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Abstract—A new design strategy for weighted median (WM) fil-
ters admitting real and complex valued weights is presented. The
algorithms are derived from Mallows theory for nonlinear selec-
tion type smoothers, which states that the closest linear filter to a
selection type smoother in the mean square error sense is the one
having as coefficients the sample selection probabilities (SSPs) of
the smoother. The new design method overcomes the severe lim-
itations of previous approaches that require the construction of
high order polynomial functions and high dimensional matrices.
As such, previous approaches could only provide solutions for fil-
ters of very small sizes. The proposed method is based on a new
closed-form function used to derive the SSPs of any WM smoother.
This function allows for an iterative approach to WM filter design
from the spectral profile of a linear filter. This method is initially
applied to solve the median filter design problem in the real do-
main, and then, it is extended to the complex domain. The final
optimization algorithm allows the design of robust weighted me-
dian filters of arbitrary size based on linear filters having arbitrary
spectral characteristics.

Index Terms—Mallows theory, median filters, nonlinear filters,
robust signal processing, sample selection probabilities.

I. INTRODUCTION

MALLOWS theory [1] provides a mapping between non
linear smoothing functions and linear filters based on the

mean square error (MSE) criteria. Mallows established that the
linear filter whose output is the closest in the MSE sense to the
output of a selection type nonlinear smoother is the fintie im-
pulse response (FIR) whose coefficients are the sample selec-
tion probabilities (SSPs) of the smoother. This theory allows us
to analyze some characteristics of nonlinear filters based on the
characteristics of the corresponding linear filter with the SSPs as
coefficients. In particular, we are interested in designing a non-
linear filter based on some frequency response requirements. In
order to do that, the spectrum of a nonlinear smoother is defined
as the spectral response of the linear filter whose coefficients are
given by the SSPs of the smoother. Consequently, it is possible
to design a nonlinear filter with a desired frequency response,
using the Mallows relationship and a linear filter with that fre-
quency response. Weighted median (WM) filters, being selec-
tion type smoothers, are encompassed by Mallows theory.
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The spectral design of WM filters can be thought of as the
dual of Mallows theory. In this case, rather than seeking the
FIR filter coefficients corresponding to a given set of WM filter
weights, we are interested in determining the WM filter coef-
ficients that lead to an output close in the MSE sense to the
output of a linear filter with the desired spectral characteristics
used as reference. In order to solve this problem, it is necessary
to develop a fast and general method to find the SSPs of WM
smoothers.

Some steps to the definition of a general closed-form strategy
to find the SSPs of a WM smoother in the integer domain have
been developed in [2], [3] as an extension of the theory of
Mallows. They are based on counting principles and generating
function representations. The principal characteristic of these
strategies is that they obtain the sample selection probabilities
through an algorithm that constructs high order polynomial
functions or high dimension matrices. Since the polynomial
functions can be constructed only when integer valued median
weights are used, they require the scaling of partial results
found through the process. The generation of these functions
and matrices becomes cumbersome when the filter being trans-
formed exceeds a few taps. Additionally, the scaling of the
intermediate values can lead to handling very large numbers,
making these algorithms impractical due to their computational
complexity. As a result, the method in [3] is restricted to the
design of filters of small length, i.e., less than nine.

As an alternative to the computational complexity of these
algorithms, a new method for the calculation of the SSPs
of a given WM smoother is presented. Unlike the previous
approaches, this method allows positive real valued weights,
making unnecessary the scaling of the weights obtained through
the process that finds the median filter weights from a desired
set of linear coefficients, leading to a very fast iterative op-
timization process. Additionally, this design method finds an
easy extension to the complex domain by using the recently
introduced WM filters admitting complex weights [4].

The organization of the paper is as follows. Section II pro-
vides a formal statement of the Mallows Theorem. Section III
presents the definitions of WM filters admitting real and com-
plex valued weights. In Section IV, a new closed-form deriva-
tion of the sample selection probabilities associated with a WM
smoother is presented. Section V uses the SSP’s closed-form
solution to obtain a steepest descent algorithm that allows to
find the WM filter closest in the MSE sense to a given linear
filter. Section VI extends the design method to real and complex
valued WM filters. Simulations are presented in Section VII and
Section VIII is devoted to the conclusions.
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II. MALLOWS THEOREM

Mallows focused on the analysis of the smoothing of a
random sequence by a nonlinear function and how this
process can be approximated by a well-defined linear smoothing
function, as stated on the following theorem:

Theorem 1 (Mallows [1]): Given a nonlinear smoothing
function operating on a random sequence , where

is a zero mean Gaussian sequence, and is independent
of , we have that if is stationary, location invariant, and
centered (i.e., ), it depends on a finite number of
values of and Var . There exist a unique linear
function such that the MSE function

(1)

is minimized. The function is the closest linear function to
the nonlinear smoothing function or its linear part.

In particular, median smoothers have all the characteristics
required for this theorem , and as a consequence, they can be
approximated by a linear function. Median smoothers are also
selection type and, referring again to Mallows’ theory, there is
an important corollary of the previous theorem that applies to se-
lection-type smoothers whose output is identical to one of their
input samples:

Corollary 1: [1] If is a selection type smoother, the co-
efficients of are the sample selection probabilities of the
smoother.

The sample selection probabilities are defined next
for a WM smoother described by the weight vector

and a vector of independent
and identically distributed samples .

Definition 1: The Sample Selection Probabilities of a WM
smoother are the set of numbers defined by

MEDIAN (2)

Thus, is the probability that the output of a WM filter is equal
to the input sample.

Mallows’ results provide a link between the linear and non-
linear domains that allows the approximation of a WM smoother
by its linear part.

III. MEDIAN FILTERS ADMITTING REAL AND COMPLEX

VALUED WEIGHTS

In order to propose a design algorithm for WMs, a good un-
derstanding of the different WM filter structures in the real and
complex domains is necessary. Their definitions are summa-
rized as follows.

Given a set of samples: , the output
of the WM smoother characterized by the set of weights

is defined as

MEDIAN (3)

where represents the replication operator:
times

, and . In general, the WM can be
computed without replicating the sample data according to

the corresponding weights, as this increases the computational
complexity. A more efficient method to find the WM is shown
next, which not only is attractive from a computational per-
spective, but it also admits positive real-valued weights.

1) Calculate the threshold .
2) Sort the samples in the observation vector .
3) Sum the concomitant weights1 of the sorted samples be-

ginning with the maximum sample and continuing down
in order.

4) The output is the sample whose weight causes the sum to
become .

Under Mallows theory, the linear filter closest to this
smoother is defined as , where

is the probability of the th sample
being chosen as the smoother’s output. Since the coefficients

represent probabilities, they all must be non-negative,
leading to linear filters with lowpass characteristics. WMs can
be generalized so as to synthesize bandpass, bandstop, and
highpass operations, through the use of negative weights as in
the structure introduced in [5]. This structure has been recently
extended to admit complex valued weights in [4].

For real-valued weights, the output of the WM filter charac-
terized by the weights is defined as

MEDIAN sgn (4)

where the signs of the weights are coupled to the corresponding
samples, and the weight magnitudes represent the new median
weights.

For complex-valued weights and samples, a simple definition
of the complex WM filter is the marginal phase coupled WM [4]

MEDIAN Re

MEDIAN Im (5)

Here, to calculate the output of the filter, the phase of each
weight is first coupled to the corresponding sample. The real and
imaginary parts of the phase coupled samples are then fed sepa-
rately to a WM operator, where the weights are the magnitudes
of the original complex weights. The results of these operations
constitute the real and imaginary parts of the final filter output,
respectively.

The second definition of the complex median (the
real-imaginary coupled complex WM) calculates the vec-
tors Re , Im , Im ,
Re , to define , ,

and finally calculates the median as

MEDIAN

MEDIAN

MEDIAN sgn

sgn

MEDIAN sgn

sgn (6)

1Represent the input samples and their corresponding weights as pairs of the
form (X ,W ). If the pairs are ordered by their X variates, then the value ofW
associated with X , denoted by W , is referred to as the concomitant of
the m th-order statistic [6].
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The definitions of the WM filters in (4)–(6) share an important
property. In order to calculate their outputs, the weights and the
input samples are submitted to a series of transformations that
result in the calculation of WMs having positive valued weights
acting on a modified set of real-valued samples. Thus, the final
calculation of the output of these filters requires a number of
WM smoothing operations that can be properly designed by
using Mallows’ theory.

IV. CALCULATION OF SAMPLE SELECTION PROBABILITIES FOR

WM SMOOTHERS

Given a WM smoother defined by the weights vector
, which is applied to the set of independent

and identically distributed samples ,
our first goal is to find a general closed form expression for the
probability that the th sample is chosen as the output of the WM
filter, that is, to find the value . Previous works
in this area have calculated the SSPs with the aid of complicated
polynomial function generators and/or high order matrices that
did not allow us to write them as a simple, closed-form function.
The development of a closed-form solution to this problem is
described below.

The th sample in the input vector can be ranked in dif-
ferent positions in its order statistics. Since the samples are
independent and identically distributed, all order statistics are
equally likely to hold the sample . Notice that this sample
has a different probability of being the output of the median de-
pending on where it lies in the set of ordered input samples. The
final value of is found as the sum of the probabilities of the
sample being the median for each one of the order statistics.

(7)

The result in (7) can be explained as follows. After the sample
has been ranked in the th-order statistic, there are

samples left to occupy the remaining -order statistics:
before and after it. The total number of

nonordered ways to distribute the remaining samples between
the remaining order statistics is then equal to the number of
ways in which we can distribute the set of samples in two
subsets of and samples, leading to the denominator

in (7). The order of the samples in each one of this subsets
is not important since, as it will be shown shortly, only the sum
of the associated weights is relevant. The term represents
how many of these orderings will result in the output of the
median being the sample while it is ranked in the th-order
statistic, i.e, the number of times that . is
found as the number of subsets of elements of the vector

satisfying

(8)

(9)

where , and is the concomi-
tant weight associated with the th-order statistic of the input
vector. These are necessary and sufficient conditions for to
be the median of the sample set according to [7], [8], and the
method for the calculation of the WM shown in Section III.

Conditions (8) and (9) can be combined as

(10)

where has been replaced by since it is assumed
that the th sample of the vector is the th-order statistic. In
order to count the number of sets satisfying (10), a product
of two step functions is used as follows: When the value

satisfies , the function

(11)

will be equal to one. Here, represents a value approaching
from the left in the real line, and is the unitary step function

defined as if and 0 otherwise. On the other hand,
(11) will be equal to zero if does not satisfy the inequalities.
Letting and adding the function in (11) over all
the possible subsets of elements of excluding , the
result is

(12)
where , and . The
SSP vector is given by , where is
defined as

(13)

This newly defined function calculates the sample selection
probabilities of any WM smoother, that is, it leads to the linear
filter closest to a given WM smoother in the mean square error
sense. As it was stated before, the domain of this function is
not restricted to integer weights. Instead, it can be evaluated for
real-valued weights. Besides, the function does not require the
construction of extra matrices or polynomial functions, making
its calculation more straightforward.

The equation obtained in (13) calculates the linear filter co-
efficients (SSPs) as a function of the median smoother weights.
Since the objective of this paper is to design a WM filter from
a given FIR filter, this function should be inverted. However,
this nonlinear function is not invertible. Before studying other
alternatives to solve this problem, certain properties of the WM
filters should be taken into account.

It has been demonstrated in [9] and [10] that the WM
smoothers of a given window size can be divided into a finite
number of classes. All of the smoothers in a class produce
the same output when they are fed with the same set of input
samples. It has also been shown that each class contains at least
one integer-valued WM filter such that the sum of its compo-
nents is odd. Among these filters, the one with the minimum
sum of components is called the representative of the class.
Table I shows the representatives of the different classes of
WM smoothers available for window sizes from one to five.
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TABLE I
WEIGHTED MEDIAN VECTORS AND THEIR CORRESPONDING SSPs FOR

WINDOW SIZES 1 TO 5

Weighted medians obtained as the permutation of the ones
shown in Table I are also representatives of other classes. Addi-
tionally, a representative of a class can be padded with zeros
to form a representative of another class with larger window
size. For example, for window size three, we can construct four
different WM vectors [1, 1, 1] and the three permutations of
[1, 0, 0].

It is also known that each WM filter has a corresponding
equivalent self dual linearly separable positive Boolean func-
tion (PBF) [7], [9] and vice versa. This means that the number
of different WMs of size is the same as the number of self
dual linearly separable PBF’s of variables. Equivalent WM
vectors will correspond to the same PBF, and they will also have
the same vector of SSPs.

Another important point is that not all integer-valued vectors
represent valid WMs. Only the ones in which the sum of their
components is odd (and the ones belonging to the same class)
can be considered as valid WMs. The nonvalid vectors represent
the so called Asymmetric WMs (AWMs). These smoothers have
some undesired characteristics: They result in biased estimators
of location, and they are able to filter impulses of only one po-
larity, either positive or negative [11].

To illustrate the consequences of all these properties, the fol-
lowing example shows the case for filters of length three. Here,
the number of WM filters to be analyzed is reduced to include
only normalized filters. These filters are included in the two-di-
mensional simplex . According to (10) and
Table I, there are four different classes of WMs for this window
size. They will occupy regions in the simplex that are limited by
lines of the form , where , ,

. Fig. 1(a) shows the simplex with the four regions corre-
sponding to the four classes of WMs and the representative of
each class. The limits of the regions represent AWMs, and, as a
consequence, they cannot be represented by a valid WM vector.
Taking all this into account, we proceed to formulate the opti-
mization process for the calculation of the WM closest to a given
linear smoother in the mean square error sense.

The median weights are found to minimize the mean square
error cost function given by

(14)

where is a normalized linear smoother. Since the number of
SSP vectors for a given window size is finite, a valid
option to solve this problem is to list all its possible values and

find between them the one that minimizes the error measure
. This will lead to a division of the space of linear filters of

window size in regions: one for each SSP vector. Each one
of this regions contains a certain SSP vector and all the other
linear filter vectors that are closer in Euclidean distance to it
than to any other SSP vector. This situation can be viewed as a
quantization of the space of normalized linear smoothers, where
a one-to-one correspondence can be stated between each one of
the valid SSP vectors of size and the quantization regions in
the space of normalized linear smoothers. Fig. 1(b) shows the
case for window size three.

All vectors in the same WM class region are mapped into the
linear domain as a single point: the corresponding SSP vector.
Since all WM in a class are equivalent, the associated linear filter
to all of them will be the same. Therefore, there is a unique so-
lution to the problem of finding the linear filter closest in the
MSE sense to a given WM filter. On the other hand, the reverse
problem, i.e., finding the WM filter closest to a given linear filter,
has an infinite number of solutions. Since the linear filter domain
is quantized, all the vectors in a quantization region will be as-
sociated with the SSP vector contained in the region that will
be mapped into the WM domain as a class of WMs instead of
as a single WM smoother. Any set of weights in that class will
result in the same value of the distance measure . That is,
the mapping in this case is established between a quantization
region in the linear domain and a class region in the WM do-
main in such a way that any point in the latter can be associated
with a given vector in the former. Fig. 1 illustrates the mapping
between quantization regions in the linear domain and class re-
gions in the WM domain for window size three.

This figure also shows that in some cases this mapping is
trivial since the associated WM filter and linear filter could have
the same set of weights. However, the trivial mappings are only
special cases. For example, if a WM equivalent to the linear
filter needs to be found, the same
values cannot be used as median weights since they represent an
AWM. The incidence of such cases where the associated WM
filter and linear filter vector are never the same increases with
larger window size. This justifies the need for an algorithm to
find the right WM approximation for a given linear filter.

The procedure to transform a linear filter into its associated
WM reduces to finding the region in the linear space where it
belongs, finding the corresponding SSP vector, and then finding
a corresponding WM vector. This is possible only if all the valid
WM vectors and their corresponding SSPs for a certain window
size are known. The problem of finding all the different WM
vectors of size has been subject to intensive research. How-
ever, a general closed-form solution that allows the generation of
the list of PBFs, SSP vectors, or WM vectors has yet to be found.
Partial solutions for the problem have been found for window
sizes up to eight [9]. Even if such a general form existed, the
number of possibilities grows rapidly with the window size, and
the problem becomes cumbersome. For example, the number
of different WMs grows from 2470 for window size eight to
175 428 for window size nine. There is no certainty about the
number of vectors for window size ten and up.

Having all the possible sets of median weights for a certain
window size will assure that the right solution of the problem
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Fig. 1. Illustrative example showing the mapping between the WM class regions and the linear filter regions. (a) Simplex containing the WM vectors for window
size three. The simplex is divided in four regions, and the representative of each region is also indicated. (b) Correspondence between linear filters and SSP vectors
of window size three. The SSP vectors are represented by “�.”

can be found. As it was indicated before, this option becomes
unmanageable for large window sizes. This does not disqualify
the method for small filters, but a faster, easier alternative is
necessary to handle larger filter lengths. In the following section,
an optimization algorithm for the function is presented.

V. GENERAL ITERATIVE SOLUTION

The optimization process is carried out with a gradient-based
algorithm, and a series of approximations to be described. The
first step is to find the gradient of the cost function in (14)

...
(15)

where each of the terms in (15) is given by

(16)

The derivative of is

(17)

The term given in (12) is not differentiable due to the
discontinuities of the step functions. To overcome this situa-
tion, is approximated by a smooth differentiable function

, where is a smoothing parameter that is
assigned a value of 1 for simplicity. We choose this approxi-
mation as it has been successfully used in similar optimization
procedures [5]. The last derivative in (17) can be computed as

(18)

where

(19)

(20)

where the coefficients and are defined by

lse

lse
(21)

The recursive equation for each of the median weights is

(22)
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Fig. 2. Cost functions of Mallows Iterative Algorithm with input FIR filter h = [�0:0078 0:0645 0:4433 0:4433 0:0645 � 0:0078]. (a) Cost functions with
respect to one weight for both the original cost function (solid line) and the approximated cost function that uses the hyperbolic functions (dashed-line). (b) Contours
of the cost functions with respect to two weights for the original cost function. (c) Contours of the cost functions with respect to two weights for the approximated
cost function that uses the hyperbolic functions.

The iterative algorithm shown above approximates linear
smoothers by WM smoothers, and it will be referred to as
the Mallows Iterative Algorithm. A performance comparison
between Mallows Iterative Algorithm and the algorithm in [3]
used to design median smoothers based on linear filters showed
that the former carries on the calculation faster than the latter.
Both algorithms are iterative, and in each iteration step, they
should find the closest linear smoother to the WM smoother
calculated in (23). This WM smoother will be likely real valued
(since the gradient of the cost function cannot be guaranteed to
be an integer and the step size is usually rational). The method
in [3] cannot calculate the SSPs of a real-valued WM, and as
a consequence, these intermediate results need to be scaled
until all the weights are integer. Mallows Iterative Algorithm
does not require this scaling operation since it can work on any
positive real valued numbers. The exact number of operations
involved in both algorithms is not straightforward due to the
high number of factorial operations required in each one of
them, and even if we knew the complexity of each algorithm
for each iteration, a fair comparison would require the con-
vergence rate (number of iterations needed for convergence)
of each algorithm, which is outside the scope of this paper.
Experimental results showed that when the algorithm in [3] is
used to approximate WM smoothers of size 8, it requires the
same time used by Mallows Iterative Algorithm to approximate
a filter of 18 taps. The exact amount of time would depend on
the speed of the machine used to run the simulations.

For illustrative purposes, the original cost function in (14) and
the approximated cost function for a WM filter of size 5 are
shown in Fig. 2(a) as a function of and in Figs. 2(b) and
2(c) as a function of and . It can be seen that the orig-
inal cost function is stepwise, and as a consequence, it has an
infinite number of local minima. Based on our simulation re-
sults, a smooth approximation is obtained when replacing the
step functions with hyperbolic tangents, which allows the im-
plementation of a steepest descent algorithm to minimize it.
However, no formal proof of the uniqueness of the minimum
of the approximated cost function has been found and remains
an open mathematical problem. Experimental results show that
the steepest descent algorithm converges to the global minimum
of this function.

The following section presents the algorithms to use this
method for the different classes of WM filters.

VI. DESIGN OF REAL- AND COMPLEX-VALUED WM FILTERS

Equations (4)–(6) show that all the real- and complex-valued
WM filter definitions consist of properly modifying the input
samples according to the associated weights and then using the
magnitude of the weights for the calculation of positive WMs.
It was stated in Theorem 1 that a nonlinear function needs to
satisfy certain properties in order to be best approximated under
the mean squared error sense by a linear filter. Unfortunately, the
real- and complex-valued medians do not satisfy the location
invariance property. However, Mallows results can be extended
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to cover medians of types(4)–(6) in the case of a independent,
zero mean, Gaussian input sequence.

Theorem 2:

a) If the input series is Gaussian, independent, and zero cen-
tered, the coefficients of the linear part of the WM defined
in (4) are defined as sgn , where are the
SSPs of the WM smoother .

b) If the real and imaginary parts of the input series are
Gaussian, independent, and zero centered, the coefficients
of the linear part of the WM defined in (5) are defined as

, where are the SSPs of the WM smoother
.

c) For an input series as in b), the coefficients of the
WM filter defined in (6) are defined as
sgn , where are the SSPs of the WM
smoother .

To show a), define sgn . In this case, the will
have the same distribution as the . As a consequence

MEDIAN

MEDIAN (23)

where sgn . From Theorem 1, (24) is minimized
when the equal the SSPs of the smoother , say, . As a
consequence

sgn
sgn (24)

A similar procedure should be used to prove b). This time,
define .

MEDIAN

MEDIAN

MEDIAN

MEDIAN (25)

where . Again from Mallows’ theorem,
(26) is minimized when and .

To prove c), it is enough to notice that its implementation
equals two realizations of the same real-valued WM filter over
two different series. As a consequence

MEDIAN

MEDIAN sgn

MEDIAN sgn

(26)

Again, each one of the factors on the right-hand side is
minimized when sgn , and since both are
non-negative, its sum is minimum when each one of them is
minimum.

According to this theorem, Mallow’s Iterative Algorithm can
be used for the design of these filters. This can be accomplished
using the following procedures.

A. WM Filter Admitting Real-Valued Weights

• Given the desired frequency characteristics, design the
linear FIR filter using one of the
traditional design tools for linear filters.

• Decouple the signs of the coefficients to form the
vectors and sgn
sgn sgn sgn .

• After normalizing the vector , use the proposed al-
gorithm to find the closest WM filter to it, say,

.
• The WM filter will be given by sgn

B. Marginal Phase Coupled Complex WM Filter

• Design a linear complex-valued FIR filter
given the desired characteristics for

the filter.
• Decouple the phases of the coefficients to form the

vectors and
, where represents the

phase of .
• Normalize the vector , and find the closest WM filter to

it using the algorithm developed in the previous section,
say, .

• The complex WM filter will be given by

C. Real-Imaginary Coupled Complex WM Filter

• Using any available method, design a linear com-
plex-valued FIR filter having
the characteristics required.

• Construct the vector as follows: ,
where and represent the vectors containing the real
and imaginary parts of the components of the vector .

• Form the vectors
and sgn

sgn sgn sgn containing the
magnitude and sign of the components of ,
respectively.

• Normalize the vector , and find the closest WM filter
to it using (23), say, .

• Couple the signs of the linear weights with the obtained
median weights, that is, calculate given by
sgn

• To find the WM filter, use to create

VII. SIMULATION RESULTS

Once the design algorithms for the different classes of WM
filters have been presented, some examples will show their ac-
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Fig. 3. (a) Learning curve of Mallows adaptive algorithm for an input that is a valid SSP vector. (b) Convergence of the weights for the same input. (c) Learning
curve when the input is not a valid SSP vector. (d) Convergence of the weights for this input.

Fig. 4. Approximated frequency response of WM filters designed with Mallows Iterative Algorithm. (a) Lowpass. (b) Highpass. (c) Bandpass. (d) Bandstop.

tual behavior when they are put in practice. The main objective
of this paper is to propose a strategy to design WM filters under
frequency constraints. Since WM filters lack of a frequency re-
sponse per se, we assigned to them the frequency response of
their linear part. This assignation is accurate when the input of
the filters is a white random sequence, and we use the MSE as
a distance measure. It is expected that if all these requirements
are met, the output of the WM filter designed with this method

TABLE II
CHARACTERISTICS OF THE FILTERS AND SIGNALS USED FOR THE FREQUENCY

SELECTION EXPERIMENT
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TABLE III
AVERAGE MSE OF THE OUTPUT OF THE REAL-VALUED WM FILTERS AND THE LINEAR FILTERS IN PRESENCE OF �-STABLE NOISE

will have similar frequency characteristics to the output of the
reference linear filter.

A. Convergence of the Iterative Algorithm

Initially, to test the convergence of the steepest descent al-
gorithm, the WM filter obtained through the iterative algorithm
and a true WM filter that minimizes the cost function in (14)
(obtained by inspection of all the possibilities) are compared.
The resultant WM filter from the iterative algorithm should ide-
ally belong to the same class of the true WM filter. This is the
case if the linear filter used as reference in the iterative algo-
rithm is a SSP vector. Otherwise, if the reference linear filter is
not a SSP vector, the algorithm is not guaranteed to converge to
a WM of the same class as the true WM filter. This can be ex-
plained by looking at the derivative of the cost function in (16).
Ideally, the algorithm will reach a minimum when the deriva-
tive equals zero. The second factor in (16) is the derivative of
the th SSP with respect to the weight. Since this term is
calculated by an approximation, it cannot be guaranteed that it
will reach a value of zero. The first factor is the difference be-
tween the input vector and the sample selection probabilities
corresponding to the previous output of the iterative algorithm.
This term will never be zero unless the input vector is a valid
SSP vector. If it is not, the derivative may never be zero, and the
adaptive algorithm may not reach the floor error. Instead, it will
reach a value as close as possible to the minimum, and it will
begin oscillating around it.

The following example illustrates the convergence of the
adaptive algorithm when the reference filter is an SSP vector.
The coefficients of the lowpass filter are given by

with an associated SSP vector given by .
Fig. 3(a) shows how the learning curve of the adaptive algo-
rithm reaches a minimum when one of the WM filters associated
with the SSP vector is found. The final output of the adaptive
algorithm is the WM vector

. Fig. 3(b) shows the con-
vergence of the weights for this case. It can be seen that once the
algorithm has reached the floor error, the weights maintain the
values obtained, even if the adaptive algorithm is left running.

To illustrate the case when the reference linear filter
is not a SSP vector, a lowpass linear filter with coefficients

is used as the reference in the adaptive algorithm. The
associated SSP vector to this linear filter is the one used in the
previous example. The adaptive algorithm, whose learning
curve is illustrated in Fig. 3(c), leads to the WM filter

.
This WM filter does not belong to the same class as ,

TABLE IV
CHARACTERISTICS OF THE FILTERS AND SIGNALS USED FOR THE FREQUENCY

SELECTION EXPERIMENT IN THE COMPLEX DOMAIN

demonstrating the potential penalty associated with using the
adaptive algorithm with a reference that is not an SSP vector.
However, since the adaptive algorithm tries to minimize the
cost function in (14), the output of the WM filter obtained has
a frequency response that resembles the one of the linear filter.
Fig. 3(d) shows how, in this case, the weights will keep on
changing since the algorithm does not reach a minimum.

B. Real-Valued WMs

In order to test the results obtained designing filters in the
real domain using Mallows Iterative Algorithm, four linear FIR
filters of 11 taps with lowpass, bandpass, highpass, and bandstop
characteristics were designed using (22) with a step size of

. The filters were submitted to the tests described below.
The frequency characteristics of the output of these filters and

the linear filters used as reference were approximated as fol-
lows: 50 realizations of 10 000 samples of standard Gaussian
noise were fed to the filters, and the spectra of the output was
approximated using the Welch method. The results were aver-
aged to obtain the frequency response of the signals shown in
Fig. 4. The results obtained will be referred to as the approxi-
mated frequency response of the filters (median or linear). The
cutoff frequencies of the linear filters used in the experiment are
summarized in Table II.

The plots show that the WM filter is able to have any fre-
quency-selection characteristics required. The characteristics
of the WM filters and the linear filters are very similar in
the passband, whereas the major difference is the lower at-
tenuation provided by the WM in the stopband. The next test
will show the importance of this difference when the filters
are working with real signals in both noiseless and impulsive
noise environments.

The frequency-selection capabilities of the filters, together
with their noise rejection potential, were tested as follows: The
sum of two sinusoids, with frequencies chosen to be one in the
passband and one in the stopband of each filter, was contami-
nated with -stable noise with different levels of impulsiveness
represented in values of of 1 (Cauchy noise, highly impulsive),
1.5, and 2 (Gaussian noise, non-impulsive) and a dispersion pa-
rameter . The frequencies of the sinusoidal signals are
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Fig. 5. Approximated frequency response of the complex WM filters designed with Mallows iterative algorithm. (a) Lowpass. (b) Highpass. (c) Bandpass.
(d) Bandstop (MPC is the Marginal Phase Coupled Complex WM, and RIC is the real-imaginary coupled CWM).

TABLE V
AVERAGE MSE OF THE OUTPUT OF THE COMPLEX WM FILTERS AND THE LINEAR FILTERS IN THE PRESENCE OF �-STABLE NOISE

shown in Table II. If an ideal linear filter were used to filter the
clean signal, the output will be a sinusoidal whose normalized
frequency will be the one on the passband of the corresponding
filter. This signal is used as a reference to calculate the MSE of
the outputs of the WM filters and a linear filter in the presence
of the noise. The results obtained when the clean signals are fil-
tered with the WM are also included for illustrative purposes.
Table III shows the average MSE of 100 realizations of the fil-
tering of 200 samples of the signal for each case.

C. Complex-Valued WMs

The tests developed in the previous section are repeated here
but this time using signals and filters in the complex domain.
Instead of sinusoidal signals, the sum of two exponential sig-
nals provides the input to the filters. Complex-valued FIR filters

with nine taps were designed using the Matlab function cremez,
and then, marginal phase-coupled and real-imaginary coupled
complex WM filters with the desired characteristics were de-
signed using the Mallows Iterative Algorithm. The characteris-
tics of the filters and the input signals used are shown in Table IV.
The approximated frequency response of the filters is shown in
Fig. 5, and the values of the average mean square error obtained
at the outputs of the filters are shown in Table V.

Fig. 5 shows that the frequency characteristics of the complex
WM outputs are very close to the ones of their linear counter-
parts. The real-imaginary coupled WM filter resembles exactly
the characteristics of the linear filter in the passband. The mar-
ginal phase-coupled WM filter shows slightly more ripple, yet
the approximation is still excellent. The results are confirmed
by the MSE values shown in Table V.
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Fig. 6. Approximated frequency response of WM filters designed using the
Mallows Iterative Algorithm and an LMS system-identification algorithm
compared with the approximated frequency response of the model linear filter.

D. Mallows Algorithm versus Other WM Filter Design
Schemes

One last test of the algorithm will be to compare it with other
algorithms currently used to design WM filters. Since the final
goal of the Mallows Iterative Algorithm is to approximate a
linear filter with a WM filter, this algorithm was compared with
the algorithm presented in [4]. This is a classical least mean
squares (LMS) system-identification scheme where the adap-
tive filter is a WM filter that, by the end of the process, will be a
good approximation of the linear filter taken as a reference. This
method, as well as Mallows iterative algorithm, aims to min-
imize the MSE between the outputs of the median filter being
designed and the linear filter used as a model. It is of interest
to compare the WM filters obtained by the two algorithms.
The two algorithms were used to approximate the 11-tap low-
pass linear filter:
and , which
is a valid SSP vector. The resulting median coefficients
are
and for
the Mallows iterative algorithm, which is an exact me-
dian equivalent of the linear filter .
The WM filter obtained with the LMS algorithm is

and . This
filter does not belong to the same class as , and in
consequence, it is not a WM equivalent of . For this filter, the
error measure is .

The approximated frequency response of both median filters
and the linear filter are shown in Fig. 6. It can be seen that the
WM filter obtained with the system identification algorithm has
a narrower passband and more ripple in the stopband than that
obtained with the Mallows Iterative Algorithm. Additionally,

follows the behavior of the linear filter up to an at-
tenuation of 5–6 dB and has a sharper transition.

The difference found between the results obtained with the two
methods can be understood from the fact that the LMS system
identification is a stochastic algorithm that needs a random signal

at the inputs of the filters in order to design the WM filter, which
is a standard Gaussian sequence in this case. A consequence of
this is that median filters resulting from training sequences with
different statistics are different. On the other hand, Mallows’ al-
gorithm is completely deterministic, and its result will always be
a WM filter in the class that is closest to the original linear filter
in the mean square error sense.

VIII. CONCLUSIONS

A design strategy for real- and complex-valued WM based on
Mallows’ theory for nonlinear smoothers has been presented. A
closed-form equation to find the sample selection probabilities
of any real-valued WM smoother and a steepest descent algo-
rithm that attempts to find the closest WM filter in the MSE
sense to a given linear filter was proposed.

The proposed iterative algorithm allows for the design of a
WM filter that approximates the frequency response of the linear
filter used as a reference. The simulations demonstrate that it is
possible to obtain any frequency characteristic required (low-
pass, highpass, bandpass, and bandstop) using WM filters in the
real and complex domains.

The set of simulations presented shows that the designed WM
filters outperform their linear counterparts in experiments with
additive -stable noise. Thus, controlled frequency-selection
capabilities have been added to the already known robustness
of WM filters.

The main advantage of Mallows Iterative Algorithm, com-
pared with LMS-type algorithms used to design WM filters, is
the fact that it does not require a training sequence. Filters de-
signed using stochastic adaptive algorithms require a training
sequence, and training sequences with different statistics may
result in different median filters (even if the same linear filter is
used as a reference). On the other hand, Mallows Iterative Algo-
rithm is deterministic, and it does not depend on an input signal.
However, the use of either algorithm for the design of a filter de-
pends on the specific application and the information available
to design the filter. In general, when a training sequence is avail-
able, an LMS algorithm can be used, whereas Mallows Iterative
Algorithm will be the alternative when the spectral characteris-
tics required by the filter are known.
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