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Approximate Image Message Authentication Codes
Liehua Xie, Gonzalo R. Arce, Fellow, IEEE, and Richard F. Graveman

Abstract—This paper introduces approximate image message
authentication codes (IMACs) for soft image authentication. The
proposed approximate IMAC survives small to moderate image
compression and it is capable of detecting and locating tampering.
Techniques such as block averaging and smoothing, parallel
approximate message authentication code (AMAC) computation,
and image histogram enhancement are used in the construction
of the approximate IMAC. The performance of the approximate
IMAC in three image modification scenarios, namely, JPEG
compression, deliberate image tampering, and additive Gaussian
noise, is studied and compared. Simulation results are presented.

Index Terms—Content-based image authentication, message au-
thentication code (MAC), tampering detection.

I. INTRODUCTION

CONVENTIONAL countermeasures used against in-
tegrity threats to ordinary data (e.g., spreadsheets, word

processing files, etc.) rely on cryptographic methods; more
precisely, they rely on message authentication codes (MACs).
MACs are widely used cryptographic methods for Alice and
Bob,1 who share a secret key, to ensure each other that their
messages are authentic and unmodified [1], [2]. The creator
of a MAC takes a message and key as inputs and computes a
checksum in a way that is hard, given some set of messages
and their MACs computed with an unknown key, to forge a
MAC for a new message or to discover the key. The usual tools
for constructing MACs are cryptographic hash functions [3]
and block ciphers [4]. Conventional cryptographic procedures
originally crafted to secure ordinary data may be inadequate
for multimedia digital sources (images, voice, streaming audio,
and video). Ordinary data are intolerant to any changes and
the integrity check is based on strict bitwise accuracy. For
example, altering a single bit in a binary file can have disastrous
consequences. Multimedia, on the other hand, is generally
tolerant to minor changes.
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1Alice and Bob are the renowned “first couple” of cryptography. Alice is the
sender and Bob is the legitimate receiver.

Traditional message digest schemes, such as cipher block
chaining message authentication code (CBC MAC) [5] or
hashed-based message authentication code (HMAC) [6] with
MD5 [3], create a hard authenticator, because they output
entirely different message digests, even if only one bit in the
original data is changed. A modification of a single message
bit is designed to affect the calculation of all of the checksum
bits and to change each one in roughly half of the cases. These
MACs are deliberately constructed to be as unforgiving as
possible, and they fit those applications where Alice and Bob’s
security requirement is to reject any message that has been
altered to the slightest extent. In other applications (e.g., voice
or imagery), incidental noise or the effects of lossy downstream
compression are at least somewhat acceptable, so long as Alice
and Bob can identify and reject all-out forgeries, substantial
modifications of content, splicing or “cut-and-paste” attacks,
etc. In certain applications, the “acceptable modification” to the
message may include the insertion of hidden data: e.g., digital
watermarks or fingerprints to signify ownership or to mark
a particular copy. One approach to overcome the limitations
of traditional MACs for these emerging applications is to
pre-compute the expected modifications introduced by the
application at hand and compute a MAC based on the result of
this expected operation. This may be feasible in some cases,
but, in general, it fails to account for unpredictable effects
such as channel noise and inhomogeneous multicast where
uncertainty in the communication channel is present. Moreover,
when message compression is required, it is preferable to use
authentication mechanisms prior to compression [7]. One of
the reasons for this is that compression algorithms are not
deterministic in the sense that various implementations of the
algorithm achieve different tradeoffs in speed versus com-
pression ratio and, as a result, produce different compression
forms. These different compression implementations, however,
are inter-operable because any version of the algorithm can
correctly decompress the output of any other version [7].
Applying the hash function and signature after compression
would constrain all implementations to be exactly the same.

As a result, existing image authentication schemes fall into
two categories: strict and nonstrict authentication. Strict image
authentication is used to protect images from the slightest
modification therefore traditional MACs are used [8], [9];
Nonstrict authentication is used to ensure the content integrity
of images [10]–[12]. The authentication codes are mostly
constructed from the prominent features of an image.

Recently, a new cryptographic algorithm referred to as the ap-
proximate MAC (AMAC) has been developed [13], [14]. It pro-
vides an authentication and data integrity mechanism thatbends
rather thanbreakswhen a received message is slightly different
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from what was sent. Though AMACs provide a necessary cryp-
tographic primitive that probabilistically estimates the degree
of bitwise similarity of two digital messages with only a short
checksum, limitations exist if the AMAC is applied directly to
the authentication of images. First, the AMAC does not in itself
distinguish modifications to an image due to tampering (for in-
stance, adding or removing an object) from those due to some
acceptable image manipulations (for instance, image compres-
sion). Second, the AMAC cannot spot the location of differences
between the messages. Thirdly, the AMAC only measures bit-
wise differences, not differences in pixel values. Lastly, the fluc-
tuation of the AMAC difference around its expectation is large
and it is difficult to set a proper threshold for making the au-
thentication decision. Therefore, we propose to use the AMAC
primitive to construct an approximate authentication method tai-
lored to the spatial representation of gray-scale images, namely
the approximate IMAC. Techniques such as block averaging and
smoothing, parallel AMAC computation, and image histogram
enhancement are used in the approximate IMAC to overcome
the limitations of the AMAC.

Section II briefly introduces the AMAC algorithm and the
statistical properties of the AMAC. Then the limitations of the
AMAC for image authentication are presented. Section III de-
tails the construction of the approximate IMAC. In Section IV,
the performance of the proposed IMAC is described analyti-
cally. Simulations illustrating the authentication capabilities of
the approximate IMAC are provided and compared with the re-
sults from analysis. Ideas for improving the approximate IMAC
are discussed in Section V. Section VI concludes the paper. In
addition, the simulation results verifying the assumption made
in the analysis are presented in the Appendix.

II. THE APPROXIMATE MESSAGEAUTHENTICATION CODE

(AMAC) AND ITS LIMITATIONS

A. The AMAC Algorithm

The AMAC [13], [14], is a probabilistic checksum calculated
using pseudorandom permutations, masking, and the majority
function. It is capable of estimating the distance of two binary
sequences, since similar messages are likely to have similar
AMACs. The closeness or similarity between two sequences is
measured by their Hamming distance. The term “approximate”
comes from the fact that it is desirable for two sequences that
are close, yet not identical, to have the same or only slightly dif-
ferent AMACs.

Let be an input binary message of length less than or
equal to , where is the AMAC length and
and are positive integers. Given a shared keyused to
secure the process and a pseudorandom bit generator, the
algorithm for constructing the AMAC is given below.should
be large enough to resist brute-force forgeries2 and other such
attacks because determines the number of possible MAC
combinations and the amount of time for the attackers to break
the code. As with conventional MACs, the length of an AMAC
is typically chosen in the range . It is convenient
to pick and odd. Choosing the relative sizes ofand

2That is, attacks by trying all possible combinations of binary bits.

Fig. 1. Reformatting, row permutation, and XORing operations.

is a matter of fine-tuning the system, so as a matter of practice,
one can start with .

Step 1) Initialization: The key and some additional in-
formation are input to the pseudorandom bit gen-
erator as a seed.

Step 2) Formatting and Randomization: This stage is shown
in Fig. 1. First the binary message is padded with
zeros to the length ifnecessary.Thepadded
message is next re-formatted into a binary array of

rows by columns. Next, is used to select
a pseudorandom permutation on
and the rows in the array are permuted accordingly.3

The purpose of the pseudorandom permutation is to
destroy the spatial correlation of rows. If the correla-
tion of positions between columns is also undesired,
an optional operation that performs a different cir-
cularshiftofeachrowshouldbeadded.Thepermuted
array is then masked by XORing all of its bits with a
newsetofpseudorandombitsgeneratedby.Denote
the permuted and masked array as.

Step 3) Two Rounds of Majority Calculation: This stage
is shown in Fig. 2. First we take rows at a time
from and form subarrays, each of rows and

columns. Denote the sub-arrays as,
. For each , , compute

the majority bit of each column, i.e., the most fre-
quent bit in the column. The majority bits then
make up one new row of length. new rows of
majority bits for sub-arrays are formed, and they
are arranged in a new array denoted by .
The elements of can be derived as
MAJORITY

. It is seen that, by this round of majority calcu-
lation, the volume of the data is reduced to bits.

3One way to useP to obtain a pseudorandom permutation of the values 1
throughR�S is as follows. An additional keyK is obtained fromP . With
this key, use either a traditional MAC scheme or a block cipher to generate MACs
or encryption of the values 1 throughR � S. Sort the results and use the sorted
listed to specify the permutation. Note that this can be precomputed fromP; K;
andI .
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Fig. 2. Two rounds of MAJORITY calculation in the AMAC algorithm.

A second round of majority calculation is carried out for.
Compute the majority of each column ofand obtain bits.
These bits are taken as the AMAC,. If or is even, a row
of pseudorandom bits is added to the corresponding majority
calculation to “break ties.”

The constructed AMAC, , which is a binary sequence of
bits, and the initialization dataare sent along with .

B. Probabilistic Properties of the AMAC

Let be the probability that a given AMAC bit changes, as
derived in [14]

(1)

where
length of the binary message;
length of AMAC;
number of modified bits in the message.

For AMAC bits, the expected number of differences is

(2)

where denotes the number of different bits in the AMAC.
versus the fraction of the differences between two se-

quences is plotted in Fig. 3. This figure depicts an AMAC of
, calculated for sequences with various lengths

. Fig. 3 shows that , the probability
that an AMAC bit changes, increases when the fraction of bit
differences between the original and the modified sequence in-
creases. When all bits are altered in the sequence, ,
meaning every AMAC bit changes. Note also when the fractions
of bit differences are the same, the values with different
are close to each other.

The AMAC thus provides a means to detect the degree of bit-
wise similarity of two digital sequences. Since two sequences

Fig. 3. Probability that a given AMAC bit changes versus the fraction of
differences between two sequencesL = 63.

with small Hamming distance have small probability of having
different MAJORITIES, two iterations of MAJORITY calcu-
lations should produce a “slowly changing fingerprint” of the
input sequence.

C. Limitations of the AMAC for Image Authentication

The AMAC is a soft message digest for general data, though
its construction was originally motivated by approximate image
authentication. In order to input an image into the AMAC al-
gorithm, the image data were formatted into a binary array by
converting all pixels from their decimal to binary representa-
tions and scanning the pixels in a row-by-row manner. Through
the analysis and simulation in [13], [14], we conclude that lim-
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itations exist if the AMAC is applied directly to the authentica-
tion of images.

First, the AMAC does not in itself distinguish modifications
to an image due to tampering (for instance, adding or removing
an object) from those due to some acceptable image manipu-
lations (for instance, image compression). Both tampering and
image compression modify the pixel values, though the seman-
tics of how they modify an image are not the same. Modifica-
tion by tampering results in large changes to certain coefficients
that are most likely concentrated in specific areas. Lossy com-
pression tends to smooth the image, because it is in essence a
low-pass filtering process. Compared with tampering, its im-
pact on a coefficient is relatively small, but its overall impact is
widely spread across the image. However, the AMAC is “blind”
to such differences. The likely difference in the AMACs of two
messages is only a function of their Hamming distance. This
does not account for the density and distribution of the differ-
ences between the messages. In addition, the Hamming dis-
tance of the AMACs is the only information available for the
receiver to judge the authenticity and integrity of the image.
Therefore, if the number of the differences caused by compres-
sion is as large as that caused by tampering, no valid threshold
can be determined to separate image tampering from compres-
sion. A partial remedy to this problem is to constrain the rota-
tions to byte boundaries, so that bit locations within a pixel re-
main aligned, and the receiver can observe whether a different
bit in two AMACs occurs in a low- or high-order position within
a pixel.

Second, the AMAC cannot spot the location of differences be-
tween the messages. For detecting image tampering, it is highly
desirable to expose the location of the tampering. But the per-
mutation and rotations performed in the AMAC algorithm de-
stroy spatial relationships (intentionally), so information based
on pixel location is lost.

Third, the AMAC only measures bitwise differences, not dif-
ferences in pixel values. With pixel values represented in binary,
small changes in pixel values do not always produce small Ham-
ming distances. For example, the Hamming distance between
126 and 127 is one, whereas that between 127 and 128 is eight.
A partial remedy to this problem is to represent the pixel values
with a Gray code4 [15].

Finally, both the analysis and the experimental data show that
the fluctuation of the AMAC difference around its expectation
is large. Relying on one criterion, the Hamming weight of the
AMAC difference, may not be adequate to determine whether
or not an image is tampered, let alone the question of where the
image is tampered.

III. A PPROXIMATE IMAGE MESSAGEAUTHENTICATION CODE

(IMAC)

The AMAC successfully addresses the issue of approxi-
mate bit-by-bit data integrity but makes no attempt at pattern
matching and identifying specific types of distortion. Thus
AMACs cannot tell the difference between image compression

4A Gray code is a binary code in which consecutive decimal numbers are
represented by binary expressions that differ in the state of one, and only one
bit.

Fig. 4. Data processing flow for the sender and the receiver.

and tampering, which is a severe limitation. For more powerful
approximate image authentication, the capabilities of error
detection and localization are needed. Rather than simply
patching the AMAC, we constructed a new method tailored
to the spatial representation of gray-scale images, namely, the
approximate IMAC.

A. Image Authentication Using the Approximate IMAC

The approximate IMAC is constructed with a three-phase
operation, as shown in Fig. 4. The first and second phases are
identical for the receiver and the sender, in which the most
significant bits are extracted (Section III-B), a parallel AMAC
computation is performed, and the IMAC of a given image is
created (Section III-C). The third phases are different. At the
sender, the third phase enhances the image’s error tolerance
(Section III-D). At the receiver, it authenticates the image by
checking the AMAC difference map (Section III-E). Denote
these phases by I, II, III-S, and III-R where III-S and III-R stand
for the third phase at the sender and receiver, respectively.

B. Phase I: Most Significant Bits Extraction

To assure the robustness of the approximate IMAC for im-
ages under acceptable manipulations, the least vulnerable bi-
nary representation of an image is sought. Since low-frequency
components of an image are the least affected during low-pass
filtering, and the highest order bit of a coefficient is the least
possibly modified bit when the coefficient slightly changes, we
decided that the highest order bit of the lowest frequency coef-
ficients is robust and used them as the most significant bits. In
our scheme, the highest order bit of each block average
is used to build a reliable, compact representation of an image.
The scheme is displayed in Fig. 5.

We divide an 8-bit image into nonoverlapping
blocks. The blocks are used because they are the

most compatible with JPEG compression, in which blocks
are used in the DCT. These blocks are labeled as(

, ). Then the mean of the coefficients in each
block is computed. Denote it by ( ).
The most significant bit of , denoted by , is output.
A binary map is constructed by ( ,

). In (a) of Fig. 6, the 8-bit test
image is presented. The block average, and the binary map
of the test image are depicted in Fig. 7.
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Fig. 5. Extract the most significant bits.

Fig. 6. (a) Test image. (b) Tampered image: the tank is removed. (c) The IMAC
difference map obtained by cross-checking the IMAC of rows and column.
(d) The IMAC difference mapped in the tampered image.

C. Phase II: Parallel AMAC Computation

In this phase, one IMAC bit is calculated for each row and
column of using the AMAC algorithm. Hence, an array of

IMAC bits is obtained using the procedure shown in Fig. 8.
Denote the resulting array by . Let ( )
be the approximate IMAC bit for , the th row of and

( ) be the IMAC bit for ,
the th column of . In addition, using the key ,
is permuted5 and XORed with pseudorandom bits. The final
output array is obtained. The purpose of the randomization
and XOR operations is to prevent an attacker from being able to
identify any bit of with a specific row or column of.

At this point, the sender proceeds to send. Receivers get
an approximate IMAC with the received image and follow the
process described in Section III-E.

D. Phase III-S: Error Tolerance Enhancement

Though is defined to be the most significant bit of
, it is possible that will change when is

5The permutation is carried out following the method used in Step 2) of the
AMAC algorithm (Section II-A): Formatting and Randomization

Fig. 7. Left:m, the block average ofI . Right:b,m in binary representation.

slightly changed. In fact, is vulnerable to small modifica-
tion of whenever is around the threshold 127.5.
To improve the image’s capacity for error tolerance, we intro-
duce a guarding zone in the image’s histogram by transforming
it and creating a gap around the threshold.

Let be the acceptable maximum absolute difference be-
tween the original and a modified caused by
some image manipulations. We prohibit values in an error tol-
erance zone around the threshold 127.5 and split the interval of
[0, 255] into two separate regions: [0, ] and [ ,
255]. The minimum distance between two coefficients in two
different regions is . We then linearly map all s
from 0 to 127 to the first region and those from 128 to 255 to
the second region. In this way, a gap of , which is sym-
metrically positioned around 127.5, is created in the histogram
of . If the change of is within , the highest bit of the
modified remains the same. Suppose is mapped
into . Define . Since
is the mean of , every coefficient in is changed by the
same amount, . Define the new image as. Then, instead of
, will be sent via the channel.
An image manipulation can be characterized by the param-

eter , the maximum absolute change it causes to the value of
. If , the IMAC, , stays the same. Otherwise,

may be different. Therefore a larger results in a stronger
capability of the approximate IMAC to resist modification. On
the other hand, the modification forces a gap of width
in the histogram of , the block average of the image. In some
sense, is dithered because a smaller scale is used to represent

. The larger is, the larger the dithering effect. When in-
creases to the extreme ( ), becomes binary. So there
is a tradeoff between the quality of and the robustness of its
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Fig. 8. Parallel AMAC computation on all rows and columns.

Fig. 9. Comparison between the histograms of the test image before and after
histogram transformation.

IMAC. In practice, provides good performance, because
it produces both a sufficient guarding zone for moderate com-
pression and a slight distortion to the images. Using , we
obtained , the transformed test image. No visible difference is
observed between and . The histogram change is observed
and plotted in Fig. 9. It is seen that the histograms ofand
look very close to each other, therefore the histogram transfor-
mation does not severely distort the image. The histograms of
and appear to be slightly different and a closer look at their
histograms around the threshold 128 clearly indicates that a gap
is created after the transformation.

E. Phase III-R: IMAC Difference Map Checking

Denote the approximate IMAC of the received image by.
Note it has been assumed that the receiver will be able to recover
an accurate copy of. Using the key , and are recovered.
Let , and create a binary map with rows and

columns

if

otherwise.
(3)

Fig. 10. (a) Test image. (b) Tampered image: the building is removed. (c) The
IMAC difference map obtained by cross-checking the IMAC of rows and
columns. (d) The IMAC difference mapped in the tampered image.

Fig. 6 shows an example of the IMAC difference map. In (b)
of Fig. 6, an example of a tampered image is given. The dif-
ference map when an IMAC of the original image is com-
pared with that of the tampered image is shown in (c). In (d),
the IMAC difference is highlighted in the tampered image and
it clearly indicates the area where tampering has taken place.
Another example is provided in Fig. 6, in which a different test
image is used and shown in (a) of Fig. 10. A similar set of test
results are plotted.

IV. PERFORMANCE OF THEAPPROXIMATE IMAC

We use an 8-bit image as our example, and the
desired IMAC length is 128. Since the block average in the ap-
proximate IMAC is equal to one eighth of the DC coefficient
in the DCT block, we find that , the binary represen-
tation of the block average, can be equivalently constructed by
extracting the highest order bits of the DC coefficients. In order
for us to analyze the performance for DCT-based compression,
this method will be used in the following.
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A. Impact of JPEG Compression

Lossy JPEG compression [16] quantizes the 64 DCT coef-
ficients of each nonoverlapping block using a quantiza-
tion table. Larger quantization coefficients are used for higher
frequencies, since they are less significant to the human visual
system. By tuning the quantization table, various image com-
pression ratios can be attained. A user defined “quality” factor
can be used to determine the scaling multiplier to adjust a stan-
dard quantization table. A number of tuning methods have been
proposed. Here we use a quality factor setting scheme which
was introduced in the IJG JPEG library [17], in which a quality
factor can be considered “high” quality, “good”
quality, and “low” quality.

I) Approximate IMAC Without Image Histogram Transforma-
tion:

In Phase I of the approximate IMAC, the most significant
bit of each block is extracted. We get, the block average of
an image. The impact of compression on the block average
has been analyzed in our study of the AMAC in the minimum
distortion model [13], [14]. It was seen that in the case of
minimum distortion, the number of different AMAC bits, is
generally smaller than in real quantization processes. In other
words, the AMAC from the block average is more robust than
the AMAC derived directly from the pixels. In the second step,
, a binary representation of is generated by extracting the

highest order bits of . Since the highest order bit is the least
sensitive to coefficient change, the IMAC fromwill be even
more robust. In all, the robustness of the approximate IMAC,
which uses the binary representations of the image’s block
average as the input, is improved over the AMAC, which uses
the bit representations of all image pixels. Furthermore, the
approximate IMAC carries spatial information by computing
one IMAC bit for each row and column of.

To analyze the approximate IMACs probabilistic behavior,
we make the following assumption.

Assumption 1:We approximate the distribution function
of DC coefficients, , to be triangular in the range of
[0, 2048], so that , , and

for , i.e., ,
.

The probabilities at both ends are 0 and the probabilities in
the center, 1024, are the highest. In JPEG compression, the
DC coefficient is further quantized. If is the DC quantiza-
tion coefficient, the DC coefficient, and the quantized ,

, where represents the rounding process. The
maximum absolute quantization error would be and the
minimum error is 0. After quantization, the highest order bit of
the DC coefficient might change. For example, when ,

, , the highest order bits of and are
different. In fact, the highest order bit ofchanges after quan-
tization if . In addition, if ,

for . Therefore, the
expected number of bit changes in, denoted by , is estimated
as

(4)

TABLE I

TABLE II

when . Let be the length of the message,
. Denote the probability that a given IMAC bit changes

by . is computed as a function of and [14].
There are 64 IMAC bits for the rows and 64 for the columns.
Denote the expected number of IMAC differences in each di-
rection by , so . (We assume each IMAC
bit is independent). When the IMAC bits in two directions are
cross checked, the expected number of differences in the differ-
ence map, denoted by , is . The density of the differ-
ences, denoted by , is . In the quantization
scheme, the quality factor determines the quantization con-
stant . Table I shows the value of, , , , and

when various quality factors are used.
II) Approximate IMAC Using Image Histogram Transforma-

tion with the Parameter :
When the image histogram is re-mapped using parameter
, a gap of width is created around 127.5. In this

way, the robustness of the IMAC is further enhanced, because
a coefficient changed by no more than will not exceed the
boundary, and its binary representation stays the same in spite
of the change. Let . The 8-bit coefficients of in the
range [0, 127] will be linearly transformed to the range [0,
125], and [128, 255] to [130, 255]. A gap of width 5 is created.
Since the DC coefficient is eight times the block average, the
maximum tolerated difference is 16 for the DC coefficient. The
expected bit difference in, denoted by , is

if

otherwise.

(5)

The results for , , and are shown in Table II.
These values are denoted by superscript “” to distinguish them
from the results of the IMAC without histogram transformation.
Comparing Tables I and II, we find significant improvement due
to histogram transformation. The expected difference barely dif-
fers from zero when , which means the IMAC is robust
under moderate compression.
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TABLE III
PERFORMANCE OF THEAPPROXIMATE IMAC WITH IMAGE TAMPERING

B. Impact of Image Tampering

For the purpose of mathematical tractability, we assume that
image tampering takes place in a square. The modification to
each pixel in the square is random. Suppose the size of the
square is . The model is then further simplified so
that the tampering takes place in a square of size ,
where so that .
Furthermore, we assume that every bit of the coefficients in this

square changes because of tampering.
The performance of the approximate IMAC with tampering is

shown in Table III. Note there is no difference in the results for
the IMAC with and without image histogram transformation,
because the effects of tampering are the same for both.
is computed as a function of [14]. In Table III,

, and .
To compare the impact of tampering with that of JPEG com-

pression on the approximate IMAC without Image Histogram
Transformation, we find the value of in Table III, when

, is 2.1728, which is close to that of the compressed
image with quality factor 50 in Table I. It shows that the approx-
imate IMAC successfully suppresses the IMAC errors resulting
from image compression, so it is now possible to set a threshold
in the number of IMAC differences to separate image tampering
and moderate image compression.

Compared with the values of in Table II, in
Table III, when , is close to that of a compressed
image with quality factor 16, so the performance of the IMAC
with histogram transformation is further improved. A clear
distinction between the compressed and tampered images is
revealed.

The presence of one or more IMAC bit errors can be used as
the indication of image tampering. For such an image authenti-
cator, there are two types of error: “false alarm” and “miss” [18].
A “false alarm” occurs when a compressed image is reported as
“tampered.” Denote the values of and with JPEG
compression using quality factors by and ,
respectively. For the IMAC without histogram transformation,
the probability of “false alarm” is , where
is the IMAC length. in the example. For the IMAC
with histogram transformation, since equal zero,
the expected IMAC errors resulting from compression with

is 0, the probability of false alarm is 0. When ,
, and the probability of a “false alarm” is
. Fig. 11(a) compares the probability of “false

alarm” versus different s between the IMAC without and with
histogram transformation. The probability is obtained using the
results in Tables I and II. Clearly, when decreases, the prob-

Fig. 11. (a) Probability of “false alarm” when an image is compressed by JPEG
using different quality factorQ; (b) Probability of “miss” when the size of the
tampered area varies.

ability of “false alarm” increases. The probability of a “false
alarm” is greatly reduced by using histogram transformation.

On the other hand, if a tampered image is reported as accept-
able, there is a “miss.” Denote the value of by
when the tampered area is described by. The probability of
a “miss” is . The probability versus different
values of is presented by the solid line in Fig. 11(b). (A more
detailed discussion on Fig. 11(b) appears in the next section).
In general, when increases, the probability of a “miss” de-
creases. For example, when , the probability of “miss”
is 0.0063. represents a tampered area that is of
the total image size. The number of bit differences between the
test image in Fig. 6(a) and tampered image in Fig. 6(b) fits the

model approximately.

C. Impact of Gaussian Noise

Suppose Gaussian noise of zero mean andvariance is
added into the image. The expected absolute coefficient change
is . Denote the sum of the coefficient changes by
SUM . Since the DC coefficient is one eighth of the sum of
the coefficients in the block, the absolute DC coefficient change
is one eighth of SUM . Using the central limit theorem,
the distribution of SUM is approximated as a Gaussian
distribution with zero mean and variance . The expected
absolute value of SUM is therefore and the DC
coefficient change is expected. Given the expected
absolute DC coefficient change, we derive the values of
and when the variance of the Gaussian noise is varied. We
found ranged from 2.3937 to 14.3622 and is zero when

.

D. Simulation Results

The performance of the approximate IMAC without and
with histogram transformation was examined by observing the
number of IMAC differences in the rows and columns. The
results shown in Tables IV and V were computed by averaging
the data from 5000 times experiments. Results are reported
for the test image in Fig. 6(a) with JPEG compression using
different quality factors , the tampered image in Fig. 6(b),
the tampered image with compression, and the test image with
Gaussian noise of variance. The observed differences in the
rows and columns are denoted by row-d and col-d ,
respectively. The superscripts “,” “ ,” “ ,” “ ” are used
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TABLE IV
OBSERVED BIT DIFFERENCES IN THEROWS AND COLUMNS OF THE

APPROXIMATE IMACS WITHOUT HISTOGRAM TRANSFORMATION

TABLE V
OBSERVED BIT DIFFERENCES IN THEROWS AND COLUMNS OF THE

APPROXIMATE IMACS WITH HISTOGRAM TRANSFORMATION

to denote the results for compressed images, tampered and
compressed images, tampered images, and images with added
noise, respectively. In Figs. 12 and 13, the performance of the
IMAC without and with histogram transformation is presented,
respectively. The values of row-d and col-d are plotted versus
the quality factor .

In Fig. 14, the performance of the approximate IMAC without
and with histogram transformation is compared when Gaussian
noise is added to the image, where row-d and col-d are plotted
versus the standard deviation of Gaussian noise. We see the ap-
proximate IMAC is robust when is small ( ). The number
of IMAC differences increases whenincreases, and the num-
bers do not follow our prediction well. The reason may be be-
cause using the absolute mean of Gaussian noise alone is not
sufficient to estimate the bit differences in the message resulting
from Gaussian noise.

V. IMAC GENERALIZATION

This section discusses several methods designed to improve
the security and the performance of the approximate IMAC.

First, considering the probabilistic nature of the AMAC, we
can increase the number of AMAC bits for each row (column)
of . Instead of one AMAC bit, we output ( ) AMAC
bits for each row (column) by repeatedly calculating one AMAC
bit for each row (column) times. The length of the com-
bined IMAC is . Given and , the probability
that we miss detecting image tampering in the rows or columns
is ( ) , where is the probability that a given
IMAC bit changes. (We assume the AMAC bits are independent
from each other.) When and ,

Fig. 12. Performance of the approximate IMAC without histogram trans-
formation.

Fig. 13. Performance of the approximate IMAC with histogram trans-
formation.

Fig. 14. Performance of the approximate IMAC with Gaussian noise.
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Fig. 15. Approximate IMACs of the original image in (a) of Fig. 6 and the
tampered image in (b) of Fig. 6 are compared and a grayscale difference map
is obtained. (a) For each row and column, four AMAC bits are computed.
(b) Different block shapes,1 � 64, 2 � 32, 4 � 16, 8 � 8, 16 � 4, 32 � 2,
and64� 1, are used to compute the IMAC.

in Table III, and the probability of “miss” is 10 . When
increases, the approximate IMAC is more capable of detecting
tampering. This is shown in Fig. 11(b), in which the probability
of a “miss” for different values of is presented. In addition,
because the probability that a given IMAC bit changes is almost
zero when the image is compressed with , we expect
these IMACs will tolerate moderate compression well.

In addition, a grayscale difference map rather than a
binary image can be constructed from . We set each
pixel of , and then decrement each pixel of by

for each corresponding 1 bit in. The result is that the
pixels of that correspond to altered bits of the IMAC are
increasingly shaded according to the number of altered IMAC
bits to which they are associated. Fig. 15(a) shows the difference
map we obtained for the test images when four AMAC bits were
calculated for each row and column.

Secondly, in the construction of the IMAC, we calculate one
AMAC bit for each row and column in. In other words, size

and blocks are used. In this way, the intersection
of one altered row bit and one altered column bit in the IMAC

identifies one specific block in . Other shapes are
also feasible, and they may intersect in different ways or not at
all. In our example, size and blocks were used for
a binary map. In fact, the IMAC can be constructed,
for example, from seven sets of 64, where each set consists of
nonoverlapping blocks of shapes , , , ,
, , and , respectively. The combined approximate

IMAC then has a length of bits. When the IMAC
is constructed in this manner, the values of are the same
as before with respect to JPEG compression. When the image is
tampered, the values of for block types other than
and are likely to be higher than those of block types
and in places where tampering takes place, because the
fraction of the tampered coefficients in one block may be higher.
As a result, the overall performance of the approximate IMAC is
enhanced. Similarly to the last idea, a grayscale difference map
can be constructed as shown in Fig. 15(b).

Thirdly, as the approximate IMAC is described above, an
attacker with an image and its associated approximate IMAC
can substitute any other image, so long as all blocks

with mean pixel value brighter (darker) than the threshold

remain brighter (darker). By introducing some
uncertainty about where is for each , the attacker’s
task appears to become much more difficult. Threshold values
too close to 0 or 255 may not be helpful, so one possibility is,
instead of fixing , pick each uniformly from
the set of values , where is an odd integer and, for example,

. Alternatively, each can be chosen from
a suitable Gaussian distribution. The other concern on is
to reduce . When is smaller, it is
more difficult for the attackers to generate a false that the
approximate IMAC will miss to detect. In a more elaborate
design, the value of should be adaptive to the value of .
For example, if the area is very bright, i.e., is close to 255,
a large is preferred. When such an adaptive scheme is used
to decide the value of for each at the sender, the correct
value of needs to be retrieved based on the modified in
order to locally generate the approximate IMAC at the receiver.

Finally, the latter two ideas just discussed, varying the
threshold and using a larger set of nonoverlapping shapes for
the IMAC calculations, are not consistent with the construction
of the error tolerance zone of size around the threshold.
The intervals around the various thresholds for the set of shapes
to which a block belongs could border on each other in an
unfortunate way and force an unnaturally large adjustment to
the pixels of to construct the error tolerance zone around
each different threshold. If and the number of shapes to
which a block belongs are too large, this may becomes a severe
problem, but for small values of , for example, , the
following simple rule ensures that the thresholds are either
identical or have sufficient space between them to allow the
pixels of to be adjusted by the minimum amount required
by . Instead of choosing each uniformly from the set
of values , where is an odd integer and ,
constrain to the set .

VI. CONCLUSION

In this paper, we proposed a new approximate IMAC for
soft image authentication. The approximate IMAC is based the
AMAC and it was developed for error detection and localization
in images. Theoretical analysis was performed on the expected
performance of the approximate IMAC when images were mod-
ified in several scenarios. Simulations were also carried out to
compare and help validate the analysis. It was seen that the ap-
proximate IMAC successfully suppresses the impact of JPEG
compression but preserves the ability to detect image tampering.

APPENDIX

VALIDATION OF TRIANGULAR DISTRIBUTION OF DC
COEFFICIENTS

A group of images was collected to examine the effectiveness
of the distribution model that we used to estimate the bit errors
of the input sequence for the IMAC algorithm. In the simula-
tions, 1000 nonsynthetic images were used, which included im-
ages provided in [19] and some widely available images such as
Lena, Babara, Boat, Pepper, etc. The results reported here are
the average of the results of all test images.
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TABLE VI
OBSERVEDNUMBERS OFBIT DIFFERENCES INb WITHOUT AND WITH IMAGE

HISTOGRAM TRANSFORMATION

The assumption of triangular distribution of DC coefficients
in their range was applied in the derivation of Equations (4)
and (5). In Table VI, the observed number of bit differences
in by compression is shown, where and are denoted
as the observation on images without and with the histogram
transformation, respectively. The results match the predicated
values in Tables I and II very well. Hence, Equations (4) and (5)
are good approximation for estimating the bit differences in
resulting from compression.
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