,y�, called

ˆ �x ,y�, such that the distance

D = d�Z�x,y�,Z*�x,y�� = d�T�M�x,y��,Z*�x,y�� �20�

s minimized, where d�· , · � is the mean-square-error crite-
ion. The OPC inverse lithography optimization problem
an thus be formulated as the search of M̂�x ,y� over the
	N real space RN	N such that

M̂�x,y� = arg min
M�x,y��R

N	N
d�T�M�x,y��,Z*�x,y��. �21�

The forward imaging process is illustrated in Fig. 5,
here the Fourier series expansion model is used in the

mage formation stage. The binary mask is the input of
he system. Light propagating through the mask pattern
s affected by diffraction and mutual interference—a phe-
omenon described by the Hopkins diffraction model
6,20,22]. Light that is transmitted through the mask
eaches a light-sensitive photoresist that is subsequently
eveloped through the use of solvents. The thickness of
he remaining photoresist after development is propor-
ional to the exposure dose exceeding a given threshold
ntensity. In a positive photoresist process, almost all the
hotoresist material remains in the low-exposure area on
he wafer and is removed in the high-exposure area. Be-
ween these two extremes is the transition region. For
athematical simplicity, it is assumed that when the

ight field exceeds a threshold, the exposed area becomes

ard process model.
ed forw
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high-exposure area; otherwise, it is a low-exposure area.
hus, a hard threshold operation can adequately repre-
ent the exposure effect described above, and the output
attern of the optical system is binary.
Figure 5 depicts the approximated forward process
odel [14], where �·� is the element-by-element absolute

peration, and the output of the convolution and the ab-
olute operation model is the intensity distribution of the
erial image. Further, since the derivative of the sigmoid
unction exists, it is used to approximate the hard thresh-
ld function. The hard threshold function is a shifted unit
tep function U�x− tr� that is approximated by the sigmoid
unction

sig�x� =
1

1 + exp�− a�x − tr��
, �22�

here tr is the process threshold, and a dictates the steep-
ess of the sigmoid function.
Following the definitions above, the following notation

s used:

1. The MN	N matrix represents the mask pattern with
N2	1 equivalent raster scanned vector representation

enoted as m.
2. A convolution matrix Hm is an N2	N2 matrix with

n equivalent two-dimensional filter hm.
3. The desired N	N binary output pattern is denoted

s Z*. It is the desired light distribution sought on the wa-
er. Its vector representation is denoted as z*.

4. The output of the sigmoid function is the N	N im-
ge denoted as

Z = sig��
m

�m�Hm�m��2� . �23�

he equivalent vector is denoted as z.
5. The hard threshold version of Z is the binary output

attern denoted as Zb. Its equivalent vector is denoted as

b, with all entries constrained to 0 or 1. =

i

w

6. The optimized N	N gray mask denoted as M̂ mini-
izes the distance between Z and Z*, that is,

M̂ = arg min
M

d�sig��
m

�m�Hm�m� ��2�,Z*� . �24�

ts equivalent vector is denoted as m̂� � �0,1�.
7. The binary optimized mask M̂b is the quantization

f M̂. Its equivalent vector is denoted as m̂� b, with all en-
ries constrained to 0 or 1.

Given the gray level pattern z� =sig��m�m�Hm�m� ��2�, the
th entry in this vector can be represented as

z� i =
1

1 + exp�− a�m�m��j=1
N2

hij
mm� j�2 + atr�

i = 1, . . . N2,

�25�

here hij is the i, jth entry of the filter. In the optimiza-
ion process, m̂� is searched to minimize the L2 norm of the
ifference between z� , and z�*. Therefore,

m̂� = arg min
m̂�

�F�m� ��, �26�

here the cost function F�·� is defined as

F�m� � = �z�* − z��2
2 = �

i=1

N2

�z� i
* − z� i�2, �27�

here z� i in Eq. (27) is represented in Eq. (25). To reduce
he above bound-constrained optimization problem to an
nconstrained optimization problem, we adopt the para-
etric transformation [6]. Let

m� j =
1 + cos��� j�

2
j = 1, . . . ,N2, �28�

here �� j� �−� ,��, and m� j� �0,1�. Defining the vector ��
T
��1 , . . . ,�N2� , the optimization problem is formulated as
��̂� � = arg min
��

�F���� = arg min
�� 	�i=1

N2

�zi
* −

1

1 + exp�− a�
m

�m
�
j=1

N2

hij
m

1 + cos �� j

2

2

+ atr��
2


 . �29�

he steepest-descent method is used to optimize the above problem. The gradients �F��� ��� can be calculated as follows:

�F��� � = d� �� = a 	 sin �����
m

�m�Hm�*T��z�* − z���z���1� − z����Hm�*�m� ���
+ a 	 sin �����

m
�m�Hm�T��z�* − z���z���1� − z����Hm��m� ��� , �30�
here �F��� ��RN2	1, � is the element-by-element multi-
lication operator, � is the conjugate operation, and T is
he conjugate transposition. 1� = �1, . . . ,1�T�RN2	1. As-
uming �� k is the kth iteration result, then at the k+1th
teration

�� k+1 = �� k − s��d� ��
k, �31�

here s is the step size.
��
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The iterative optimization above, in general, leads to
ray masks with pixel values between 0 and 1. Therefore
postprocessing step is needed to obtain the binary opti-
ized mask m̂� bi=U�m̂� i− tm�, i=1, . . . ,N2, where tm is a

lobal threshold. We define the pattern error E as the dis-
ance between the desired output image Z* and the actual
inary output pattern Zb:

E = �
i=1

N2

�z� i
* − z�bi� = �

i=1

N2


z� i
* − U��

m
�m�Hmm� bi�2 − tr�
 .

�32�

hen the pattern error is reduced to a tolerable level, the
teepest-descent iteration is stopped.

Note that if the complex degree of coherence ap-
roaches the value of one, then �→1, the system becomes
ompletely coherent, and Hm→H in Eq. (30). The gradi-
nt in Eq. (30) then reduces to

�F��� � = d� �� = a 	 sin ����HT��z�* − z���z���1� − z���H�m� ���,

�33�

hich is the result obtained in Eq. (6) for mask optimiza-

ion in the completely coherent case.
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. Optimization Using the Average Coherent
pproximation Model
he optimization process based on the Fourier series ex-
ansion model suffers from expensive computational cost.
or a mask pattern with dimension N	N, the number of
ultiplication operations in each iteration is �2T2

4T�N4+ �10T+2�N2+2, where again T is the number of
ourier series terms used to represent the PCI. According

o Eq. (11), T�CN2. The computational cost is thus of the
rder of O�2C2N8��O�C�N8�, where C�=2C2. In general,

is large. Therefore, development of a fast algorithm is
esired. Based on the average coherent approximation
odel, a fast algorithm, referred to as the average coher-

nce approximation algorithm (ACAA) is proposed in this
ection to reduce the computational complexity.

Equations(25), (27), and (30) are thus modified to ac-
ount for the use of the average coherence approximation,
eading to

z� i =
1

1 + exp�− a���j=1
N2

hCijm� j�2 + �j=1
N2

�hIij�2�m� j�2� + atr��

2
i = 1, . . . ,N , �34�
F��� � = �z�* − z��2
2 = �

i=1

N2

�zi
* − zi�2 = �

i=1

N2 �zi
* −

1

1 + exp�− a���j=1
N2

hCijm� j�2 + �j=1
N2

�hIij�2�m� j�2� + atr��
�2

, �35�
�F��� � = d� �� = 2a 	 sin ����HC
T��z�* − z���z���1� − z����HC�m� ���

+ 2a 	 sin ����HI
2T��z�* − z���z���1� − z����m� ���, �36�

here tr� is the process threshold for the average coherent
pproximation model. In general tr�� tr and must be esti-
ated a priori, such that it leads to a binary output pat-

ern similar to that of the Fourier series expansion model.
he aerial imaging synthesis can be implemented based
n the two models. Thus, given tr for the Fourier series
xpansion model, tr� can be found using a line search pro-
ess. The convolution matrices HC and HI are each of size
2	N2 with equivalent two-dimensional filters hc and hi,

espectively.
For a mask pattern with dimension N	N, the number

f multiplication operations in each iteration is equal to
N4+12N2+4. The computational cost of this second ap-
roach is of the order of O�8N4�. Compared with the com-
utational complexity of the algorithm based on Fourier
eries expansion model, and ignoring the lower order of
arge numbers, the reduction of the computational com-
lexity is of the order of 8/C�N4. When N is much larger
han 1, the fast algorithm is significantly more efficient.
he drawback of ACAA is that the error of the correspond-

ng optimized output pattern can be higher, because of the
naccuracy of the average coherent approximation model.
evertheless, the simulations in Section 5 show that
CAA is effective for the inverse lithography problem.
. REGULARIZATION
n the prior simulation settings, the fact that the esti-
ated output pattern should be binary is not considered.
n additional postprocessing (binarization) of the gray
ptimized mask pattern is suboptimal with no guarantee
hat the pattern error is under the goal [6]. Furthermore,
he optimized mask patterns contain numerous details
hat may bring difficulty to mask fabrication. One ap-
roach to overcome the two disadvantages is through
egularization during the optimization process [6,23].
egularization is formulated as follows:

m̂� = arg min
m̂�

�F�m� � + �R�m� ��, �37�

here F�m� � is the data-fidelity term and R�m� � is the regu-
arization term that is used to reduce the solution space
nd constrain the optimized results. � is the user-defined
arameter to reveal the weight of the regularization. In
he following, we will discuss quadratic penalty and
avelet penalty.

. Quadratic Penalty
o obtain near-binary gray optimized mask patterns
hrough the optimization process, we adopt the quadratic
enalty [6]. The formulation of the quadratic penalty is
ummarized as follows. The quadratic penalty term is
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RQ�m� � = 4m� T�1� − m� �. �38�

or each pixel value, the corresponding penalty is the
uadratic function

r�m� i� = 1 − �2m� i − 1�2 i = 1, . . . ,N2. �39�

ccording to Eq. (21), the gradient of Rq�m� � is �RQ�m� �
�−8m� +4�; thus, the cost functions in Eqs. (27) and (35)
re adjusted as

J�m� � = F�m� � + �QRQ�m� �. �40�

. Wavelet Penalty
novel wavelet penalty based on Haar wavelets was in-

roduced by Ma and Arce [15,16] to remove those details
n the mask patterns. The formulas of the wavelet penalty
re summarized as follows. The wavelet penalty term is

ig. 6. Binary mask optimization using the Fourier series expan
arget pattern is used as input, the binary optimized mask, and
imulations using the annular illumination with large partial co
ial coherence factor (�inner=0.5, �outer=0.6); bottom row, with sm
RW = h11
2 + h12

2
¯ + h�N/2��N/2�

2 + v11
2 + v12

2
¯ + v�N/2��N/2�

2 + d11
2

+ d12
2
¯ + d�N/2��N/2�

2 , �41�

here

hij = m�2�i−1�+1��2�j−1�+1� − n�2�i+1�+1��2�j−1�+2� + m�2�i−1�+2��2�j−1�+1�

− m�2�i−1�+2��2�j−1�+2�, �42�

vij = m�2�i−1�+1��2�j−1�+1� + m�2�i−1�+1��2�j−1�+2�

− m�2�i−1�+2��2�j−1�+1� − m�2�i−1�+2��2�j−1�+2�, �43�

dij = m�2�i−1�+1��2�j−1�+1� − m�2�i−1�+1��2�j−1�+2�

− m�2�i−1�+2��2�j−1�+1� + m�2�i−1�+2��2�j−1�+2�, �44�

or i , j=1, . . . ,N /2. The gradient of the wavelet penalty is
iven as

odel and wavelet penalty. Left to right: the output pattern when
tput pattern of binary optimized mask. Top row illustrates the

e factor (�inner=0.8, �outer=0.975); middle row, with medium par-
tial coherence factor (�inner=0.3, �outer=0.4).
sion m
the ou

herenc
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�RW

��� ��2−1�+p��2�j−1�+q�
= −

1

2
sin �� �2�i−1�+p��2�j−1�+q�

	 �3m� �2�i−1�+p��2�j−1�+q�

− m� �2�i−1�+p1��2�j−1�+q� − m� �2�i−1�+p��2�j−1�+q1�

− m� �2�i−1�+p1��2�j−1�+q1��, �45�

here i , j=1, . . . ,N /2 ,p ,q=1 or 2, p1= �p+1� mod 2 and
1= �q+1� mod 2. Therefore, the cost function is adjusted
s

J�m� � = F�m� � + �QRQ�m� � + �WRW�m� �. �46�

Another regularization that can be used for detail re-
oval is the total variation penalty used by Poonalwala

nd Milanfar [6]. The wavelet penalty was proved to out-
erform the total variation penalty in the setting of PSM
esign with arbitrary discrete phase levels [15,16]. In the
ollowing simulations, the wavelet penalty is exploited to
onstrain the details in the optimized mask patterns.
inner outer
. SIMULATIONS
. Simulations Using the Fourier Series Expansion
odel

o demonstrate the validity of the optimization algo-
ithms, consider the same desired pattern as that shown
n Fig. 3, with dimension of 1035 nm	1035 nm. To prove
he universality of the algorithm for different sizes of il-
uminations, the simulations are repeated based on annu-
ar illuminations with large, medium, and small partial
oherence factors. The values of the inner and outer par-
ial coherence factors of the illuminations are the same as
hose in Fig. 2. In Fig. 6, the top row illustrates the simu-
ation results applying the large annular illumination
ith �inner=0.8 and �inner=0.975: (left) the output pattern
hen the desired pattern is inputted �T�Z*��, (center) the
inary optimized mask �M̂b� using the Fourier series ex-
ansion model, and (right) the output pattern of the bi-
ary optimized mask �T�M̂b��. The middle row shows the
imulation results applying the medium annular illumi-
ation with � =0.5 and � =0.6. The bottom row
inner inner
ig. 7. Binary mask optimization using the ACAA and wavelet penalty. Left to right: the output pattern when target pattern is used as
nput, the binary optimized mask, and the output pattern of binary optimized mask. Top row illustrates the simulations using the an-
ular illumination with large partial coherence factor (�inner=0.8, �outer=0.975); middle row, with medium partial coherence factor

� =0.5, � =0.6); bottom row, with small partial coherence factor (� =0.3, � =0.4).
inner outer
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hows the simulation results applying the small annular
llumination with �inner=0.3 and �inner=0.4. The Fourier
eries expansion coefficients of the annular illumination
re as shown in Eq. (9). The convolution kernel is as
hown in Eq. (10) with NA=1.25 and �=193 nm. In the
imulations, we assume h�r� vanishes outside the area Ah
efined by x ,y� �−56.25 nm,56.25 nm�. In the sigmoid
unction, we assign parameters a=25 and tr=0.19. The
lobal threshold is tm=0.5, the constant k=0.29, and the
ixel size is 5.625 nm	5.625 nm. Step length and regu-
arization weights are s�� =2, �Q=0.025, and �W=0.025.
he initial mask pattern is the same as the desired binary
utput pattern Z*. For �� , we assign the phase of � /5 cor-
esponding to the areas having a magnitude of one and
he phase of 4� /5 the areas with magnitude of zero. The
umber of Fourier series terms to represent the SOCS
odel is 52 for the large annular illumination, 12 for the
edium one, and 12 for the small one. As shown in Fig. 6,

his approach has been proved efficient in our extensive
imulation analysis.

. Simulations Using the Average Coherent
pproximation Model
lthough the accuracy of the ACAA depends on various
arameters, it is shown in the following simulations that
t is in general effective for the inverse lithography prob-
em. In Fig. 7, the simulations shown in Fig. 6 are re-
eated using ACAA, with s�� =0.5, �Q=0.025, �W=0.025.

r�=0.09 for the large annular illumination, tr�=0.095 for
he medium one, and tr�=0.17 for the small one. The simu-
ation time is effectively reduced by an order of magni-
ude, indicating that the the ACAA is indeed computa-
ionally efficient. However, it is found that the optimized

utput pattern errors increase somewhat because of the t
educed accuracy of the ACAA. Nevertheless, this ap-
roach can also effectively add subresolution blocks into
he optimized mask patterns and compensate for distor-
ion in the optical system.

To illustrate the computational efficiency of both algo-
ithms, the computational running time is illustrated
ere. The construction of the inverse mask shown in Fig.

and 7 with medium partial coherence factor took
8 minutes for the first approach, and 55 seconds for the
econd approach. The computation was done on an Intel
entium4 CPU, 3.40 GHz, 1.00 GB of RAM. This differ-
nce would be scaled with the dimension of the mask be-
ng constructed. It should be noted that other factors such
s the treatment of boundary regions and hierarchy man-
gement can affect the overall run time and should be
aken into account for large-scale mask designs. Such
onsiderations fall outside the scope of our paper and are
opics for future work.

. CONCLUSION
his paper studies and models the PCI for inverse lithog-
aphy. First, two types of partially coherent imaging mod-
ls are described for the optimization problem: the Fou-
ier series expansion model and the ACAA. The Fourier
eries expansion model gives an accurate representation
f PCI, while the ACAA supplies approaches of faster im-
ging synthesis and analysis. Based on these models, ILT
ptimization processes are formulated. It is noted that
ACA is capable of reducing the computation complexity.
s a tradeoff, the optimized output pattern errors are in-
reased because of the inaccuracy of the ACAA. To control
he amount of details, wavelet penalty terms are applied
n the optimization framework. Simulations illustrate

hat our approaches are effective and practical.
PPENDIX A: DERIVATION OF GRADIENT �F„�� … FOR THE FOURIER SERIES EXPANSION
ODEL

he derivation of Eq. (30) from Eq. (29) is as follows:

�F��� �

���k
= 2�

i=1

N2

�zi
* −

1

1 + exp�− a�
m

�m
�
j=1

N2

hij
m

1 + cos �� j

2

2

+ atr��
1

�1 + exp�− a�
m

�m
�
j=1

N2

hij
m

1 + cos �� j

2

2

+ atr��2

	exp�− a�
m

�m
�
j=1

N2

hij
m

1 + cos �� j

2

2

+ atr�	�− a��
m

�m���
j=1

N2

hij
m

1 + cos �� j

2
�hik

m*�−
sin ��m

2 �
+ ��

j=1

N2

hij
m*

1 + cos �� j

2
�hik

m�−
sin ��m

2 �� .

sing Eqs. (25) and (28), the gradient above can be written as

�F��� � = d� �� = a 	 sin �����
m

�m�Hm�*T��z�* − z���z���1� − z����Hm�*�m� ���
+ a 	 sin �����

m
�m�Hm�T��z�* − z���z���1� − z����Hm��m� ��� .
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PPENDIX B: DERIVATION OF GRADIENT �F„�� … FOR THE AVERAGE COHERENT
PPROXIMATION MODEL

he derivation of Eq. (36) from Eq. (35) is as follows:

�F��� �

���k
= 2�

i=1

N2 �zi
* −

1

1 + exp�− a���j=1
N2

hCijm� j�2 + �j=1
N2

�hIij�2�m� j�2� + atr��
� 1

�1 + exp�− a���j=1
N2

hCijm� j�2 + �j=1
N2

�hIij�2�m� j�2� + atr���
2

	exp�− a�
�
j=1

N2

hCijm� j
2

+ �
j=1

N2

�hIij�2�m� j�2� + atr��	�− a����
j=1

N2

2hCij

1 + cos �� j

2
�hCik�−

sin ��m

2 �
+ 2�1 + cos ��k

2 �hIik
2 �−

sin ��m

2 �� .

sing Eqs. (28) and (34), the gradient above can be written as

�F��� � = d� �� = 2a 	 sin ����HC
T��z�* − z���z���1� − z���HC�m� ��� + 2a 	 sin ����HI

2T��z�* − z���z���1� − z����m� ���.
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