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Abstract—Impulsive or heavy-tailed processes with infinite
variance appear naturally in a variety of practical problems that
include wireless communications, teletraffic, hydrology, geology,
and economics. Most signal processing and statistical methods
available in the literature have been designed under the assump-
tion that the processes possess finite variance, and they usually
break down in the presence of infinite variance. Although methods
based on fractional lower-order statistics (FLOS) have proven
successful in dealing with infinite variance processes, they fail
in general when the noise distribution has very heavy algebraic
tails. In this paper, we introduce a new approach to statistical
moment characterization which is well defined over all processes
with algebraic or lighter tails. Unlike FLOS, these zero-order
statistics (ZOS), as we will call them, provide a common ground for
the analysis of basically any distribution of practical use known
today. Three new parameters, namely the geometric power, the
zero-order location and the zero-order dispersion, constitute the
foundation of ZOS. They play roles similar to those played by the
power, the expected value and the standard deviation, in the theory
of second-order processes. We analyze the properties of the new
parameters, and derive a ZOS framework for location estimation
that gives rise to a novel mode-type estimator with important opti-
mality properties under very impulsive noise. Several simulations
are presented to illustrate the potential of ZOS methods.

Index Terms—Algebraic tails, alpha-stable distributions, frac-
tional lower-order statistics, geometric power, heavy tails, loga-
rithmic order processes, robust signal processing, very impulsive
processes, zero-order statistics (ZOS).

I. INTRODUCTION

SECOND-ORDER processes have been historically the
main subject of study in statistical signal processing.

Second-order-based estimation techniques are commonly
recognized as the natural tools to be used in the presence of
Gaussian noise. Research efforts on higher-order statistics
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(HOS) have led to the development of improved estimation
algorithms for non-Gaussian environments. This work has
been based on the assumptions that second- and higher-order
statistics of the processes exist and are finite [1], [2]. Important
non-Gaussian impulsive processes are found in a variety of
practical problems that include telecommunications, teletraffic,
hydrology, geology, and economics. These processes can be
efficiently modeled by heavy-tailed distributions with infinite
variance, for which neither the classical second-order theory
nor the theory of HOS are well defined [3], [4].

It has been shown repeatedly in the literature that infinite-
variance processes that appear in practice are well modeled by
probability distributions with algebraic tails, i.e., random vari-
ables for which,1

(1)

for some fixed , . Examples of such noise processes
include those modeled by -stable distributions [4], [5], Hall’s
generalized t-model [6], the generalized Cauchy model [7], [8],
and the Pareto distribution [9], [10]. The tail-heaviness of these
distributions is mainly determined by the tail constant , with
increased impulsiveness corresponding to smaller values of .

Algebraic-tailed random variables exhibit finite absolute mo-
ments for orders less than ; i.e., if . Con-
versely, if , the absolute moments become infinite, and
thus unsuitable for statistical characterization. When ,
the processes have infinite variance, and the standard second–
or higher-order statistics cannot be effectively used. Alternative
attempts to characterize the behavior of impulsive signals in this
scenario have relied on fractional lower-order statistics (FLOS)
in the context of non-Gaussian -stable distributions .
Here, given a fixed , appropriate choices of in the interval

can lead to useful characterizations of the process struc-
ture [4], [11], [12].

While FLOS are useful in the characterization and processing
of impulsive signals, they do not provide a universal framework
for the characterization of algebraic-tailed processes: for a given

, there is a class of processes (those with ), for which
the associated FLOS do not exist. Also, restricting the values of

to the valid interval requires either a priori knowledge
of or a numerical procedure to estimate it. A priori knowledge
is unrealistic in many practical applications, and numerical es-
timation may be inexact and/or computationally expensive.

1The symbol� denotes asymptotic similarity. Formally,X has algebraic tails
if there exist c, � > 0 such that lim x Pr(jXj > x) = c.
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In this paper, we introduce zero-order statistics (ZOS) as an
approach to statistical moment characterization which is well
defined over all distributions with algebraic or lighter tails. In
the same way as -order moments constitute the basis of
FLOS and HOS techniques, the theory of ZOS is based on
logarithmic “moments” of the form . We introduce
the fundamental ZOS for signal power, dispersion and location,
and develop a theoretical ground which enables the sound
characterization of signals in very impulsive environments.
Depending on the nature of the underlying impulsiveness, ZOS
methods enable the treatment of signal processing problems
that are either unaddressable or inefficiently managed by the
classical second-order based methods.

In the search for efficient estimation methods in very im-
pulsive environments, we discovered a singular zero-order es-
timator of location with important optimality properties under
heavy impulsiveness conditions. In the same way as the sample
mean and related linear estimation techniques play a funda-
mental role in classical statistics and signal processing, we be-
lieve that the zero-order location estimator represents an impor-
tant statistic to build upon towards the effective characterization
and processing of very impulsive processes.

Early success stories of the methods introduced in this
paper include applications in channel coding and equalization
[13]–[17], multiuser communications [18]–[23], digital video
processing [24], image processing [25], and robust data fitting
[26].

II. LOGARITHMIC-ORDER PROCESSES

The following Theorem provides a natural motivation for
characterizing the class of processes of interest in this paper.
The proof is known and can be found for example in [27].

Theorem 1: Let be a random variable with algebraic or
lighter tails. Then, .

Since our main goal is to develop a signal processing frame-
work under which all random processes with algebraic tails can
be characterized, Theorem 1 allows us to restrict our attention
to processes with finite logarithmic moments. We will refer to
such processes as being of “logarithmic order,” in analogy with
the term “second order,” used to denote processes with finite
variance. Although it is possible to find extremely heavy-tailed
probability distributions which are not of logarithmic order [27],
no distributions with infinite logarithmic moments have been
claimed, to the best of our knowledge, as useful models for prac-
tical applications.

Of particular interest in this paper is the class of logarithmic-
order processes with infinite variance, which includes all al-
gebraic-tailed processes with tail constant . The evi-
dent limitations of classical methods in the context of loga-
rithmic-order processes make it necessary to develop new basic
statistics under which an efficient theory of estimation can be
built. In the following section, we introduce a new indicator
of process strength, namely the geometric power, which over-
comes many of the limitations of second-order theory in the
framework of logarithmic-order processes. Next, in Section IV,
we develop a location indicator intimately related to the geo-
metric power. These two parameters constitute the foundation of

the ZOS framework. Much as the (second-order) power and the
expected value play a central role in the theory of second-order
processes, the geometric power and its related location param-
eter are of fundamental importance in the development of a
theory of estimation for logarithmic-order processes.

III. THE GEOMETRIC POWER

The power of a second-order process, , has been widely
accepted in signal processing as a standard measure of signal
strength. Although this (second-order) power is often associated
with the physical concepts of power and energy, its meaning is
not universal and may be troublesome when the processes ex-
hibit heavy tails. In the especial case of heavy algebraic tails

, the second-order power is always infinite and does not
give useful information about process strength. In order to de-
velop signal processing tools for the class of logarithmic-order
processes, it is necessary to define alternative strength measures.

Although the definition of a general strength indicator in-
volves an inexorable dose of arbitrariness, we are interested
in an indicator that 1) gives useful characterizations along the
class of logarithmic-order processes; 2) has a rich set of prop-
erties that can be effectively used; and 3) is mathematically
and conceptually simple. In the following definition, we intro-
duce what we believe is the simplest parameter satisfying these
conditions.

Definition 1 (Geometric Power): Let be a logarithmic-
order random variable. We define the geometric power of as

(2)

As discussed in Section III-E, is simply the geometric
mean of . We coined the name geometric power as a result
of this fact.

A. Properties of the Geometric Power

It can be easily shown that the geometric power is a scale
parameter, and as such, it can be effectively used as an indicator
of process strength or “power” in situations where second-order
methods are inadequate. In the following we describe some of
the most important properties of this parameter. The proofs are
not difficult, and are omitted for brevity of presentation. The
interested reader is referred to [27] for detailed proofs.

Property 1 ( is a Scale Parameter): For any logarithmic-
order process , and any constant

(i) .
(ii) .
Property 2 ( is an Indicator of Process Strength): For any

logarithmic-order process , and constants , and ,
(i) .

(ii) implies .
(iii) if and only if for all ,

which implies that zero power is only attained when there
is a “pile up” of probability mass around zero.

Property 3 (Multiplicativity): For any pair of logarithmic-
order random variables , , and any real constant

(i) ;
(ii) ;

(iii) .
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Note that the multiplicativity property is a direct consequence
of the properties of the logarithm, and it is always valid, inde-
pendently of the correlation structure between and .

Property 4 (Absolute Value Inequality): For any pair of log-
arithmic-order random variables and

(3)

Proof: Assume that (the case
is straightforward from Property 2(iii)).

Then,

(4)

Let be a variable with finite expectation. It is easy to show2

that . Applying this inequality to both terms in
(4) we get

(5)

and using Property 3(ii),

(6)

which leads to the desired result.

B. The Geometric Power of -Stable Processes

Alpha-stable processes constitute one of the most important
infinite-variance families in the logarithmic-order class. Since
they are the only processes that satisfy a form of generalized
Central Limit Theorem [28], they can appear in practice as a re-
sult of natural stochastic phenomena. Symmetric -stable pro-
cesses are being the subject of increased attention as a suitable
framework for efficient signal processing in impulsive environ-
ments [4], [27], [29]–[37].

A “zero-centered” symmetric -stable distribution is com-
monly described through its characteristic function

(7)

The parameter is usually called the characteristic exponent or
index. It can be proven that, in order for (7) to define a character-
istic function, the values of must be restricted to the interval
(0, 2]. When , the distribution is algebraic-tailed with tail
constant , implying infinite variance. When , the distri-
bution is Gaussian, implying lighter-than-algebraic tails.

The parameter , usually called the dispersion, is a positive
constant related to the scale of the distribution. For a fixed ,
larger values of correspond to larger strengths of the process.
It is easy to see that is, in fact, a scale parameter of the
distribution.

The following proposition gives us a closed-form expression
for the geometric power of symmetric -stable random vari-
ables:

2This is a particular case of a broader result introduced in Section III-F.

Proposition 1: The geometric power of a symmetric -stable
variable as defined in (7), is given by

(8)

where , is the exponential of the Euler con-
stant.

Proof: From [38, p. 215], the logarithmic moment of a
zero-centered symmetric -stable random variable with unitary
dispersion is given by

(9)

where is the Euler constant. This gives

(10)

where . If has a nonunitary dispersion , it is easy
to see that

(11)

C. On the Calculation of the Geometric Power

In some cases, the computation of may be greatly simpli-
fied from the use of the following result.

Proposition 2: Define the “moment function,”
. Then

(12)

where denotes the derivative of .
Proof: By definition

(13)

Since has algebraic or lighter tails, we can enter the derivative
into the integral

(14)

Making in (14) and taking exponentials, we get the de-
sired result.

In some cases, computing the derivative of the “moment
function,” , may lead to an easy way to obtain the
Geometric Power rather than using the direct definition in (2).
Moreover, (12) provides an alternative representation of the
Geometric Power.

Table I shows the values of the geometric and second-order
powers for several common distributions. Proposition 2 was
used for the calculation of some of them [27]. With the excep-
tion of the uniform and Gaussian distributions, all the other dis-
tributions in the table have algebraic tails, parameterized by the
tail constant and a scale parameter . Note that for values
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TABLE I
GEOMETRIC AND SECOND-ORDER POWERS OF SEVERAL COMMON DISTRIBUTIONS. THE SECOND-ORDER POWER BECOMES INFINITE IN MANY CASES FOR

VALUES OF � < 2. THE GEOMETRIC POWER IS ALWAYS WELL DEFINED

of lower than 2, the second-order power becomes infinite and
consequently useless as a measure of process strength. The geo-
metric power, on the other hand, is well defined for any value
of . Furthermore, being a scale parameter, it is always a
multiple of and, more interesting, it decreases as a function of

.

D. Rationale for the Use of the Geometric Power

Fig. 1 illustrates the usefulness of the geometric power for
characterizing process strength in the -stable framework. The
scatter plot on the left side is an independent, identically dis-
tributed (i.i.d.) realization, stemming from an -stable distri-
bution with and geometric power . On the
right-hand side, the scatter plot stems from a Gaussian distribu-
tion with the same geometric power. An intuitive inspection of
Fig. 1 suggests that both of the generating processes possess the
same strength, in accordance with the values of the geometric
power. In contrast, the values of the second-order power lead to
the misleading conclusion that the process on the left is much
stronger than the one on the right.

It is easy to find examples like the above that also disqualify
FLOS-based indicators of strength in the class of logarithmic-
order processes. In fact, fractional moments of order present
the same type of “discontinuities” like the one illustrated in Fig.
1 for processes with tail constants close to . The geometric
power, on the other side, is consistently continuous along the
entire range of values of . This characteristic of the geometric

power provides a useful framework for comparing the strengths
of any pair of logarithmic-order signals, in the same way as the
(second-order) power is used in the classical framework.

The use of the geometric power as a universally well-defined
indicator of signal strength, include early success stories re-
cently reported in the literature for impulsive multiuser commu-
nications [18]–[23], channel coding [13], [16], channel equal-
ization [14], [15], [17], digital video processing [24] and robust
data fitting [26].

Remark: In conducting comparisons between “zero-cen-
tered” -stable random variables with different impulsiveness
levels, one could resort for example to the scale parameter

as an indicator of signal strength [39]. Although this
approach can give insights into the strength characterization
of -stable processes, it is not sufficiently general and does
not allow to make comparisons between logarithmic-order
processes outside the -stable class.

E. Estimation of the Geometric Power

Let , be a sequence of independent samples origi-
nated from a distribution with geometric power . By virtue of
the law of large numbers and taking into account that exists
and is finite [28], we can replace the expected value operator by
the sample average in the definition in (2), so that the resulting
statistic

(15)
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Fig. 1. Comparison of second-order power versus geometric power. Left:
scatter plot stemming from an �-stable distribution (� = 1:99). Right: scatter
plot stemming from a Gaussian distribution. The geometric power gives an
intuitive idea of the relative strengths of the signals. The second-order power
provides misleading results.

is always a consistent estimator of . Furthermore, it has been
shown in [40] that if obeys a stable distribution, the loga-
rithmic averages are asymptotically normal emphasizing, thus,
the consistency of the estimator.

A closer look at (15) indicates that is, in fact, the geometric
mean of the absolute values of the data

(16)

We coined the name geometric power as a consequence of this
result. In addition to its consistency, it is known that is scale
invariant, and it is equivalent to the maximum likelihood esti-
mator of when the underlying distribution is Pareto [41].

F. Relation to FLOS

The geometric power is intimately linked to FLOS parameters
as indicated in the following.

Theorem 2: Let denote the scale param-
eter derived from the -order moment of . If exists for
sufficiently small values of , then

(17)

Furthermore, , for any .
Proof: It is enough to prove that

(18)

Applying L’Hospital rule

(19)

(20)

(21)

(22)

To prove that , Jensen’s inequality [28] guarantees that
for a convex function and a random variable ,

. Making and we get

(23)

which leads to the desired result.
Theorem 2 indicates that techniques derived from the geo-

metric power are the limiting zero-order relatives of FLOS. We
coined the name ZOS as a consequence of this property.

G. The Geometric Signal-to-Noise Ratio (G-SNR)

A natural application of the ZOS framework arises in digital
communications, where it is necessary to quantify signal quality
to assess and control system performance. Signal quality is usu-
ally defined as the ratio between the channel information and
noise powers, typically in the second-order sense. This impor-
tant statistic is known as the “signal-to-noise ratio” (SNR) of the
communication system. Large values of the SNR indicate good
system quality, whereas low values of the SNR indicate poor
and “noisy” performance.

In channels corrupted by infinite-variance impulsive noise,
the standard SNR is always zero, and, thus, becomes meaning-
less as an indicator of signal quality. This has been a common
inconvenience in the robust signal processing literature, where
authors have been forced to use ad hoc reformulations of the
SNR that “make sense” in the particular environments at hand.
The geometric power allows us to define a universal indicator of
signal quality that is both meaningful and model-independent.

Definition 2 [Geometric Signal-to-Noise Ratio]: Let be the
amplitude of a modulated signal in an additive-noise channel
with noise geometric power . Then, we define the G-SNR as

G-SNR (24)

where is the exponential of the Euler
constant.

The normalization constant is used to ensure that the
definition of the G-SNR corresponds to that of the standard SNR
if the channel noise is Gaussian.

The G-SNR, originally introduced by Gonzalez in [27],3 has
since then been successfully exploited by several researchers in
the field of signal processing and communications [13]–[24],
[26].

IV. ZERO-ORDER LOCATION AND DISPERSION

In the framework of second-order processes, the mean of a
random variable can be conveniently described as the parameter

that minimizes the power of the shifted variable over
all possible shifts [36], [42]. This is,4

(25)

3In Gonzalez’s original work, it should be noticed that there is a typo in Equa-
tion (3.117), p. 68.

4We use the subscript 2 to refer to the fact that the statistics are of “second
order.” Likewise, we will use the subscript 0 to denote the ZOS to be introduced
later.
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Equation (25) states the optimality of the mean as an indicator
of location which minimizes the mean squared error (mse). His-
torically, (25) has been a strong theoretical argument favoring
the use of the mean and related linear techniques in signal pro-
cessing problems involving second-order processes.

Following the same reasoning, we can use the geometric
power to derive the zero-order measures of location and disper-
sion that will serve as the basis for a framework of estimation
in the class of logarithmic-order processes. We begin with the
definition of the zero-order location parameter.

Definition 3 (Zero-Order Location): Let be a logarithmic-
order variable. We define the zero-order indicator of location,

, as the value of that minimizes the geometric power of the
shifted variable . This is

(26)

The following properties of can be easily proven for any
logarithmic-order process (see, e.g., [27]).

Property 5 ( is a Location Parameter): Let be sym-
metric and unimodal5 with symmetry center . Then,
.

Property 6 (Shift and Scale Invariance): For any constants
and

(27)

In contrast to the mean, the zero-order location exists for every
logarithmic-order process.

Remark: When locating a logarithmic-order distribution we
will refer to as the center of the distribution, and we will say
that a process is zero-centered when . Note that
any zero-mean symmetric unimodal process is also zero-cen-
tered, but not all zero-centered symmetric unimodal processes
can be cataloged as zero-mean.

Going back to expression (25), the standard deviation of a
second-order process can be seen as the minimum value of the
second-order scale , over all possible shifts . Anal-
ogously, we can derive a zero-order parameter for quantifying
dispersion directly from Definition 3.

Definition 4 (Zero-Order Dispersion): Let be a loga-
rithmic-order random variable. We define , the zero-order
indicator of dispersion, as

(28)

The relation between and is similar to the relation between
variance and power for second-order processes. In principle, if
a logarithmic-order process is zero-centered, then .
Also, will present similar properties to those presented for
the geometric power in Section III. The reader is referred to [27]
for a discussion of these properties.

5A random variable is said to be unimodal with mode c, if its density func-
tion is continuous and monotonic increasing on (�1; c), and continuous and
monotonic decreasing on (c;1) [43].

A. Zero-Order Estimation of Location

The definition of the ZOS location parameter in (26) leads to
the discovery of a new estimator with strong optimality proper-
ties as a locator of very impulsive processes. Substituting (2) in
(26) and using the fact that is a monotonic nondecreasing
function, we can reformulate the definition of as

(29)

In order to propose an estimator , an intuitive inspection of
(29) would suggest to replace the expected value operator by
the sample average, so to obtain

(30)

Note that the argument of expression (30) yields at
, for , resulting in a multiple tie among all the

sample values as solutions to the minimization. The above
tie is an ill effect generated by the unbounded discontinuities of
the minimization argument in (30). In order to formally break
the tie, we constrain the minimization domain from the set of
real numbers to a compact set that excludes all those points
for which the sum of logarithms is discontinuous. This can be
done by defining

(31)

where

(32)

is the set of the real numbers, and is a small positive con-
stant. The tie is easily solved by letting

(33)

The rigorous reader can consider (33) as our formal definition
of . The following Theorem proves the existence of the limit
in (33), and gives a surprisingly simple formula for calculating

without resorting to the limit expression.6

Theorem 3: Given a sample of values, , the zero-
order estimator of location as defined in (33) can be calculated
as

(34)

where is the set of “modes” or most
repeated values in the sample.

Proof: See Appendix I.

6Fast, numerically efficient implementations of �̂ based on Theorem 3 are
currently commercially available, e.g., in the core of the STABLE software
package under the framework of estimators for highly impulsive stable distri-
butions. The STABLE software package is developed and distributed by Robust
Analysis, Inc [44].
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According to (34), will always be one of the most repeated
values in the sample, resembling the behavior of a sample mode.
This mode property, as we call it, insinuates the high effective-
ness of the estimator in locating heavy impulsive processes. In
the following sections we report both theoretical and experi-
mental evidence of this effectiveness.

Also, being a sample mode, is evidently a “selection-type”
estimator, in the sense that it is always equal, by definition, to
one of the sample values. Thanks to this “selection” property

has been successfully applied to statistical and deterministic
image processing problems [25].

B. Properties of the ZOS Location Estimator

In addition to the “selection” and mode properties reported
above, presents a rich set of interesting properties. We dis-
cuss some of them here.

Property 7 (Shift and Scale Invariance): Let ,
for . Then

(35)

The proof is trivial.
Property 8 (No Overshoot/Undershoot): is always

bounded by

(36)

where denotes the -order statistic of the sample.
Proof: We will prove that . The proof for

follows analogously.
If either or are repeated more than once in the sample

set, then holds trivially. Hence, assume that the values
of and are repeated only once in the sample set, and
then, according to (34), if and only if

(37)

To prove that (37) is true, note that for ,
, and then

(38)

(39)

(40)

The following is a direct consequence of the No Overshoot/
Undershoot property:

Property 9: If , is equivalent to the sample median.
Property 10 (Unbiasedness): Let be all in-

dependent and symmetrically distributed around the symmetry
center . Then, is also symmet-
rically distributed around . In particular, if exists, then

.

Proof: If is symmetric around , then has the
same distribution as . Thus has the same
distribution as , which,
thanks to Property 7, is equal to . It
follows that is symmetric around .

Remark on the Consistency of : Determining the family
of probability distributions for which is consistent, is still
an open research problem. For instance, it is easy to show that
there exist symmetric bimodal distributions for which is an
inconsistent estimator of location. In a very extensive simulation
study, we found that the variance of always decreased as a
function of the sample size for symmetric -stable distributions,
even with very small values of . We conjecture
that is consistent and asymptotically Gaussian for all contin-
uous and unimodal distributions in the logarithmic-order class.

Remark on the Complexity of : Theorem 3, and in partic-
ular expression (33), enables the computation of through an
algorithm with quadratic complexity, i.e., , where is
the sample size.7 This is the same complexity exhibited by all
FLOS-based estimators of location with , and represents
a significant complexity reduction when compared against gen-
eral maximum likelihood and M-estimation algorithms, which,
for non-convex problems typical of tails possess NP-hard
complexity. In the following section we prove that is in
fact the convergence point of the maximum likelihood estimator
when the impulsiveness is very high, which makes it a very at-
tractive alternative as a location estimator for small values of .

V. OPTIMALITY OF IN VERY IMPULSIVE ENVIRONMENTS

Many popular estimators possess the valuable property of
being optimal under a given class of probability distributions.
The sample average for example, is known to be optimal for es-
timating the location of i.i.d. Gaussian processes, whereas the
sample median presents optimal performance (in the maximum
likelihood sense) when the underlying distribution is Laplacian.
Identifying the class of distributions for which optimal (or close
to optimal) performance is achieved, gives important informa-
tion about the behavior of an estimator and can be a key tool
at the time of designing applications. Even though distributions
for which represents the maximum likelihood estimator of
location do not exist, the following characterization indicates
the adequateness of as a location estimator in very heavy-
tailed environments. We begin the discussion with an important
definition.

Definition 5 (Purely Algebraic Family): Let denote
a family of algebraic-tailed density functions parameterized by
the tail constant . We will refer to as a purely alge-
braic family if there exists , such that for all

(i) is unimodal.
(ii) there exists a family of constants such that, as

(41)

pointwise.

7Furthermore, since the computation of �̂ is derived from the matrix of
distances between the sample points, it is possible to design recursive linear
complexity (O(N)) sliding window filtering algorithms based on �̂ , using the
same techniques usually exploited for sliding window median filters [45].
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Intuitively, is purely algebraic if, for small values of ,
it can be approximated by a “purely algebraic” density of the
form . Density functions of this form are extremely
heavy tailed, exhibiting progressively heavier tails as gets
closer to zero. It is easy to prove that the zero-centered gen-
eralized-t distribution, according to the parameterization given
in Table I, is purely algebraic. The following proposition iden-
tifies another important example of a purely algebraic family.
The proof is included in Appendix II.

Proposition 3: The class of zero-centered symmetric -stable
distributions is purely algebraic.

Now we are ready for the main result of this section.
Theorem 4: Let be a family of purely algebraic den-

sity functions, and let denote the maximum likelihood loca-
tion estimator associated with . Then

(42)

Proof: See Appendix III.
Theorem 4 gives significant relevance to the discovery of .

The result is very intuitive as well: it tells us that, in the presence
of very impulsive noise (i.e., when the observations are very un-
reliable), the best location estimator is close to one of the most
repeated values in the sample. The fact that converges to one
of the values in the sample, was discovered and demonstrated
for the first time (for the family of -stable distributions) by
DuMouchel in 1973 [46]. However, to our knowledge, no one
had provided a characterization of the pseudomode behavior of
this limit, nor given a precise formula for its computation. The-
orems 3 and 4 do exactly that, not only for the family of -stable
distributions, but for the complete class of purely algebraic dis-
tribution families.

VI. PERFORMANCE OF ZOS IN -STABLE NOISE

In this section, we illustrate via simulation the performance of
the ZOS location estimator in i.i.d. -stable noise. Fig. 2 shows
the estimated mean absolute errors (MAE) of the sample mean,
the sample median and the ZOS estimator when used to locate
the center of an i.i.d. symmetric -stable sample of size .
The result comes from a Monte Carlo simulation with 200 000
repetitions. The values of the tail parameter range from
(Gaussian case) down to (very impulsive). The value
of has been chosen to guarantee a unitary geometric power
for each value of . Values of slightly smaller than 2 indicate
a distribution close to the Gaussian, in which case the sample
mean outperforms both the median and the ZOS estimator. As
is decreased, the noise becomes more impulsive and the sample
mean rapidly loses efficiency, being outperformed by the sample
median for values of less than 1.7. More interesting, as
approaches 1, the estimated MAE of the sample mean explodes.
In fact, it is known that for it is more efficient to use any of
the sample values than the sample mean itself as an estimator of
location. This fact renders the sample mean useless for .

As continues to decrease, the sample median loses progres-
sively more efficiency with respect to the ZOS estimator, and
at , the ZOS begins to outperform the sample me-

Fig. 2. Estimated mean absolute error of the sample mean, sample median and
ZOS location estimator in �-stable noise (N = 5).

dian. This is an expected result, given the optimality of the ZOS
estimator for small values of . For the last value in the plot,

, the ZOS estimator has an estimated efficiency ten
times better than the median. This increase in relative efficiency
is expected to grow without bounds as approaches 0 (recall
that is the optimality point of the ZOS estimator).

The high efficiency of the ZOS location estimator in severely
impulsive environments (i.e., very small values of ) is illus-
trated in Fig. 3. Here, we applied mean, median, FLOS, and
ZOS smoothing filters to a corrupted version of the “blocks”
signal shown in Fig. 3(a). The signal corrupted with additive
stable noise with is shown in Fig. 3(b), where a dif-
ferent scale is used to illustrate the impulsiveness of the noise.
The (sample) mse between the original signal and the noisy
observation is . The following running smoothers
(location estimators) are applied, all using a window of size

: (3c) the sample mean MSE , (3d)
the sample median MSE , (3e) the FLOS with

MSE , and (3f) the ZOS location estimator
MSE .

As shown in the figure, at this level of impulsiveness, the
sample median and mean break down. The FLOS does not per-
form as well as the ZOS due to the mismatch of and . The
performance of the FLOS estimator could certainly improve, but
the parameter would have to be matched closely to the stable
noise index, a task that can be difficult. The ZOS, on the other
hand, performs well without the need of parameter tuning.

VII. CONCLUSION

We have introduced the concept of zero-order statistics
(ZOS), a statistical framework that is sound and consistent
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Fig. 3. Running smoothers in stable noise (� = 0:2). All smoothers of observation window size 121. (a) Original “blocks” signal. (b) Corrupted signal with stable
noise. (c) Output of the running mean. (d) Running median. (e) Running FLOS smoother. (f) Running ZOS smoother. Results were obtained using the commercial
STABLE software package for stable distributions by Robust Analysis, Inc (http://www.robustanalysis.com).

for all processes with finite logarithmic moments. This “loga-
rithmic-order” class includes impulsive-type processes modeled
by algebraic-tailed distributions, and basically embraces most
probability models with practical use today. Three new pa-
rameters, namely the geometric power, the zero-order location
and the zero-order dispersion, constitute the basic elements
of the ZOS framework. They play roles similar to the power,
the expected value and the standard deviation, respectively, in
the context of second-order processes. We discussed several
important properties of the new parameters, and derived a
ZOS framework for location estimation that led naturally to
the discovery of a novel mode-type estimator with optimality
properties under very impulsive noise. Given the limitations
of methods based on second-order and fractional lower-order
statistics, ZOS may be an attractive alternative for many char-
acterization and processing problems in which infinite variance
processes appear. Early success stories of the methods intro-
duced in this paper include applications in channel coding and
equalization [13]–[17], multiuser communications [18]–[23],
digital video processing [24], image processing [25], and robust
data fitting [26].

APPENDIX I
PROOF OF THEOREM 3

Consider the “sum-of-costs” function

(43)

is a piecewise continuous function with discontinuities at
, . At its discontinuity points,

. Under these circumstances it is easy to show that for
sufficiently small, is in the boundary of , i.e., there exists

, , such that either or
. By virtue of this result we can restrict the domain for the

minimization in (31) to the finite set
, so that

(44)

Now, let denote the number of times the value is repeated
in the sample set. Then, for

(45)

(46)

If , then for sufficiently small

(47)

Thus, is of the form , where is maximal, i.e., where
is one of the most repeated values in the sample.
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Now, let us define the “revised sum-of-costs” associated with
as

(48)

and let be an index such that . If there is only one
value, say , with repetition index (i.e., is the only sample
value which is repeated times), can be easily calculated as

if
if

(49)

More interestingly, if the most repeated value in the sample
is not unique, (i.e., if there exist different sample values and

such that ), then, according to (45) and (48)

(50)
Expression (50) implies that the “revised sum-of-costs” can be
used as the discriminant to identify the minimum sum-of-costs
estimator once the most repeated values in the sample have been
identified. Based on results (31) and (50), a general procedure
for computing in the vicinity of can now be summa-
rized as follows:

1) Identify , the set of “modes” or
most repeated values in the sample.

2) Construct .
3) Calculate the corresponding revised sum-of-costs

for each element in .
4) Select as the element in with minimum revised

sum-of-costs.
Now, since is continuous in the vicinity of ,
taking the limit as defines

(51)

Remark: It is worth noting that the procedures described, in-
cluding (49), do not necessarily describe and uniquely. In
some particular situations, it could happen that several different
values satisfy, for example, Step 4 above or the expression for

in (51). In order to make the definitions unique, one could de-
fine a “tie-breaker” rule that selects a particular solution among
all the possible ones. The definition of such a rule could im-
pact the behavior of in discretely distributed processes, and
it should be designed according to the specifics of the problem.
If the main concern is to get unbiased results, a uniformly ran-
domized selection should be sufficient.

Note also that for processes with continuous distributions, the
probability of occurrence of the above “ties” is zero, reducing
the “tie-breaking” procedure to an unimportant formality.

APPENDIX II
PROOF OF PROPOSITION 3

We must prove that the class of zero-centered symmetric
-stable distributions satisfy conditions (i) and (ii) in Definition

5. Condition (i) (unimodality), is a well-known property of
-stable distributions (see for example [38] or [43]). We must

then prove (ii). To avoid the notational burden, let us assume
that the dispersion is unitary. The generalization of the result
to other values of is straightforward.

An integral expression for the zero-centered, unit dispersion,
symmetric stable density when is given [38] by

(52)

where

The value of can be calculated as the limit when
in (52). A convenient rearrangement of (52) gives us

(53)

where

(54)

Taking the limit as in (53) leads to

(55)

which is the desired result.

APPENDIX III
PROOF OF THEOREM 4

Proof: We begin by stating the following lemma, whose
proof follows this one.

Lemma 1: Let be purely algebraic, and let be
as in condition (ii) of Definition 5. Then, for any closed interval

, the function

(56)

converges uniformly to 0 as .
According to this lemma, the density can be expressed

as

(57)
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where is a “remainder” which converges uniformly to 0
as . Based on (57), the maximum likelihood estimator of
location is given by

(58)

Note that the constant has been dropped out since it is irrel-
evant for the minimization problem. Developing the products in
(58), we get

(59)

where

(60)

Let and denote, respectively, the minimum and
maximum values in the sample set. The unimodality of guar-
antees that for , and

for . This restricts the location of to
the closed interval , and thus, thanks to Lemma 1,
all but the first term in (60) can be made arbitrarily small by let-
ting . This tells us that, as , tends to have a
“selection” behavior, in the sense that it converges to one of the
sample values.

The specific point of convergence can be identified by ana-
lyzing the behavior of the cost function in the vicinity of
each sample value. To do so, let denote the number of times
the value of is repeated in the sample. Then, for close to

, the first terms in (60) can be made arbitrarily small, in-
dependently of . Making small, the magnitude of in
the vicinity of is thus driven by the th term in
(60), which can be continuously approximated by

(61)

Hence, the point of convergence is the value with the min-
imum associated cost (61), for small values of . Since

as , minimizing (61) for small values of requires the
maximization of , which implies the convergence of to one
of the most repeated values in the sample. Taking this fact into
account, the minimization of (61) leads to the simplified result

(62)

where is, as before, the set of most repeated values in the
sample.

APPENDIX IV
PROOF OF LEMMA 1

Let us suppose that is given, and let be a
closed interval in with length less than . We will show
that there exists a bound such that, for every ,

(63)

To begin, let us assume that . Since by definition
for all , there exist constants and such

that

(64)

and

(65)

Let , and let be an arbitrary point in .
Since the construction of guarantees that , it
follows from (64) that

(66)

Similarly, for all in , and it follows from (65)
that

(67)

Recalling the monotonicity of ,

(68)

and the subsequent application of (66) and (67) leads us to

(69)

This proves (63) for nonnegative intervals. The case in which
, can be proven in a similar fashion. For the “mixed”

case in which and , it is sufficient to observe that

(70)
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and the result in (63) can be applied to the smaller intervals
and .

Now, let denote a finite collection of closed intervals in
, such that

1) .
2) For every , the length of is less than .

The existence of such a collection is guaranteed by the compact-
ness of . Let denote the bound value corresponding to

according to the derivation of (63), and let .
Then, for every

(71)

This completes the proof.
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